

Impact of the use of the biomethane and hydrogen potential on trans-European infrastructure

Authors: Trinomics, LBST, E3-Modelling

September 2019

www.trinomics.eu

Aim and scope of the study

Study aims at a better understanding of:

- Potential of biomethane and hydrogen to contribute to the energy transition
- Economic and technical impacts of significant deployment of low carbon gases
- Readiness of gas network operators and regulators

Objectives affect the study boundaries

- Explorative scenarios aim to assess the impact on gas infrastructure
 - Not to forecast deployment pathways for H₂ or bio-CH₄
- Potential assessment focuses on maximum technical potential
- Assumptions regarding
 - Supply of biomethane and hydrogen (focusing on domestic EU supply)
 - Sectoral end-use demand for electricity, methane and hydrogen
 - Availability and location of flexibility resources to 2050
 - Hourly profile for supply of renewables

Explorative scenarios

	Scenario 1		Scenario 2		Scenario 3	
Storyline from the gas infrastructure study	"Strong electricity end-use"		"Strong green methane end-use"		"Strong hydrogen end-use"	
Time horizon	2030	2050	2030	2050	2030	2050
GHG emission reduction target						
Total GHG emission reduction incl. LULUCF vs. 1990	-49%	-100%	-49%	-100%	-49%	-100%
End user preferences						
End-user decision	Electricity-based end user applications		Methane-based end user applications		Hydrogen-based end user applications	
Major energy carrier	Electricity		Biomethane		Hydrogen	
Strategy for the gas infrastructure to follow end user preferences						
Expected gas type	Natural gas (+ biomethane)	Biomethane (+ PtCH ₄)	Natural gas (+ biomethane)	Biomethane (+ PtCH ₄)	Natural gas (+ biomethane)	Hydrogen
Regional distribution methane supply	 For natural gas according to import routes and production sites For biomethane according to availability and supply costs For PtCH₄ according to renewable power supply 					Close to CH ₄ demand
Regional distribution hydrogen supply	In close proximity to hydrogen demand					Close to renewable power supply
Seasonal gas storage	Conventional large-scale CH₄ storage					H ₂ salt caverns

Diversified gas supply in the long-term

- Decreasing gas demand and supply in the mid- and long-term
- Fossil gas still dominant in 2030, major role for biomethane & H₂ in 2050 (and PtCH₄ in CH₄ scenario)
- Limited supply from biomethane by 2030, utilisation of full biomethane potential until 2050

Sector coupling leads to lowest system cost

- Decreasing system costs due to increasing sector integration and substitution of energy imports
- Important role of decreasing specific renewable power generation costs
- Optimal system costs as a trade-off between renewables, system flexibility, and gas supply
- Electricity grid investments dominate costs for cross-border energy transport in 2030 and 2050
- CO₂ reduction costs are calculated as total system cost difference between 2030 and 2050 (excluding CO₂ costs) divided by emission difference
- This results in negative values ranging between -20 €/t_{CO2} in the methane focused Scenario 2 and -68 €/t_{CO2} in the hydrogen focused Scenario 3

^{*} excluding national energy transport costs

Methane scenario 2050: following biomethane potential

Gas Flows

<20 TWh/a</p>

Net demand

Supply surplus

Supply = Demand

50 - 100 TWh/a

100 - 200 TWh/a

0 TWh/a

<60 TWh/a

60 -120 TWh/a

120 - 180 TWh/a

>180 TWh/a

Hydrogen scenario 2050: following renewable power and electrolysis

Gas Flows

<20 TWh/a</p>

Net demand

Supply surplus

Supply = Demand

50 - 100 TWh/a

100 - 200 TWh/a

Recommendations (1/2)

Limitations and uneaqual distribution of renewable gas resources require:

- Integrated European gas systems and markets, with EU-wide guarantees of origin
- Technical standards and specifications to facilitate biomethane and H₂ trade

Separate H₂ networks more adequate than admixture for strong deployment

- Further analysis on H₂ role and strategies for H₂ network "islands"
- Further study on framework for cross-border trade e.g. thresholds, (de)blending

Infrastructure planning

- Optimise use of existing infrastructure, possibly through conversion to H₂ networks
- Integrate across energy carriers and T&D, with clear policy guidance
- Shift to future-proof investments
- TEN-E & CEF: Support integration of renewable and decarbonised gases with review of scope & eligibility

Recommendations (2/2)

Thank you for your attention, please contact us for more information

Project Team

Luc van Nuffel
João Gorenstein Dedecca
Jessica Yearwood Travezán
Tycho Smit

Alessia de Vita

Ulrich Bünger
Matthias Altmann
Christian Fischer
Jan Michalski
Tetyana Raksha
Jan Zerhusen