FINLAND’S INTEGRATED NATIONAL ENERGY AND CLIMATE PLAN

Draft version submitted to the European Commission

20 December 2018

Unofficial translation
Contents

1 OVERVIEW AND PROCESS FOR ESTABLISHING THE PLAN ... 6

1.1 Executive summary .. 6

1.1.1 Political, economic, environmental, and social context of the plan .. 6

1.1.2 Strategy relating to the five dimensions of the Energy Union .. 8

1.1.3 Overview table with key objectives, policies and measures of the plan 8

1.2 Overview of current policy situation .. 8

1.2.1 National and Union energy system and policy context of the national plan 8

1.2.2 Current energy and climate policies and measures relating to the five dimensions of the Energy Union ... 9

1.2.3 Key issues of cross-border relevance .. 10

1.2.4 Administrative structure of implementing national energy and climate policies 15

1.3 Consultations and involvement of national and Union entities and their outcome 17

1.3.1 Involvement of the national parliament ... 17

1.3.2 Involvement of local and regional authorities ... 17

1.3.3 Consultations of stakeholders, including the social partners, and engagement of civil society and the general public ... 17

1.3.4 Consultations of other Member States ... 21

1.3.5 Iterative process with the Commission ... 22

1.4 Regional cooperation in preparing the plan .. 22

1.4.1 Elements subject to joint or coordinated planning with other Member State 22

1.4.2 Explanation of how regional cooperation is considered in the plan 23

2 NATIONAL OBJECTIVES AND TARGETS .. 24

2.1 Dimension decarbonisation .. 24

2.1.1 GHG emissions and removals .. 24

2.1.2 Renewable energy ... 26

2.2 Dimension energy efficiency .. 30

2.3 Dimension energy Security ... 32

2.4 Dimension internal energy market ... 34

2.4.1 Electricity interconnectivity ... 34

2.4.2 Energy transmission infrastructure .. 35

2.4.3 Market integration .. 37

2.4.4 Energy poverty ... 38

2.5 Dimension research, innovation and competitiveness ... 40
3 POLICIES AND MEASURES .. 41
3.1 Dimension decarbonisation ... 41
3.1.1 GHG emissions and removals .. 41
3.1.2 Renewable energy ... 46
3.1.3 Other elements of the dimension ... 50
3.2 Dimension energy efficiency .. 51
3.3 Dimension energy security ... 55
3.4 Dimension internal energy market .. 58
3.4.1 Electricity infrastructure ... 58
3.4.2 Energy transmission infrastructure .. 59
3.4.3 Market integration ... 60
3.4.4 Energy poverty ... 62
3.5 Dimension research, innovation and competitiveness ... 62
4 CURRENT SITUATION AND PROJECTIONS WITH EXISTING POLICIES AND MEASURES 66
4.1 Projected evolution of main exogenous factors influencing energy system and GHG emission developments .. 66
4.2 Dimension Decarbonisation .. 68
4.2.1 GHG emissions and removals .. 68
4.2.2 Renewable energy ... 73
4.3 Dimension energy efficiency ... 75
4.4 Dimension energy security ... 77
4.5 Dimension internal energy market .. 81
4.5.1 Electricity interconnectivity .. 81
4.5.2 Energy transmission infrastructure .. 82
4.5.3 Electricity and gas markets, energy prices ... 84
4.6 Dimension research, innovation and competitiveness ... 88
5 IMPACT ASSESSMENT OF PLANNED POLICIES AND MEASURES ... 90
5.1 Impacts of planned policies and measures described in section 3 on energy system and GHG emissions and removals including comparison to projections with existing policies and measures (as described in section 4) ... 90
5.2 Macroeconomic and, to the extent feasible, the health, environmental, employment and education, skills and social impacts including just transition aspects (in terms of costs and benefits as well as cost-effectiveness) of the planned policies and measures described in section 3 at least until the last year of the period covered by the plan, including comparison to projections with existing policies and measures. .. 94
5.3 Overview of investment needs.. 96

5.4 Impacts of planned policies and measures described in section 3 on other Member States and regional cooperation at least until the last year of the period covered by the plan, including comparison to projections with existing policies and measures ... 98
SECTION A: NATIONAL PLAN
1 OVERVIEW AND PROCESS FOR ESTABLISHING THE PLAN

1.1 Executive summary

1.1.1 Political, economic, environmental, and social context of the plan

Finland's Integrated National Energy and Climate Plan is based on the Government reports on the National Energy and Climate Strategy for 2030\(^1\) (VNS 7/2016 vp) and the Medium-term Climate Change Plan for 2030\(^2\) (VNS 7/2017 vp) submitted to Parliament. The measures in the transport sector have been specified in the final report of the working group on transport networks\(^3\).

The energy and climate strategy outlines concrete actions and objectives that will enable Finland to achieve the energy and climate targets specified in Prime Minister Juha Sipilä’s Government Programme\(^4\) and adopted in the EU for 2030, and to systematically set the course for reaching the 2050 targets. The starting point of the energy and climate strategy is to look at the energy and climate policy in different sectors comprehensively from the perspectives of emissions reduction, energy policy, growth and employment. The energy and climate policies should have a long time span and be in line with the Roadmap contained in the Report of the Parliamentary Committee on Energy and Climate Issues\(^5\). When formulating the National Energy and Climate Strategy, Finland’s special features, including the cold climate, long transport distances, extensive energy-intensive industry and domestic raw material resources, especially forest biomass, have been taken into account.

The abstract of the National Energy and Climate Strategy is as follows:

The National Energy and Climate Strategy outlines the actions that will enable Finland to attain the targets specified in the Government Programme and adopted in the EU for 2030, and to systematically set the course for achieving an 80–95 per cent reduction in greenhouse gas emissions by 2050.

\(^3\) https://api.hankeikkuna.fi/asiakirjat/7f574872-8fb8-4ab0-9a2f-235453593d73/942200a3-3e77-4ca9-91fa-74f558b47000/RAPORTTI_20180228105337.pdf

With minor exceptions, Finland will phase out the use of coal for energy. The share of transport biofuels will be increased to 30 per cent, and an obligation to blend light fuel oil used in machinery and heating with 10 per cent of bioliquids will be introduced. The minimum aim is to have 250 000 electric and 50 000 gas-powered vehicles on the roads. The electricity market will be developed at the regional and the European level. The flexibility of electricity demand and supply and, in general, system-level energy efficiency will be improved. Technology neutral tendering processes will be organised in 2018–2020, on the basis of which aid will be granted to cost-effective new electricity production from renewable energy.

The share of renewable energy in the end consumption will increase to approx. 50 per cent and the self-sufficiency in energy to 55 per cent. The share of renewable energy use in transport will clearly exceed the Government Programme target. The domestic use of imported oil will be halved as planned. The greatest non-ETS sector reductions in emissions will be achieved in the transport sector, and this will be the foundation of the medium term climate policy plan of 2017.

The Medium-term Climate Change Plan defines the measures to ensure that the emission reduction target for the effort sharing sector will be achieved and is in line with the long-term climate target.

The Medium-term Climate Change Plan concerns the non-ETS sectors, the effort sharing sector, which includes transport, agriculture, building-specific heating, waste management and F-gas emissions. Alongside the energy and climate strategy, the plan helps to implement and reach the targets of the climate and energy policy in the Government Programme. The plan specifies and supplements the emissions reduction measures defined in the energy and climate strategy. The work also examines the links and crosscutting themes between sectors, such as the significance of consumers’ choices and local climate work.

The starting point for the Medium-term Climate Change Plan is that Finland will take advantage of the 2% one-off flexibility included in the Commission's proposal to achieve the target. Finland will inform about using the LULUCF flexibility as the information becomes available.

The abstract of the Medium-term Climate Change Plan is as follows:

Provisions on the medium-term climate policy plan have been laid down in the Climate Change Act (609/2015). The plan sets the emissions reduction target for greenhouse gases to 2030 and specifies the actions to be taken to ensure that the targets are reached and that they are compatible with the long-term climate change objective.

The plan applies to the non-emissions trading sectors, i.e. the effort sharing sector. This comprises transport, agriculture, building specific heating, waste management and F-gas emissions. Together with the Energy and Climate Strategy completed at the end of 2016, the plan implements the climate and energy policy objectives set in the Government Programme. The plan further specifies and supplements the emissions reduction actions set out in the Energy
and Climate Strategy. Linkages and cross-cutting themes between the sectors are also examined, including the role of consumption and work on climate change issues done locally. The preparation of the plan was based on the same baseline scenario as was used for the Energy and Climate Strategy.

According to the Commission’s proposal, the Finnish target for emissions reduction in the effort sharing sector by 2030 is 39% compared to 2005. The actions now included in the baseline scenario are not sufficient to achieve this. The medium-term plan assesses what kind of measures should be taken to reduce the gap, also taking account of the factors of uncertainty we are aware of. The emissions reduction measures included in the plan also support the attainment of the long-term emissions reduction objective, i.e. the objective set to 2050.

The energy and climate strategy and the Medium-term Climate Change Plan are based on common projections and an impact assessment has been carried out on both of them.

1.1.2 Strategy relating to the five dimensions of the Energy Union

The Integrated National Energy and Climate Plan discusses all of the five dimensions of the Energy Union on the basis of the related government reports: (i) decarbonisation, including efforts to reduce greenhouse gas emissions, the sinks and efforts to increase renewable energy, (ii) energy efficiency, (iii) energy security, (iv) internal energy market and (v) research, innovation and competitiveness.

1.1.3 Overview table with key objectives, policies and measures of the plan

Table 1 presents a summary of the main targets of the National Energy and Climate Plan. Table 2 gives an overview of existing as well as planned energy and climate policy measures.

1.2 Overview of current policy situation

1.2.1 National and Union energy system and policy context of the national plan

Finland's national energy system has been described in Chapter 2 of Finland’s Seventh National Communication under the United Nations Framework Convention on Climate Change.

Finland's Integrated National Energy and Climate Plan is based on the Government reports on the National Energy and Climate Strategy for 2030 (VNS 7/2016 vp) and the Medium-term Climate Change Plan for 2030 (VNS 7/2017 vp) submitted to Parliament. Parliament has discussed both reports and issued related non-binding resolutions concerning them.

Table 1. Summary of the main targets of the National Energy and Climate Plan.

<table>
<thead>
<tr>
<th>Target</th>
<th>Targeted year</th>
<th>Year of comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce the greenhouse gas emissions in the effort sharing sector by 39%</td>
<td>2030</td>
<td>2005</td>
</tr>
<tr>
<td>Total emissions in the LULUCF sector not to exceed the calculated sinks</td>
<td>Period 2021–2025</td>
<td>Period 2026–2030</td>
</tr>
<tr>
<td></td>
<td>accounted according to LULUCF regulation</td>
<td></td>
</tr>
<tr>
<td>Renewable energy share of final energy consumption at least 50%</td>
<td>2030</td>
<td></td>
</tr>
<tr>
<td>In road transport the renewable energy share of final energy consumption 30%</td>
<td>2030</td>
<td></td>
</tr>
<tr>
<td>Energy efficiency target: final energy consumption not more than 305 TWh (corresponds to approximately 420 TWh primary energy supply)</td>
<td>2030</td>
<td></td>
</tr>
</tbody>
</table>

1.2.2 Current energy and climate policies and measures relating to the five dimensions of the Energy Union

The current energy and climate policy measures and their effects have been listed in the reporting Finland has submitted to the European Commission in compliance with Articles 13 and 14 of the Monitoring Mechanism Regulation (EU) No 525/2013\(^7\) and Article 10 of LULUCF decision (EU) No 529/2013\(^8\). In addition, the same matters have been reported in Finland’s Seventh National Communication under the United Nations Framework Convention on Climate Change\(^6\). An overview of the most important policy measures is presented in Table 2.

\(^7\) \url{http://cdr.eionet.europa.eu/fi/eu/mmr/art04-13-14_lcds_pams_projections/pams/envwmaa2q/} and \url{REPORTING ON POLICIES AND MEASURES UNDER ARTICLE 13 AND ON PROJECTIONS UNDER ARTICLE 14 OF REGULATION (EU) No 525/2013 \url{http://cdr.eionet.europa.eu/fi/eu/mmr/art04-13-14_lcds_pams_projections/pams/envwmaa2q/PAMs_Finland_Report_for_PAMs_and_Projections_2017.pdf}}

Table 2. Overview of energy and climate policy measures. Measures marked with * are additional measures included in the With Additional Measures projections but not in the With Existing Measures projections.

<table>
<thead>
<tr>
<th>Energy supply</th>
<th>Industry</th>
<th>Transport</th>
<th>Residential and services</th>
<th>Waste</th>
<th>Agriculture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy and carbon dioxide taxes</td>
<td>Waste tax</td>
<td>Energy and carbon dioxide taxes</td>
</tr>
<tr>
<td>Energy Efficiency Agreements</td>
<td>Energy Audit Programme</td>
<td>Promoting the use of biofuels in the transport sector, enhanced measures*</td>
<td>Consumer energy advice</td>
<td>Regulation on packaging, waste management</td>
<td>Energy Efficiency Agreement for Agriculture and other energy efficiency initiatives</td>
</tr>
<tr>
<td>Promoting wind power</td>
<td>Energy Efficiency Agreements</td>
<td>Promoting biogas in road transportation</td>
<td>Ecodesign and energy labelling</td>
<td>Landfill regulation limiting deposit of organic waste</td>
<td>Rural Development Programme for Mainland Finland</td>
</tr>
<tr>
<td>Promoting forest chips and other wood based energy</td>
<td>Implementation and improved enforcement of F-gas regulations</td>
<td>Improving the energy-efficiency of vehicles, enhanced measures*</td>
<td>Information dissemination and campaigns on energy efficiency</td>
<td></td>
<td>Climate Programme for Finnish Agriculture</td>
</tr>
<tr>
<td>Promoting biogas in electricity and heat production</td>
<td>Public procurement criteria, information measures etc concerning F-gases *</td>
<td>Improving the energy-efficiency of transport system, enhanced measures*</td>
<td>Building regulation</td>
<td></td>
<td>Activities on organic soils *</td>
</tr>
<tr>
<td>Promoting solar power</td>
<td>Promoting the use of bioliquids in machinery *</td>
<td>Energy certificates for buildings</td>
<td></td>
<td>Promoting the use of bioliquids in machinery *</td>
<td></td>
</tr>
<tr>
<td>A premium system for renewable electricity *</td>
<td></td>
<td></td>
<td>Promoting the use of bioliquids in space heating *</td>
<td>Promoting the production and use of biogas *</td>
<td></td>
</tr>
<tr>
<td>Phasing out coal in energy production *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.3 Key issues of cross-border relevance

Directive 2014/94/EU of the European Parliament and of the Council on the deployment of alternative fuels infrastructure (the AFI Directive) entered into force in October 2014. The aim of this Directive was to minimise the oil dependence of transport and reduce the environmental effects of transport in
the entire EU. Under the Directive, all Member States had to draft a national policy framework for
the development of an alternative transport fuel market and deployment of the related infrastructure
by November 2016. The national policy frameworks had to contain targets for alternative transport
fuels and their distribution infrastructure for 2020 and 2030 as well as the measures necessary to
ensure that these targets are reached.

The AFI Directive also has significance across the borders because measures are required to enable
vehicles using alternative fuels such as electricity, natural gas or biogas to move across the Union.

Finland is a member of the Nordic Council of Ministers and under this organisation, there are sub-
stance working groups concerning electricity markets, energy efficiency and renewable energy. There
is also cooperation in the field on eco-design and energy labelling.

Nordic co-operation on electricity market

Norway, Sweden, Finland and Denmark have long shared a single electricity market and serve as a
prime example of how to harmonise and liberalise electricity markets across national borders. The
design of the common Nordic electricity market aims at promoting competition on equal terms and
at a socio economic efficient use of production and transmission resources, and is also key in inte-
grating large shares of renewable energy in the system. The market price is set at the common power
exchange, where the supply meets the demand at the day-ahead and the intra-day markets.

The Electricity Market Group (EMG) is a working group under the Nordic Council of Ministers,
which commissions analyses and provides advice on electricity market issues to the Nordic Energy
Ministers. The group consists of experts from the Ministries and energy authorities in the four Nordic
countries participating in the common Nordic electricity market.

The goal of Nordic electricity market co-operation is to advance a harmonised and integrated Nordic
electricity market where demand and production structures, flexibility measures and other relevant
issues complement each other within the Nordic market area as a whole, in addition to promoting
synchronised rules for all market participants, both companies and consumers. The focus is on:

- Function of the regional electrical system with particular emphasis on integration of renewa-
 ble power generation, security of supply, demand flexibility and smart networks
- Network investment and network planning
- Representing Nordic interests in an EU context
- A more harmonised retail market
- Taking initiative to involving the Baltic countries in electricity market development, when
 appropriate
- Establishing relevant collaboration with market stakeholders
- Following trends and possible research, development and innovation (RDI) needs within the
 Nordic electricity market
In addition to the official co-operation among the ministries, the Nordic Transmission System Operators, the regulators, producers and other market stakeholders also have a close co-operation across country boarders. As the electricity system is changing with influxes of large shares of renewables, the subsequent needs for system solutions on both supply and demand side, and the new European legislation, the Nordic energy ministers have decided to introduce an annual Nordic Electricity Market Forum - the first to be held in the autumn 2018. The intention is to advance communication and collaboration between different electricity market stakeholders, in addition to establishing common visions and road maps for future development of the Nordic electricity market.

The activities of the EMG contribute to Nordic benefits through initiating Nordic collaboration on initiatives that would otherwise be undertaken at national level, but where significant positive effects are achieved through joint Nordic solutions.

As such, the Nordic Electricity Market co-operation is advancing the market further into an efficient and well-functioning one, high levels of security of supply, equal conditions of competition, environmental friendliness, transparency and incentives for price elasticity, in accordance with the decisions of the Nordic Council of Ministers.

Nordic co-operation on energy efficiency

The Nordic cooperation on energy efficiency is conducted in the networking group on energy efficiency (NGEE). The group consists of experts from the Ministries and energy authorities in the Nordic countries.

The main objectives of the co-operation in this area are to promote Nordic co-operation on energy efficiency initiatives and to implement EU/EEA directives and programmes.

The co-operation is conducted in a network co-operation where specific ad hoc is discussed within the group especially in relation to the ‘Clean energy for all’ package. In addition to this the group is facilitating analysis and seminars on specific issues.

Nordic co-operation on renewable energy

The Nordic countries make considerable efforts to develop and increase the use of renewable energy, aiming to diversify the energy system and to be less dependent on import of energy sources such as fossil fuels, and to reduce the CO2 emissions. The Working Group for Renewable Energy (AGFE) – consisting of experts from the Ministries and energy authorities in the five Nordic countries – supports the Nordic countries' policy and development work in renewable energy sector by exchanging information and enhancing the collaboration between Nordic countries. In addition, AGFE disseminate information about relevant projects commissioned by AGFE tackling different issues on renewable energy in the Nordics. Most recently AGFE has looked at; renewable energy system support in the Nordics, how new EU sustainability criteria for biomass will affect the Nordics and finally, an assessment of the emerging trend of distributed electricity production and self-consumption.
AGFE aims to strengthen Nordic added value through projects that would usually occur nationally, but where positive effects are created through a Nordic joint effort. The group works to develop and manifest Nordic collaboration, and thereby increase Nordic competencies and competitiveness. AGFE also strives to develop Nordic perspectives on emerging policies and regulations within EU. Some of AGFE’s recent activities are listed below:

- In 2018, AGFE initiated a study on Distributed energy production and self-consumption in the Nordics. The aim of the study is to review the current situation and future prospect of decentralized energy production and the transition where consumers such as households are becoming also producers. The regulations and policies in the Nordic countries concerning distributed electricity production and self-consumption will be discussed, and barriers to a sound development will be identified. This study will provide useful information for policy makers and other stakeholders and will contribute to fulfil coming requirements according to the revised EU directive on renewable energy (REDII).

- AGFE works for enhanced Nordic co-operation on implementing the current EU renewable energy directive (REDI) to 2020 as well as preparing for the revised directive (REDII) that take effect from 2020.

- As a set of new forest biomass sustainability criteria were proposed in RED II, AGFE in 2017 commissioned a study on the emerging Bioenergy Sustainability Policy and its’ possible impacts entitled; “A Nordic analysis of the proposed EU policy for bioenergy sustainability”. This work contributed to the process of revising the Directive and increasing the knowledge of its impact on the bioenergy sector in the Nordic region.

- In 2016 AGFE commissioned a study; ”New Gameplan – RES Support in the Nordics” with the purpose to investigate the impact of the revised State Aid Guidelines on current Nordic support schemes designed to promote renewable energy. The study contributed to the discussions regarding the design of Nordic support schemes.

Nordic cooperation on ecodesign and energy labelling

The Nordic cooperation on market surveillance and policy work on ecodesign and energy labelling is conducted in the Nordsyn working group. It is a cooperation among Nordic market surveillance authorities (MSAs) and policy agencies.

Ecodesign and energy labelling can save 10% of energy use in the EU in 2020 which is a great contribution to the EU 2020 and 2030 goals. Effective regulations and efficient market surveillance is essential if this is to be realized and Nordsyn aim to improve the efficiency of Nordic market surveillance and policy input. Nordic authorities, producers and consumers benefit from Nordsyn while green growth and energy efficiency are supported. The results and structure of Nordsyn can be used to improve market surveillance also in other EU countries.
Nordsyn sub projects:

Results from Nordsyn:
The most appreciated result of Nordsyn is that the Nordic countries now regularly share questions, commission answers, discussions, test results and plans on email and skype. Even though the core of Nordsyn is continuous contact and exchange of market surveillance results, Nordsyn has also given the possibility to perform a number of projects that improve Nordic market surveillance and knowledge of legislation among producers, retailers and consumers. The Nordsyn steering group communicate on monthly skype meetings, emails and yearly physical meetings/workshops.

Effects-project: this study showed a prevented energy loss worth 28 million Euro for a market surveillance cost of around 2 million Euro in the Nordic countries, and an overall rate of 6.3% non-compliance. These results show that the market surveillance is cost efficient, especially when countries cooperate.

Strategic Nordic products Heat pumps-project: the project resulted in an overview of legislation, national work and recommendations. Some of these recommendations is further studied in the 2017 and 2018 heat pump projects.

Challenges-project: the project contains a number of product studies on how to perform market surveillance on complex products (ventilation units, transformers, professional refrigeration etc).

Nordic energy research co-operation

Nordic Energy Research (NER) is the platform for cooperative energy research and analysis in the Nordic region under the auspices of Nordic Council of Ministers. It funds research of joint Nordic interest that supports these ambitions by expanding knowledge on sustainable energy and contributing to the development of new, competitive energy solutions.

The governance structure of NER is closely connected to both the national political systems of the five Nordic countries as well as the intergovernmental Nordic system. Its board and other committees and project steering groups consist not only of representatives from national funding agencies,
but also from national energy authorities, ministries and the Nordic Council of Ministers secretariat. This creates a constant interaction between research strategies, results and key technical issues on the political agenda.

According to its strategy for the period 2018-2021 the vision of NER is to create the knowledge basis for the Nordic countries to become global leaders in smart energy. The mission is progressed through Nordic collaboration.

NER manages a number of projects and facilitates in various fields, ranging from compilation of results from ongoing studies, to technical research. As an illustration, in 2015 NER selected three ambitious projects to serve as “Flagships” for Nordic research cooperation in energy for the coming 4-year period. These Flagships are covering such diverse areas as flexible electricity market design to allow for more wind and solar energy; modelling how to achieve an energy-efficient and low carbon transport system; and enabling negative CO2-emissions through new combustion-related technologies.

With regard to the regional aspects linked to the national energy and climate plans, two projects are of particular significance:

- **Nordic Energy Technology Perspectives (NETP)** is a Nordic edition of the International Energy Agency’s (IEA) global Energy Technology Perspectives. The report has been published twice (2013 and 2016) and offers a detailed scenario-based regional analysis of how the Nordic countries can achieve a near carbon-neutral energy system. At present, the possibility of an updated report (with the working title Nordic Energy Outlook) is discussed within the Board of NER and with the IEA.

- **The Nordic Electric Vehicle Outlook 2018 (NEVO 2018)** has been developed in co-operation between the International Energy Agency (IEA) and Nordic Energy Research. It aims to identify and discuss recent developments of electric mobility in the five Nordic countries: Denmark, Finland, Iceland, Norway and Sweden. The report assesses the current status of the electric car market, the deployment of charging infrastructure, and the integration with the electricity grid at country level. It analyses the role of European, national, and local policy frameworks in supporting these developments. The analysis also provides insights on consumer behaviour and includes an outlook on the progress of electric mobility in the Nordic region up to 2030.

1.2.4 Administrative structure of implementing national energy and climate policies

The Ministerial working group on energy and climate policy issues set by the Government has been operating since 2003. The working group has representatives from each party forming the Government and it is chaired by the minister/ministers responsible for energy and climate policy.
The operation of the Ministerial working group on energy and climate policy issues is based on the government resolution concerning the organisation of official climate policy measures in the Government⁹. The resolution includes policy outlines for arranging the tasks and cooperation of the ministries in the preparation and implementation of domestic climate policy. A working group consisting of representatives of different ministries functions as a network for public officials and helps in the coordination and preparation of the tasks.

The network for energy and climate policy consists of the representatives of the Ministry of Economic Affairs and Employment, the Ministry of the Environment, the Ministry of Transport and Communications, the Ministry of Agriculture and Forestry, the Ministry of Finance, the Ministry for Foreign Affairs and the Prime Minister's Office. The Ministry of Economic Affairs and Employment is responsible for the general coordination of the work on the energy and climate strategy. Each sectoral ministry is responsible for the preparation and implementation of the policy measures related to their field in the following way:

- Ministry of Economic Affairs and Employment: use of energy by industry, services and households; industrial processes; production and consumption of energy; renewable energy; supply of electricity and district heating
- Ministry of the Environment: F-gas emission projections, waste management sector, building volume, energy consumption of buildings and their sources of heating, energy consumption of machines and their emissions
- Ministry of Transport and Communications: energy consumption and emissions of road, waterborne, air and rail traffic; share of bio components in biofuels
- Ministry of Agriculture and Forestry: non-energy-related emissions in agriculture; use of energy in agriculture; biomass amounts; forestry; the land use, land-use change and forestry sector (LULUCF sector)
- Ministry of Finance: energy taxes, short-term economic development

The preparation and implementation of energy and climate policy in central government is described in more detail as part of the reporting in compliance with Article 13(1) of the Monitoring Mechanism Regulation (MMR)⁷.

Figure 1 presents a diagram of the administrative framework of drafting energy and climate policy (situation in 2018).

1.3 Consultations and involvement of national and Union entities and their outcome

1.3.1 Involvement of the national parliament

Finland's Integrated National Energy and Climate Plan is based on the Government reports on the National Energy and Climate Strategy for 2030 (VNS 7/2016 vp) and the Medium-term Climate Change Plan for 2030 (VNS 7/2017 vp) submitted to Parliament. Parliament has discussed both reports and issued related non-binding resolutions concerning them.

1.3.2 Involvement of local and regional authorities

The Association of Finnish Local and Regional Authorities has represented local and regional authorities in the consultations. Consultations are discussed in more detail in Section 1.3.3.

1.3.3 Consultations of stakeholders, including the social partners, and engagement of civil society and the general public

The targets and policy measures of this National Energy and Climate Plan have been in public consultation already when preparing the National Energy and Climate Strategy and the Medium Term Climate Policy Plan. In the consultations and events organised for interest groups, all relevant parties have been consulted, including other authorities, organisations representing different interest groups, non-governmental organisations, labour market parties and individual citizens. The consultations and events are listed below.
Energy and climate strategy

The following expert seminars on different topics were organised in connection with the preparation of the energy and climate strategy:

- 25 November 2015: Seminar launching the strategy work. The launching seminar had about 160 participants and almost 100 people watched the broadcast online.
- 27 January 2016: Expert event on the electricity market. In the expert seminar on the electricity market, 31 experts discussed the current state and future challenges of the electricity market.
- 2 February 2016: Seminar on the alternatives in the implementation of the EU's policy outlines for 2030 and their effects on the Finnish electricity and heating markets and on the realisation of the objectives of the Government Programme. The seminar was related to the Government's ongoing study on the alternatives in the implementation of the EU's policy outlines for 2030 and their effects on Finland's competitiveness. In the seminar, the results of the report carried out by Pöyry Management Consulting Oy were presented and both the objectives and steering methods at the EU level and the energy and climate objectives in the Government Programme were discussed. In their comments and speeches, participants took a stand on the role of the emissions trade and the future prospects of the electricity market, on the need for steering methods to support renewable energy and on the importance of different targets of energy and climate policy from the point of view of Finland's competitiveness.
- 17 February 2016: Seminar on the reform of the subsidy policy for bioenergy. Participants discussed and brought up views on reforming the subsidy policy for bioenergy in Finland.
- 23 March 2016: Seminar on the supply of forest biomass and its use in the forest industry, as raw material of advanced biofuels and as fuel in energy production. Participants discussed the adequacy of domestic timber, the effects of the increasing demand for timber on its price and to what kind of use wood should be directed bearing in mind the EU targets, the objectives of Prime Minister Juha Sipilä's Government Programme and the competitiveness of the economy.
- 4 May 2016: Workshop on energy efficiency. Participants discussed ways of improving energy efficiency. The discussions focused around four themes: Housing and mobility, Smart consumer, Agriculture and rural enterprises, and Small-scale industry and services. There was an opportunity to comment on each theme, and after that, there was an open discussion.
- 15 June 2016: Publication of the With Existing Measures (WEM) projection.
- 9 September 2016: Seminar on the increase in decentralised energy production and changing operating models in the energy markets.
- 7 October 2016: Nordic viewpoints - the role of bioenergy as part of the EU's Energy Union, a seminar. The seminar was organised as part of Finland's presidency of the Nordic Council of Ministers.
Citizen survey

The WEM projection for the energy and climate strategy was published on 15 June 2016. On the same day, www.energiajailmasto.fi, the website containing the survey, was opened. The website contributed to enabling citizens to participate in the preparation of the strategy.

On the website, citizens could learn about the possible new policy measures listed by government officials and take a stand on them. They could also propose measures of their own. The online debate for citizens was open for two months (15 June-16 August 2016). The website was viewed almost 3,500 times and a total of 466 comments and proposals were received.

Visitors to the website could also evaluate the different proposals by awarding them plusses and minuses. The three most popular proposals were:

- Current tax-exemption from electricity tax granted to small-scale production of electricity for own use will continue. (+179)
- Geothermal energy will be promoted. Investments in new energy technology may compete for aids granted to demonstration projects (+165)
- Promotion of decentralised energy production (electricity, heat, transport, storage) through sustainable and cost-effective measures. (+155).

The proposals that citizens most opposed to are below. Generally, significantly fewer opposing votes were given than votes in favour. On the other hand, it is worth noting that the proposals which received the highest number of minuses also received a relatively high level of support.

- The use of coal will be forbidden. (-78, +64)
- The creation of the preconditions for the joint Nordic retail market will be continued and equal treatment of electricity sellers in the retail market will be promoted by switching to a single invoice model for all sellers of electricity. (-76, +81)
- Finland will prepare to utilise its wind power potential extensively. (-70, +106)

The background report on the energy and climate strategy lists the policy measure proposals included in the online survey and the opinions expressed in the survey.

Panel discussion on strategy priorities at SuomiAreena in Pori

The WEM projection published in June was also used as the basis of the panel discussion the Ministry of Economic Affairs and Employment held at SuomiAreena organised by MTV and the City of Pori on 14 July 2016.

In the panel discussion, Minister of Economic Affairs Olli Rehn debated on the production and consumption of energy, self-sufficiency, decarbonisation, nuclear power and renewable energy with five experts of the energy sector.

The large audience present at the discussion had the opportunity to vote for the winner for each of the five discussions. The audience following the discussion online on MTV's Katsomo and on Suomi-AreenaTV could participate in the voting by sending a text message or through a smartphone application. It was also possible to watch a recording of the panel discussion on MTV Katsomo.

Medium-term Climate Change Plan 2030

When the Medium-term Climate Change Plan was under preparation, several consultations and workshops were organised for the interest groups. In the workshops, measures proposed by interest groups were explored, existing best practices were sought for and the acceptability of the planned measures was examined. Two open seminars were organised for the interest groups, one at the beginning of the planning in February 2016 and the other in November 2016 when the decisions concerning the range of measures had mostly been made. In addition, smaller events were organised towards the end of the summer and at the beginning of autumn 2016 for interest groups in transport and agriculture and for actors in municipalities and regions. Internal workshops were also organised in administration to obtain comments from experts on the plans made in different sectors. In February 2017, an open workshop on the gender effects of the climate change plan was organised and experts of sectors involved in the plan and experts of gender equality work were invited to participate. In addition, during summer 2016, it was possible for all citizens to comment on the measures planned by government officials on the energiajailmasto.fi website, a joint platform with the energy and climate strategy coordinated by the Ministry of Economic Affairs and Employment in preparation at the same time.

It was possible to comment on the entire climate plan during the circulation for comments in May 2017. A total of 84 comments were issued during the circulation, most of which were comments on the measures in the transport sector. Other measures concerning different sectors and municipal and regional climate measures were paid attention to in the comments. All comments are public and available to read on the lausuntopalvelu.fi website. A public summary drawn up of the comments is also available on the website of the climate plan. The comments were taken into account when the plan was finalised.

Other energy and climate-related events

After the drafting of the Energy and Climate Strategy and the Medium-term Climate Change Plan, expert and consultation events related to the implementation of the strategy and the plan have also been organised. In addition, those involved in the drafting have participated in events organised by

11 http://www.ym.fi/download/noname/%7BC4791B40-5F32-47C8-8F09-188F3D41576F%7D/129157
other parties and have utilised the knowledge gained in the drafting of the Integrated National Energy and Climate Plan. Such events are:

- "Kuinka suuret ovat metsien ja puunkäytön ilmastovaikutukset", an event organised by the Natural Resources Institute Finland on the climate effects of forests and the use of wood, 7 March 2018.
- Consultation of interest groups related to the prohibition of the use of coal, 26 March 2018.
- Consultation of interest groups related to the generation of electricity from forest chips, 28 March 2018.
- Public debate organised by Minister of Environment, Energy and Housing Kimmo Tiilikainen. The debate also included energy issues, 23 April 2018.
- Talanoa dialogue series 2018: Päästöjään reilusti vähentävä Suomi ('Finland reduces its emissions significantly'),
 - Coordination of Finland's climate choices. Talanoa dialogue, 15 June 2018.
 - Tuumasta toimeen ('Getting down to work'). Talanoa dialogue, 7 November 2018.
 - Summary of the dialogue series and a dialogue with a large number of representatives from interest groups, 26 November 2018.

1.3.4 Consultations of other Member States

Finland’s draft Integrated National Energy and Climate Plan was sent 9 November for consultation to Estonia, Sweden, Denmark and Norway. With Estonia, a skype meeting concerning the NECP was organised on 30 November 2018. Estonia sent written comments for Finland’s draft NECP. Sweden informed that they do not have any comments on the document and from Denmark and Norway; we did not receive any response.

In the skype meeting and in their written comments Estonia explained that the policies and measures planned in Finland may have several interactions with the developments in Estonia and lifted up the following two concerns:

1) According to information provided by Eesti Energia AS, many oil shale generation capacities will be shut down in Estonia in the coming years and this decreases significantly the dispatchable generation capacities in Estonia. The regional electricity market remains in deficit while the role of intermittent renewable electricity generation increases in Estonia. This is why the concerns on how well Estonia can ensure the generation adequacy in the power system are rising in Estonia.
Estonia also finds it essential to develop the electricity market services on a regional scale. Increasing the level of flexibility is vital also for Estonia and the other Baltic states.

In this situation, Estonia would like to stress the need for a closer regional cooperation to find common solutions for the generation adequacy and the electricity market integration -issues that Estonia might have in the coming decades.

For these concerns, Finland will conduct a risk assessment study in the future. According to the Finland’s Energy and Climate Strategy for 2030, a target for the security of supply in electricity associated with the adequacy of electric power will be defined. This will happen as soon as the ENTSO-E publishes its method to define the sufficient adequacy level. As a part of the risk assessment study, Finland will also evaluate the regional electricity generation adequacy and this includes Estonia as well.

In addition, in the Nordic fora, the regional adequacy of electricity has been in discussions. Finland finds it important that in the discussions of the adequacy also Estonia and other Baltic countries are involved.

2) Decarbonisation of the transport sector plays a significant role in achieving the long-term climate and energy targets. Finland plans to increase the number of electric and gas vehicles, Estonia puts more focus on vehicles using bio-methane. Estonia finds it important to ensure a more harmonised development of the charging and refuelling infrastructure to enable the usage of electric and gas vehicles on both sides of the Gulf of Finland.

1.3.5 Iterative process with the Commission

This section will be written later when the Commission has given its recommendations.

1.4 Regional cooperation in preparing the plan

1.4.1 Elements subject to joint or coordinated planning with other Member State

In 2015, the Nordic Council of Ministers for Business, Energy & Regional Policy (the Nordic Council of Ministers for Sustainable Growth as from the beginning of 2018) decided to carry out a strategic study on Nordic energy cooperation and the possibilities to develop it over the following 5 to 10 years. The study was conducted by Jorma Ollila and the final report was published in 2017. In accordance with the report's proposal concerning the operational implementation of Nordic energy co-operation, a meeting of public officials coordinating the preparation of the national plans was organised at the initiative of Sweden on 8 May 2018 in order to exchange information and share best practices. A seminar on the modelling of estimated developments related to energy and climate strategies was organised in Oslo on 10 and 11 October 2018.

A meeting of Nordic senior officials was organised in Stockholm on 10 October 2018 and the national plans were also discussed in the meeting.
1.4.2 Explanation of how regional cooperation is considered in the plan

Regional cooperation is important in the Nordic and Baltic context. The well-functioning Nordic-Baltic electricity market is expected to continue and even expand in the future. The future common gas market between Finland and Baltic countries will increase regional co-operation in that field.

The regional aspect has been taken into consideration in the modelling of the electricity market and other energy related assessments.

More text on the regional cooperation is presented in Chapter 1.2.3.
2 NATIONAL OBJECTIVES AND TARGETS

2.1 Dimension decarbonisation

2.1.1 GHG emissions and removals

\(i\). The elements set out in point (a)(1) of Article 4

\(ii\). Where applicable, other national objectives and targets consistent with the Paris Agreement and the existing long-term strategies. Where applicable for the contribution to the overall Union commitment of reducing the GHG emissions, other objectives and targets, including sector targets and adaptation goals, if available

According to the Effort Sharing Regulation (ESR), Finland should by 2030 reduce its greenhouse gas emissions in the effort sharing sector by 39% compared with 2005 levels. This corresponds to a permitted amount of a 20.6 Mt CO\(_2\) equivalent in 2030. However, if flexibility measures are used, the emissions may be higher. The binding target imposed by the EU will be achieved following a linear trajectory established for cutting emissions over the period 2021–2030. The need to reduce emissions will increase towards the end of the period. The starting point of the emission reduction trajectory is determined on the basis of the average emissions between 2016 and 2018 and the calculation of the trajectory will begin from June 2019. Final certainty about the starting point will be obtained in 2020. Based on the current estimation, the starting point is at the level of about 30.2 Mt CO\(_2\) equivalent.

The annual emissions allocations in tonnes will be determined in a delegated act issued later. To achieve the target, Finland will take advantage of the so-called one-off flexibility included in the Commission’s proposal. The maximum annual flexibility set for Finland is 0.7 Mt CO\(_2\) equivalent.

The LULUCF flexibility mechanism included in the Commission's proposal has not been taken into account because of the uncertainty related to it. Finland will include in the reporting information on utilizing LULUCF flexibility as soon as it becomes available. Finland will use the other flexibility mechanisms such as transfers between years and emissions trading between the Member States when needed.

Under the regulation concerning the land use, land-use change and forestry (LULUCF) sector, a Member State must ensure over the periods 2021–2025 and 2026–2030 that the accounted total emissions in the sector will not exceed the accounted sinks. The accounting is applied to the following land use categories: deforestation, afforestation, managed forest land, managed cropland and grasslands. By 15 March 2027 and by 15 March 2032 Finland will submit the LULUCF compliance report including the balance of total accounted emissions and removals for the period from 2021 to 2025 and from 2026 to 2030 and where applicable, details on the intention to use or on the use of the flexibilities and related amounts. The Commission will make an assessment of the inclusion of wetlands in the LULUCF sector for the period 2026–2030. Over the period 2021–2030, Finland will be able to use the country-specific flexibility of 10 Mt CO\(_2\) to achieve the target. Finland will submit to the Commission its National Forestry Accounting Plan including the proposed Forest Reference
Level by 31 December 2018 for the period 2021–2025 and by 30 June 2023 for the period 2026–2030. According to the assessments carried out by the Natural Resources Institute Finland when preparing the energy and climate strategy (2013), the forest carbon sink compliant with the National Forest Strategy 2025 will settle between 13.5 and 20 Mt CO$_2$ equivalent in 2025. Natural Resources Institute Finland (Luke) is updating long term scenarios and greenhouse gas projections respectively for LULUCF sector based on new data on forest growth. Their results will be available in 2019.

Other national objectives and goals aimed at reducing greenhouse gas emissions include the objectives outlined in the National Energy and Climate Strategy to prohibit the use of coal for energy by 2030 and to halve the domestic consumption of mineral oil (petrol, diesel oil, light and heavy fuel oils and aviation fuels) from 2005 levels by 2030. Finnish Government submitted the coal ban bill to the Parliament on 18 October 2018. The prohibition is due to enter into force on 1 May 2029. Halving the use of oil, in turn, will support the reduction of emissions in the effort sharing sector.

The objectives and measures for promoting the use of transport biofuels and other renewable energy sources in transport have been recorded to the National Energy and Climate Strategy, to the Medium-term Climate Change Plan and to Finland’s plan compliant with the Directive on the deployment of alternative fuels infrastructure (2014/94/EU). The aim is to increase the share of transport biofuels in all transport fuels consumed in Finland to 30% by 2030. Another objective is to bring the number of electricity-powered cars in Finland to at least 250,000 and the number of gas-powered cars to 50,000 by 2030.

Figure 2 shows the Finland’s greenhouse gas emissions in 2000–2017 and the projected development in the With Additional Measures (WAM) projection until 2040. The WAM projection includes a set of cost-efficient additional energy and climate policy measures that the Government has agreed upon in order to attain the targets specified in the Government Programme and adopted in the EU for 2030. The WAM projection includes planned measures that the Government has decided upon that are not implemented yet by 1st of January 2018.

Figure 2. Actual greenhouse gas emissions 2000–2017 and the projected development in the WAM projection until 2040.
Adaptation to climate change

The government resolution on a National Climate Change Adaptation Plan 2022 was adopted in 2014. The objective of this plan is that society will have the capacity to adapt to changes in the climate and manage the associated risks. Climate change adaptation will be carried out cost-effectively by making adaptation part of the normal planning and decision-making processes in different sectors. The objective is that the actors will have access to the requisite methods for assessing and controlling climate risks and that society's ability to adapt can be improved, innovative solutions promoted and awareness of climate change adaptation spread by means of research and development, communications and training. The National Climate Change Adaptation Plan is part of the climate change policy planning system complying with the Climate Change Act.

2.1.2 Renewable energy

i. The elements set out in point (a)(2) of Article 4

The national renewable energy target set for 2030 in the National Energy and Climate Strategy is 50% of the final energy consumption. This proportion is also Finland's national input to the Union's binding target of 32% of renewable energy in compliance with the Renewable Energy Directive.

Table 3 shows the indicative development concerning the renewable energy target until 2030. The indicative development meets the minimum requirement for the national development of renewable energy described in point (a)(2) of Article 4 of the Regulation on the Governance of the Energy Union.

Table 3. The renewable energy targets and minimum levels for the intermediate years [share of gross final consumption of energy].

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2022</th>
<th>2025</th>
<th>2027</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland's EU obligation</td>
<td>38%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland's RES target for 2030 and the minimum level for the intermediate years</td>
<td></td>
<td>40%</td>
<td>43%</td>
<td>46%</td>
<td>50%</td>
</tr>
</tbody>
</table>

ii. Estimated trajectories for the sectoral share of renewable energy in final energy consumption from 2021 to 2030 in the electricity, heating and cooling, and transport sector

Figure 3 describes the estimated developments of renewable energy as sector-specific share of the final energy consumption for the electricity (RES-E), heating and cooling (RES-H&C) and transport sectors (RES-T) in the WAM projection. No coefficients for sustainable biofuels are included in the calculation of the share of renewable energy in transport. For the indicator RES-T renewable electricity supplied to road transport is considered to be four times its energy content and 1.5 times when supplied to rail transport.
iii. Estimated trajectories by renewable energy technology that the Member State projects to use to achieve the overall and sectorial trajectories for renewable energy from 2021 to 2030 including expected total gross final energy consumption per technology and sector in Mtoe and total planned installed capacity (divided by new capacity and repowering) per technology and sector in MW

iv. Estimated trajectories on bioenergy demand, disaggregated between heat, electricity and transport, and on biomass supply by feedstocks and origin (distinguishing between domestic production and imports). For forest biomass, an assessment of its source and impact on the LULUCF sink

Table 4 describes the production and use of renewable energy, grouped by technology and by sector. The figures in the table represent the estimated amounts of final energy consumption in the WAM projection not that of total primary energy or fuel amounts. The estimates concerning the transport sector correspond to the actual energy content of the energy source without any coefficients.

Table 4 also presents the estimated development of bioenergy in the heating, electricity and transport sectors. The electricity and heating markets are competed industries, and the central government therefore does not have a plan for how the installed capacity of each technology will develop in the future.
The energy and climate projections estimate that, at the level of the year 2030, the amount of forest chips in heat and electricity production will rise to about 26 TWh, which corresponds to about 13 million cubic meters per year. The amount is more than 1.5 times the current level. We can assume that most of the forest chip material will consist of small-diameter boles gathered in connection with the management of young forests. The rest is expected to consist of logging residues from regeneration felling and to some extent of stumps. As most of the forest-based energy is based on industrial wood by-products as well as harvesting and forest management residues, its impact on the LULUCF sector sink is small. The LULUCF accounting in the period of 2021–2030 is based on IPCC guidelines, respectively assuming instant oxidation of forest management residues.

Wood-based fuels are predicted to be (also in future) spent liquors, sawdust, bark and other industrial wood by-products created in connection with the forest industry and wood processing. Based on this, the share of wood-based fuels based on imports in all wood-based fuels in Finland is predicted to remain small, only a few per cent.
Table 4. Renewable energy per sector and technology in the WAM projection [TWh of final consumption].

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2022</th>
<th>2025</th>
<th>2027</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>RES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydro power</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Wind power</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Solar energy</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Biomass</td>
<td>109</td>
<td>115</td>
<td>122</td>
<td>125</td>
<td>128</td>
</tr>
<tr>
<td>Heat pumps</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>137</td>
<td>145</td>
<td>153</td>
<td>156</td>
<td>161</td>
</tr>
<tr>
<td>RES-E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydro power</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Wind power</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Solar energy</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>Biomass</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>38</td>
<td>40</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>RES-H&C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar energy</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Biomass</td>
<td>89</td>
<td>92</td>
<td>97</td>
<td>98</td>
<td>101</td>
</tr>
<tr>
<td>Heat pumps</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>96</td>
<td>99</td>
<td>104</td>
<td>105</td>
<td>108</td>
</tr>
<tr>
<td>RES-T (without coefficients)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid biofuels</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Biogas</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Renewable electricity</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

v. Where applicable, other national trajectories and objectives, including those that are long term or sectorial (e.g. share of renewable energy in district heating, renewable energy use in buildings, renewable energy produced by cities, energy communities and self-consumers, energy recovered from the sludge acquired through the treatment of wastewater)

Almost half of district heating is still produced from fossil fuels, while more than 70% of the heat produced for industrial needs is based on renewable fuels.

No sector-specific targets have been set for the heating and cooling produced using renewable fuels.

A blending obligation will be introduced for light fuel oil used for heating. The obligation to blend light fuel oil for heating of buildings with bio liquids will be 10% in 2028.
2.2 Dimension energy efficiency

i. The elements set out in point (b) of Article 4

ii. The indicative milestones for 2030, 2040 and 2050, the domestically established measurable progress indicators and their contributions to the Union’s energy efficiency targets as included in the roadmaps set out in the long-term renovation strategies for the national stock of residential and non-residential buildings, both public and private, in accordance with Article 2a of Directive 2010/31/EU

iii. Where applicable, other national objectives, including long-term targets or strategies and sectoral targets, and national objectives in areas such as energy efficiency in the transport sector and with regard to heating and cooling

Finland’s indicative national energy efficiency target for 2020, in accordance with the Energy Efficiency Directive, is the absolute level of final consumption of energy at 310 TWh. The corresponding level of primary energy consumption is estimated to 417 TWh. The 2030 energy efficiency target in final energy consumption is at some 305 TWh. Corresponding primary energy supply is about 420 TWh. The primary energy consumption and final energy consumption of the WAM projection in the period 2021–2030 are presented in Figure 4. The historical development from 2005 onwards is shown in Figure 7 in Chapter 4.3.

![Figure 4. Indicative development of primary energy and gross final energy consumption in the WAM projection.](image)

Energy efficiency agreements play a central role in the implementation of the binding energy saving target of Article 7 of the Energy Efficiency Directive.
In Finland, the annual variation in the need for heating significantly affects energy consumption. The difference between a cold and a warm year alone may result in changes of more than 5% in the final energy consumption.

Finland's national cumulative energy saving obligation in accordance with Article 7 of the Energy Efficiency Directive for the period 2014–2020 is 49 TWh$_{cum}$. The estimated cumulative energy saving effects of the measures implemented in the period 2014–2020, presented in the 2018 annual report of the Energy Efficiency Directive, are 92.7 TWh$_{cum}$ at the end of 2020.

The energy saving target for the central government for the period 2014–2020 is 8,225 MWh. According to the 2018 annual report in compliance with the Energy Efficiency Directive, the energy savings in force in 2017, achieved with the measures implemented between 2014 and 2017, total 13,240 MWh. The long-term energy savings in force in 2020, achieved with the measures implemented between 2014 and 2017, total 11,369 MWh.

Finland exploits the CHP and district heating potential well. A significant part of the heated building stock in towns, cities and densely populated municipalities is connected to the district heating network. Energy efficiency agreements also cover energy production and energy services that serve the achievement of the indicative national energy efficiency target. The National Energy Efficiency Action Plan 2017 (NEEAP-4) estimated that the energy saving effects of the measures implemented within the scope of agreement activities in the energy sector will total almost 1.7 TWh in 2020.

Finland has set separate sector-specific targets only in the field of transport. The objectives and measures for improving the energy efficiency of transport have been recorded in the National Energy and Climate Strategy and to the Medium-term Climate Change Plan. These measures are related to improving the energy efficiency of vehicles on the one hand, and to improving the energy efficiency of the entire transport system on the other. Improving the energy efficiency of vehicles reduces vehicle-specific consumption and greenhouse gas emissions, while improving the energy efficiency of the transport system reduces the total kilometrage and, consequently, the fuel consumption and greenhouse gas emissions of the entire transport sector. The aim is to decrease the total energy consumption of transport from the current 47 TWh per year to about 41 TWh per year.

The amendment of the Energy Performance of Buildings Directive (2018/844) was published on 19 June 2018 and the amendments made to the Directive must be implemented at the latest on 10 March 2020. Under Article 2a of the Directive, Member States shall establish a long-term renovation strategy to support the renovation of the national stock of residential and non-residential buildings, both public and private, into a highly energy efficient and decarbonised building stock by 2050. In its long-term renovation strategy, each Member State shall set out a roadmap with measures and domestically established measurable progress indicators. The roadmap shall include indicative milestones for 2030, 2040 and 2050. The preparation of the long-term renovation strategy has been launched in the Ministry of the Environment.
Finland continues the effective implementation of the voluntary energy efficiency agreement scheme and other energy efficiency actions described above after 2020. The ministerial energy efficiency working group, established in November 2018, will examine possible new energy efficiency actions, which could support the achievement of our energy targets for 2030. In spite of these strict policies and measures on energy efficiency, our projections towards 2030 show that primary energy use and final energy consumption will not turn down before 2030 (see Figure 4), because our national economy is growing with new industrial and tertiary sector energy use.

2.3 Dimension energy Security

i. The elements set out in point (c) of Article 4

ii. National objectives with regard to increasing: the diversification of energy sources and supply from third countries; for the purpose of increasing the resilience of regional and national energy systems

The targets of the security of energy supply have been outlined in the government decision on the targets of security of supply (857/2013)\(^{12}\). The security of energy supply must be based on diverse energy sources and fuels, sufficient and decentralised energy production and reliable transmission and supply systems. The security of energy supply is based on well-functioning energy markets, a clear long-term energy policy that encourages investments, and energy efficiency.\(^{13}\)

According to the government decision, for Finland to be prepared for disturbances in the availability of energy and to meet the commitments under international agreements, the National Emergency Supply Agency holds imported fuels in state-owned reserves to last for the normal consumption of an average of five months. The implementation of this obligation is constantly monitored and, as necessary, the quantities, qualities and locations of export fuels are changed to correspond to the situation prevailing at the time. International cooperation develops and deepens constantly. In the past few years, there has been significant development in the cooperation with the EU, the IEA, the Nordic countries and NATO. Of the Nordic countries, Finland has agreements concerning security of supply with Sweden and Norway. Also, the relationships with the security of supply authorities of Estonia have intensified. The National Emergency Supply Agency has together with the Ministry of Foreign Affairs invested in the personnel resources of international cooperation in the field of security of supply.

\(^{12}\) A new decision on the targets of security of supply was taken on 5 December 2018. There are no major changes between the old and the new decisions.

\(^{13}\) Government decision on the objectives of security of supply, Chapter 3.1.
https://www.finlex.fi/fi/laki/alkup/2013/20130857
iii. Where applicable, national objectives with regard to reducing energy import dependency from third countries, for the purpose of increasing the resilience of regional and national energy systems

The National Energy and Climate Strategy sets a national target of 55% for energy self-sufficiency. The target has been set according to the national rules for calculation and does not include electricity produced with nuclear power in Finland. National targets related to energy self-sufficiency also include the decision to prohibit the use of coal for energy by 2030 and to halve domestic use of mineral oil (petrol, diesel oil, light and heavy fuel oil, aviation fuels) from 2005 levels by 2030.

In addition, the opening of the gas market from the beginning of 2020, the construction of the Balticconnector gas pipeline and the related objective of creating a regional gas market comprising Finland and the Baltic states reduce the dependency on natural gas imported from Russia.

iv. National objectives with regard to increasing the flexibility of the national energy system, in particular by means of deploying domestic energy sources, demand response and energy storage.

The National Energy and Climate Strategy and the Medium-term Climate Change Plan have set the objective to increase the share of biofuels to 30% of fuels used in road transport and to replace 10% of light fuel oil use with bio liquids. The majority of biofuels and bio liquids are estimated to be domestic and their raw materials are estimated to include biodegradable waste, side streams of the forest and other industries, and logging residues. The preparation of the distribution obligation concerning the objectives is underway.

As for the transport sector, the objective is also to increase the number of electric cars to at least 250,000 and the number of gas-powered cars to at least 50,000 by 2030. The majority of the gas used in transport is domestic biogas. The share of domestic energy sources is large also in Finland's electricity production.

The government decision on the targets of security of supply states that the use of peat in combined power and heat generation must be secured. To ensure availability in case weather risks are realised, the target is to have peat reserve stocks covering six months’ use at the beginning of the peat production season.

The objectives of the National Energy and Climate Strategy to increase the number of renewable sources of energy described in Chapter 2.1.2 also promote the diversification of energy sources. Finland has not set specific objectives for the diversification of deliveries from third countries. National objectives are mainly related to reducing the dependency on imports from third countries (see the next section). Of imported fuels, the markets of oil and coal are global, so it is possible to change the supply sources even within a short period of time. To prepare for possible supply disruptions, compulsory stockpiles related to the security of supply of oil products and coal are held. As regards natural gas, the already completed LNG terminals, those under construction and the Balticconnector gas pipeline enable decentralised supply of gas.
Decentralised electricity and heat production based on renewable energy will be promoted. An effort will be made to increase decentralised small-scale production, mainly on market terms and through the current economic incentives. The interest of citizens, companies and the public sector in utilizing renewable sources in the energy solutions of individual buildings will be encouraged through guidance by information and local reference sites.

2.4 Dimension internal energy market

2.4.1 Electricity interconnectivity

i. The level of electricity interconnectivity that the Member State aims for in 2030 in consideration of the electricity interconnection target for 2030 of at least 15%, with a strategy with the level from 2021 onwards defined in close cooperation with affected Member States, taking into account the 2020 interconnection target of 10% and the following indicators of the urgency of action:

(1) Price differential in the wholesale market exceeding an indicative threshold of EUR 2/MWh between Member States, regions or bidding zones;

(2) Nominal transmission capacity of interconnectors below 30% of peak load;

(3) Nominal transmission capacity of interconnectors below 30% of installed renewable generation.

Each new interconnector shall be subject to a socioeconomic and environmental cost-benefit analysis and implemented only if the potential benefits outweigh the costs.

The level of interconnection of electric networks is defined as the ratio of commercial transmission capacity, excluding connections to third countries, divided by the installed power plant capacity. Finland’s electricity interconnection target for 2030 is to keep the level of interconnectivity above 15%.

According to data for 2017, the installed power plant capacity in Finland is about 17,100 MW and commercial transmission connections, excluding connections to Russia, total 3,700 MW. The level of interconnection is thereby 22%. When the nuclear power plant unit OL3 in Olkiluoto is completed in 2019, the generation capacity will be 18,700 MW and, correspondingly, the commercial transmission connections, excluding connections to Russia, will due to technical characteristics of the power system total 3,400 MW. In 2019, the level of interconnectivity will thus fall to 18%.

Fingrid Oyj (Finnish transmission system operator) and Svenska Kraftnät (Swedish transmission system operator) have signed a letter of intent concerning the construction of an alternating current connection of 800 MW between northern Finland and northern Sweden by 2025. The transmission line
project is included in the EU's PCI list approved in spring 2018. Commercial transmission connections, excluding the connections to Russia, would then be 4,200 MW and the installed power plant capacity somewhere in the order of 21,000 MW. This equals to an interconnectivity level of 20%.

The EU's aim is to bring the level of interconnection in the Member States to at least 10% by 2020 and at least 15% by 2030. Finland's interconnection capacity exceeds these targets.

2.4.2 Energy transmission infrastructure

i. Key electricity and gas transmission infrastructure projects, and, where relevant, modernisation projects, that are necessary for the achievement of objectives and targets under the five dimensions of the Energy Union Strategy

ii. Where applicable, main infrastructure projects envisaged other than Projects of Common Interest (PCIs)

In addition to the 800 MW interconnection between Finland and Sweden described above in Chapter 2.4.1, the most important projects concerning the domestic electricity transmission infrastructure are listed in Table 5.

In October 2016, Finnish Baltic Connector Oy and Estonian Elering AS made a decision to invest in the construction of the Balticconnector gas pipeline connection between Finland and Estonia. The Balticconnector gas pipeline is under construction and the intention is to put it into operation at the end of 2019. The new gas pipeline connection is needed to open Finland's gas market and to create a joint gas market of Finland and the Baltic states.
Table 5. The most important electricity infrastructure projects

<table>
<thead>
<tr>
<th>Transmission line/corridor</th>
<th>Project status</th>
<th>Project description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hikiä-Orimattila</td>
<td>Under construction Expected in</td>
<td>New 400 kV AC single circuit over head line of 70 km between substations Hikiä and Orimattila.</td>
</tr>
<tr>
<td></td>
<td>operation 2019</td>
<td></td>
</tr>
<tr>
<td>North-South reinforcements</td>
<td>Planned/Under consideration</td>
<td>New 400 kV AC single circuit over line of 300 km between Pyhänselkä and Petäjävesi. The line will be series compensated. Built to increase the north-</td>
</tr>
<tr>
<td>P1 stage 2</td>
<td>Seeking permission Expected in</td>
<td>south transmission capacity thus enabling the integration of new renewable, new connection to Sweden and conventional generation and RES in northern</td>
</tr>
<tr>
<td></td>
<td>operation 2022</td>
<td>Finland and to compensate dismantling of obsolescent existing 220 kV lines.</td>
</tr>
<tr>
<td>Keminmaa-Pyhänselkä</td>
<td>Planned/Under consideration</td>
<td>This transmission line is part of the third 400 kV AC connection between Finland and Sweden. Project will deliver 800 MW increased in transmission capacity.</td>
</tr>
<tr>
<td></td>
<td>Seeking permission Expected in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>operation 2024</td>
<td></td>
</tr>
</tbody>
</table>

\[14\] Nordic Grid Development Plan 2017, page 9
https://energinet.dk/-/media/10ACA6E691D94E0ABC600C0B07216E7E.pdf
2.4.3 Market integration

i. National objectives related to other aspects of the internal energy market such as increasing system flexibility, in particular related to the promotion of competitively determined electricity prices in line with relevant sectoral law, market integration and coupling, aimed at increasing the tradeable capacity of existing interconnectors, smart grids, aggregation, demand response, storage, distributed generation, mechanisms for dispatching, re-dispatching and curtailment, and real-time price signals, including a timeframe for when the objectives shall be met

ii. Where applicable, national objectives related to the non-discriminatory participation of renewable energy, demand response and storage, including via aggregation, in all energy markets including a timeframe for when the objectives are to be met

iii. Where applicable, national objectives with regard to ensuring that consumers participate in the energy system and benefit from self-generation and new technologies, including smart meters

Well-functioning regional and European electricity markets and sufficiently strong cross-border connections are the most efficient and cost-effective way of guaranteeing competitive electricity prices and security of supply. The objective in accordance with the National Energy and Climate Strategy is therefore to develop Finland's electricity market as part of the regional electricity markets of the Nordic and the Baltic countries and more widely as part of the internal electricity market in Europe. A large electricity market is the best way of reaching competitive electricity prices and security of supply.

The construction of the Balticconnector gas pipeline between Finland and Estonia will enable the opening and renewal of the gas market. When this investment is completed, the exemption from the Internal Market in the Natural Gas Directive will be dropped, and the gas market will be fully open for competition from the beginning of 2020. In the new natural gas market act (maakaasumarkkinalaki 587/2017), price regulation of piped gas will be dropped, and gas marketplaces and internal market rules will be introduced. The objective is to create a regional gas market comprising Finland and the Baltic states starting from the beginning of 2020. The creation of the regional gas market is being prepared between the ministries, the national regulatory authorities and the gas network operators in Finland, Estonia, Latvia and Lithuania.

iv. National objectives with regard to ensuring electricity system adequacy, as well as for the flexibility of the energy system with regard to renewable energy production, including a timeframe for when the objectives are to be met

Finland will define the national target for the security of supply related to the adequacy of electric power when the methodology concerning the definition has been approved in the EU. At the moment,
the target related to the adequacy of electric power has been defined indirectly through the size of power reserve described in Chapter 2.3.

v. Where applicable, national objectives to protect energy consumers and improve the competitiveness of the retail energy sector

Finland does not have quantitative objectives for the protection of energy consumers and to improve the competitiveness of the energy retail market.

The requirements related to consumer protection have been included in the electricity market act (sähkömarkkinalaki 588/2013) currently in force. On 20 September 2018, the Government submitted a bill concerning a Datahub of the electricity market. The Datahub will enable even more efficient and uniform transfer of data, which will be essential in the future electricity retail market.

2.4.4 Energy poverty

i. Where applicable, national objectives with regard to energy poverty including a timeframe for when the objectives are to be met

In Finland there is not a significant number of households, which would suffer from energy poverty. This is why, Finland does not have national objectives related to energy poverty that is mentioned in the Article 3.3 (d) of the Governance regulation. In Finland, energy poverty is in the current practice discussed as part of general social policy, which secures the right of all citizens especially to basic necessities such as energy.

In relation to point 3.3 (d) of the Governance regulation, Finland has made three studies concerning energy poverty in Finland, in 2013, 2015 and 2018.

The first study, Selvitys energiaköyhyydestä - kotitalouksien energiakustannukset, examines the importance of energy poverty in Finland. The report defines the concept of energy poverty and identifies how much and what kind of households can be affected by energy poverty. In addition, the report assesses how to respond to the challenges posed by energy poverty and how to respond to them most appropriately. According to the study, energy poverty affects a small proportion of households in Finland as part of other poverty. The risk group for energy poverty mainly focuses on low-income households.

15 http://www.finlex.fi/fi/laki/alkup/2013/20130588
http://www.ym.fi/download/noname/%7B58916B06-281C-45A5-B47A-BS866CB40DE4%7D/57119
households living in large non-energy-efficient dwellings outside urban areas. The report contains
suggestions and recommendations for action to prevent and resolve the energy poverty problem.

The study in 2015, Pienituloisen omistusasujan energiaköyhyys17, is a follow-up to the Energy Poverty Survey in 2013. This study combining energy poverty with questions on improving energy efficiency in housing, examines the relationship between changes in housing improvements and the way in which the heating system is changed to the risk of energy poverty. Energy poverty means difficulty in maintaining or satisfying basic needs due to energy costs. The review of the survey is limited to owner-occupied dwellings. According to the survey, in Finland, there are 60,000 to 100,000 households living in owner-occupied housing under risk groups of suffering from energy poverty (not suffering from energy poverty). In Finland, however, energy poverty is still rare, as social security mitigates its effects. The risk of energy poverty can be reduced and energy poverty can best be prevented by developing new types of financing. Particularly interesting are the financial instruments in which investment costs are paid by generating energy cost savings and state-guaranteed loans.

The latest study, ASSIST - Support Network for Household Energy Saving, in 2018 has been conducted by VaasaETT as a part of the ASSIST 2GETHER –project18.

According to the ASSIST-report, at present, there is already a very comprehensive social support system in Finland designed to guarantee a minimum income for all. There are no subsidies specifically targeted at energy poverty, but as an aid to mitigate energy poverty can be considered such subsidies that reduce housing expenditure or are targeted to meet basic needs such as energy costs. These subsidies include, for example, housing allowance and livelihood support. In addition to these direct subsidies, household allowance to deduct home renovation costs in taxation is also an aid for reducing energy poverty.

In Finland, the consumer is protected by the obligation imposed on the energy company to limit cut off of electricity, especially in the winter. Due to unpaid bills, electricity distribution can usually be cut off five weeks after the customer has been reminded. During the winter months (October to April), due to the negligence of a customer, electricity distribution will not be cut off in a permanent home which heating is dependent on electricity until four months have elapsed since the due date of the payment.

17 Pienituloisen omistusasujan energiaköyhyys (Energy poverty of a resident’s owner with low-income). Energia-köyhyyden jatkoselvitys liittyen asuntojen lämmitysremontteihin ja energiakuluihin. Ympäristöministeriön raportteja 6, 2015.
https://item.fi/documents/1410877/2735615/Pienituloisen+omistusasujan+energiak%C3%B6yhys+Energiak%C3%B6yhyyden+jatkoselvitys+liittyen+asuntojen+l%C3%A4mmitysremontteihin+ja+energiakuluihin.pdf/4bb22839-c6d9-47d1-8d51-a36a849474a4/Pienituloisen+omistusasujan+energiak%C3%B6yhys+Energiak%C3%B6yhyyden+jatkoselvitys+liittyen+asuntojen+l%C3%A4mmitysremontteihin+ja+energiakuluihin.pdf.pdf

18 https://www.assist2gether.eu/
Information management aimed at improving households' energy efficiency is provided by many organisation in Finland. Consumers' energy advice is under the responsibility of the Ministry of Employment and the Economy and under the auspices of the Energy Agency, a sustainable development company Motiva, which promotes and supports the work of regional energy advisers.

2.5 Dimension research, innovation and competitiveness

 i. National objectives and funding targets for public and, where available, private research and innovation relating to the Energy Union including, where appropriate, a timeframe for when the objectives are to be met

 ii. Where available, national 2050 objectives related to the promotion of clean energy technologies and, where appropriate, national objectives including long-term targets (2050) for the deployment of low-carbon technologies, including for decarbonising energy- and carbon-intensive industrial sectors and, where applicable, for related carbon transport and storage infrastructure

 iii. Where applicable, National objectives with regard to competitiveness

Finland makes major investments in developing new technologies and commercialising innovations, in particular to speed up the introduction of clean and smart energy systems and the associated products and services, and also more extensively to speed up resource-wise solutions that are based on user needs and required by communities.

In October 2016, Finland joined the Mission Innovation project published in connection with the Paris climate summit, in which 20 countries with a leading role in energy use and energy technologies undertook to double their R&D investments in clean energy over five years. The Mission Innovation cooperation will be used to promote the networking of Finnish cleantech companies and research institutes of the field and to create partnerships. For this purpose, the aim is to strengthen a clean energy ecosystem as part of the growth programme (a cooperation network for actors) based on a strong public-private partnership.

The energy sector is undergoing a massive transformation, which involves a huge number of new business opportunities for companies. Constant renewal is expected in the energy sector, which is reflected especially in many system level developments. The transforming energy system will create new business opportunities while changing the existing ones. New more comprehensive service concepts will be created. RD&I funding is being allocated to the efforts to deal with this transformation and to the development of the related new business models. For experimentation and development purposes, cooperation networks (ecosystems) are to be established where the parties produce added value in the form of products, services and information in close interaction, both for each other and for customers outside the ecosystem.
3 POLICIES AND MEASURES

3.1 Dimension decarbonisation

3.1.1 GHG emissions and removals

i. Policies and measures to achieve the target set under Regulation (EU) 2018/842 as referred in point 2.1.1 and policies and measures to comply with Regulation (EU) 2018/841, covering all key emitting sectors and sectors for the enhancement of removals, with an outlook to the long-term vision and goal to become a low emission economy and achieving a balance between emissions and removals in accordance with the Paris Agreement

ii. Where relevant, regional cooperation in this area

iii. Without prejudice to the applicability of state aid rules, financing measures, including Union support and the use of Union funds, in this area at national level, where applicable

The Medium-term Climate Change Plan defines the following policy measures enabling Finland to achieve the emission reduction obligation in the Effort Sharing Regulation. With these measures, the gap of about 5 Mt CO$_2$ equivalent between the WEM projection and the emissions target can be covered by 2030.

Transport and spatial planning in urban areas

In the effort sharing sector, the greatest potential for reducing emissions is in the area of transport. The goal is to reduce transport emissions by a half by 2030 compared to 2005 levels. Measures will be focused on road transport, which presents the greatest potential for emission savings. Additional measures in the transport sector are estimated to result in a reduction of approximately 3.1 Mt CO$_2$ equivalent by 2030. The emission reduction measures can be grouped into three sets:

1) Replacing fossil fuels with renewable and low-emission fuels and power sources. The emission reduction in this set is estimated at about 1.6 Mt CO$_2$ equivalent. The main measure is a blending obligation of biofuels, see Chapter 3.1.2. Other measures included in this set are the promotion of the transport infrastructure and the infrastructure of biogas use in transport and the promotion of the electric transport infrastructure in residential buildings, for both of which appropriations have been reserved in the state budget starting from 2018. In addition, the aim is to intensify cooperation between the Nordic countries to reduce transport emissions, for example, by developing a shared set of target indicators relating to different emissions reduction measures in transport in the Nordic countries.
2) *Improving the energy efficiency of vehicles and other means of transport.* The emission reduction in this set is estimated at about 1.1 Mt CO\(_2\) equivalent. The measures in this set include making a contribution to the EU legislation and support for buying fully electric cars, for gas or ethanol conversions of old cars, for a public charging point infrastructure for electric cars, for biogas distribution stations and support designed for the charging point infrastructures of housing companies. Appropriations for these purposes have been reserved in the central government budget starting from 2018. Furthermore, an eight-month scrapping premium campaign has been implemented in 2018, in which the buyer of a new car who scraps the old car has been offered support from central government to the amount of EUR 1,000–2,000, depending on the power source of the car. In addition, a Green deal model will be developed for car dealers directing them to present low-emission vehicle alternatives to customers. The availability and effectiveness of advisory services regarding energy-efficient transport and vehicle acquisitions is ensured and joint municipal authorities and other public-sector actors are encouraged to introduce into different financial incentives to increase the share of alternative technologies in procurements.

3) *Improving the energy efficiency of the transport system.* The estimated reduction of emissions in this set is approximately 0.4 Mt CO\(_2\) equivalent, including the impact that the development of land use will have on emissions. Measures included in this set are participation in the coordination of transport and land use in urban regions and in work concerning transport systems through, for example, agreements on land use, housing and transport (MAL). The aim is to ensure that projects promoting walking, cycling and public transport will be prioritised in urban transport planning and project funding. Starting form 2018, an appropriation has been reserved in the central government budget for the promotion of digitalisation and services in the development of public transport in large urban regions and for increasing contractual rail transport services and/or rail services subject to the public service obligation as part of the change in people's mobility habits. In addition to these, jobs and services in growing urban regions are steered towards regional centres, sub-centres and public transport nodes with a high service level, and infill construction and the creation of locations that are good for the community structure and the use of such location for new construction will be promoted in urban regions. Furthermore, a programme to promote walking and cycling will be implemented jointly by central government and urban areas between 2018 and 2022, park-and-ride facilities for bicycles in transport nodes will be improved and station areas will be developed with the help of marketing experiments and urban development pilots. In addition to these, the introduction of congestion charges based on emissions and the effectiveness of basing the tax deductibility of commuting expenses on emissions will be examined.

Building-specific heating

Emissions from building-specific heating are included in the effort sharing sector. The majority of them are caused by oil heating. Emissions from oil heating can be reduced by improving the energy performance of buildings with oil heating, increasing the use of bio fuel oil or changing the heating method. As a measure for reducing the emissions from building-specific heating, a bill for an obligation to blend light fuel oil used in heating with 10% of bio liquid has been introduced in 18 October 2018. As an example to other actors, central government will phase out oil heating in its premises by 2025 and encourages all public actors to do the same. In addition, the energy efficiency of the existing
building stock will be improved and the use of renewable energy will be promoted. Alongside these measures, clean combustion of pellets and chopped wood will be promoted to reduce soot and particle emissions. By 2030, the combined impact of these measures will be approximately 0.2 Mt CO₂ equivalent.

Machinery

Emissions from machinery can be reduced by increasing the energy efficiency of machinery or by switching to alternative fuels or power sources. A bill for an obligation to blend light fuel oil with bio liquid so that the mix share will increase towards 10% in 2028 has been introduced in 18 October 2018. The steering instrument used to accomplish this will be the amendment to the act on promoting the use of biofuels in transport (laki biopolttoaineiden käytön edistämisestä liikenteessä 446/2007). In addition, the use of biogas in machinery will be promoted, contributions will be made at the EU level to the development of CO₂ regulation applied to machinery, energy-efficient and low-emission machinery will be promoted through public procurments, and guidance through information will be used to promote energy-efficient use of machinery. Alongside these measures, the knowledge base related to the reduction of CO₂ emissions from machinery will be strengthened and the taxation of heating fuels will be increased. The emission reduction achieved with these measures by 2030 is estimated at approximately 0.5 Mt CO₂ equivalent.

Industrial oil use

The measures for reducing emissions from industrial oil use are the obligation to blend the light fuel oil with 10% of bio liquid, promoting the replacement of fuel oil-fired boilers by boilers fired with solid fuel, enhancing the energy audit activities and increasing the taxation of heating fuels.

Energy taxes

The taxation of energy is aimed at the mitigation of climate change. In the past few years, the emphasis in the taxation of liquid fuels has been moved towards the carbon dioxide tax. The heat values and carbon dioxide emissions of bio-based fuels are lower than those of fossil fuels and a tax consisting of an energy content tax and a carbon dioxide tax helps to ensure that taxation on biofuels is lower than that on fossil fuels.

The excise duty on fuels, or the fuel tax, consists of the energy content tax and the carbon dioxide tax. The energy content tax is based on the heat value of the fuel and the carbon dioxide tax on its specific carbon dioxide emission when burnt. A strategic stockpile fee is collected on both fossil and bio-based transport fuels in connection with the excise duty.

Taxation on energy is described in more detail in the IEA’s In-depth-review of Finland’s energy policy[^19].

Waste management

Emissions from waste management originate from landfilling, composting, digestion and the treatment of wastewater. In addition, waste incineration causes carbon dioxide emissions. As a measure, the possibility to include emissions from waste incineration in the emissions trading system and consequently in the scope of price control will be investigated. Including waste incineration in the emissions trading system could reduce emissions in the effort sharing sector by up to approximately 0.6 Mt CO$_2$ equivalent per year during the period 2021–2030. Furthermore, the implementation of the Government Decree on Landfills will be monitored and followed up.

F-gases

Fluorinated greenhouse gases, or F-gases, are emitted by various appliances that use these industrial gases that are highly harmful to the climate. Existing measures will reduce F-gas emissions efficiently but with a delay. As additional measures to speed up emissions reductions, appliances containing F-gases will be avoided in public-sector procurements, the introduction of alternative techniques will be promoted and the recovery of F-gases will be enhanced by means of training and communication of information. In addition, alternative technologies suited to local conditions will be explored and demonstrated. By 2030, the combined impact of these measures will be approximately 0.3 Mt CO$_2$ equivalent.

Agriculture

The current measures in the agricultural sector are mainly related to the implementation of the EU’s Common Agricultural Policy (CAP). The Rural Development Programme for Mainland Finland 2014–2020 contains several measures related to the mitigation of and adaptation to climate change: incorporation of slurry into the soil, recycling of nutrients and organic matter, environment management grasslands, catch crops, plant cover in arable land in winter and use of organic cover for horticulture plants and potato seeds. Investment subsidy is available for controlled subsurface drainage, for more efficient storage, handling and use of manure and for investments in energy efficiency and sustainable energy, such as biogas plants. As part of the advisory services in the programme, it is possible to receive advice on energy efficiency and issues related to mitigation of climate change and adaptation to it. National funding has been provided between 2016 and 2018 for the three-year project “Making use of agricultural nutrients”, which disseminates information on the funding possibilities related to the recycling of nutrients, promotes new experiments, disseminates research information and identifies and removes bottlenecks in the recycling of nutrients.

The additional measures in the agricultural sector named in the Medium-term Climate Change Plan mainly apply to the mitigation of emissions from organic soils. These measures include growing crops in organic soils for several years with zero tillage, raising the water table through controlled subsurface drainage, the afforestation of organic soils and the promotion of biogas production. Also, the sequestration and storage of carbon in soil and the implementation of the “4 per 1000” initiative will be promoted through research projects and experiments. By 2030, the reduction in greenhouse gas emissions in the agricultural sector through the above measures will be of the order of 0.5 Mt CO$_2$
equivalent. Moreover, the promotion of biogas production would reduce the emissions of other industries in the effort sharing sector by a total of some 0.31 Mt CO$_2$ equivalent by 2030. Measures to reduce greenhouse gas emissions in agriculture would also have an effect on the land use sector, in which the above-mentioned measures could reduce emissions by approximately 1.15 Mt CO$_2$ equivalent by 2030.

Land use, land-use change and forestry (LULUCF) sector

Measures implemented under the Rural Development Programme for Mainland Finland currently seek to slow down the breakdown of carbon in the soil of agricultural lands and replenish the carbon stock. These measures include investments in controlled subsurface drainage, perennial grassland (in other words, environment management grasslands) and plant cover on arable land in winter. Direct aid, fully funded by the EU under the CAP, is now associated with agri-environmental requirements, and 30% of direct payments have been linked to greening payments. Farmers must comply with three greening measures on their eligible hectares. Greening payment measures that affect the soil include the requirements of perennial grassland, diversification of cultivation and partly also ecological focus areas. Other measures that fall within the scope of CAP cross-compliance conditions and impact the soil include the prohibition of burning stubble and the requirement of plant cover in fallow land. A number of research projects related to the carbon sinks of agricultural land and the impact of these measures are currently under way.

The emission reduction achieved in the LULUCF sector as a result of the additional measures taken in agriculture is estimated at 1.14 Mt CO$_2$ equivalent by 2030. In addition, the sequestration and storage of carbon in soil and the implementation of the “4 per 1000” initiative will be promoted through research projects and experiments. The impacts of the greening payments, cross-compliance conditions and environment payments of the EU’s Common Agricultural Policy on soil carbon stocks in Finland will be examined.

The size of the managed forests sink depends mainly on the harvesting rates, resulting from demand of the wood. The objectives of forest use have been reconciled in the National Forest Strategy 2025. Active forest management and use will maintain the forests' health and ability to grow, which is a basic precondition for their capacity to bind carbon. The National Energy and Climate Strategy emphasised the importance of enhancing the implementation of the National Forest Strategy, especially maintaining good forest health and strengthening the growth and carbon capture capacity of the forests in the long term. The projects implementing National Forest Strategy will be evaluated and updated during 2018.

A significant source of emissions in the land use sector is the clearance of forest for other land use purposes mainly as a result of civil works and clearing land for cultivation. Finland is the most forested country in the EU, and estimates indicate that the potential for reforestation is limited. The “Potential actions in the land use sector to achieve the climate objectives” project seeks solutions that can be used to reduce emissions caused by deforestation, to increase afforestation and to produce impact and costs assessments.
Public financing for private forest owners, around EUR 50–60 million annually, is based on the Act on the Financing of Sustainable Forestry (34/2015). The general objectives of forestry financing are stated in the Act: increase the growth of forests, maintain road networks for forestry purposes, secure the biodiversity of forests and promote the adaptation of forests to climate change. Nature management in commercial forests is promoted through environmental support and forest nature management projects. Private forest owners themselves invested EUR 223 million in 2015 for forest management and improvement work.

3.1.2 **Renewable energy**

i. Policies and measures to achieve the national contribution to the binding 2030 Union target for renewable energy and trajectories as referred to in point (a)(2) Article 4, and, where applicable or available, the elements referred to in point 2.1.2, including sector- and technology-specific measures

Production aid for electricity from renewable energy sources

The sliding feed-in tariff system for the production of electricity from renewable energy sources came into force on 25 March 2011. The aid scheme concerns government support for electricity production based on wind power, biogas, forest chips and wood fuels.

In May 2018, Parliament approved the act on the amendment of the act on production aid for electricity from renewable energy sources (laki uusiutuvilla energialähteillä tuotetun sähkön tuotantotuesta annetun lain muuttamisesta 441/2018), which laid down provisions on the new premium system. The premium system is based on a competitive tendering process, and investments in different renewable energy sources compete with each other so that the cost-effectiveness target will be taken into account.

Energy Aid Scheme

Renewable energy is also promoted through the Energy Aid Scheme (investment subsidy). Renewable energy investment subsidies is primarily targeted at the commercialisation of new technologies and to the non-ETS sector, including plants producing advanced biofuels for transport, wider use of alternative transport power sources, and building-specific or other non-ETS electricity and heat production of companies and farms. The objective is that aid for different technologies will be phased out as a technology develops, the costs are reduced and competitiveness improves.

Promotion of the use of biofuels

The act on promoting the use of biofuels in transport (laki biopolttotoaineiden käytön edistämisestä liikenteessä annettu laki 446/2007) has been in force since 2008. Under the act, the share of the energy content of biofuels in the total energy content of the petrol, diesel oil and biofuels delivered by the distributors for consumption (i.e. distribution obligation) will steadily increase to 20% by 2020, taking into consideration the double credit rule. The biofuels included in the distribution obligation must meet the EU sustainability criteria.
By 2030, the share of biofuels in road transport will be increased from the physical share of about 13.5% of energy content by 2020, as required in the current legislation on the biofuels distribution obligation, to 30%. A bill for increasing the blending obligation was introduced in 18 October 2018.

Furthermore, the distribution obligation will be extended to apply to light fuel oil used in heating and machinery so that the share of bioliquids must be at least 10% by 2028.

Aid for forest chips and wood-based fuels

Finland promotes the use of forest chips in combined heat and power generation (CHP) with the help of production aid for electricity from forest chips. Since 2016, the production aid for electricity produced from forest chips has been EUR 18 per MWh. However, the aid depends on the price of the emissions allowance and has thus been in decline since the beginning of 2018. During the second quarter of 2018, the aid was only EUR 12.62 per MWh. The aid is granted to compensate for the higher production costs of electricity from forest chips compared with fossil fuels. At the beginning of 2017, 53 power plants were within the scope of the aid. The production aid for electricity from forest chips is also granted to existing plants.

Energy taxes

Renewable energy is also promoted through taxation. Energy taxation will provide an incentive for the use of forest chips and forest industry by-products in CHP production and building-specific heat production. Taxation will be used to ensure that peat, while not being more competitive than forest chips or forest-industry by-products will be more cost-effective than coal and other imported fossil fuels. The taxation of peat is a key steering instrument, especially in separate heat production. Renewable fuels are not taxed on heat production.

Transport

The measures in transport have been listed in Chapter 3.1.1 under the heading 1) “Replacing fossil fuels with renewable and low-emission fuels and power sources”.

Energy advisory services

The funding allocated to energy advisory services is directed to regional activities (promoting energy efficiency and the use of renewable energy in counties) and communication about demand-side response to consumers. The target groups in the counties will be companies, local authorities and citizens. The advisory services implemented in the counties include the promotion of energy efficiency agreements and energy audits, the promotion of municipal renewable energy audits in municipalities and companies, energy advisory services for consumers and also support for the strategic promotion of work related to energy and climate issues.
ii. Where relevant, specific measures for regional cooperation, as well as, as an option, the estimated excess production of energy from renewable sources which could be transferred to other Member States in order to achieve the national contribution and trajectories referred to in point 2.1.2

Finland's renewable energy targets for the period 2021–2030 are so ambitious that an opportunity to make statistical transfers of renewable energy amounts to other countries is not expected to arise. Finland has not concluded any agreements on statistical transfers, joint projects or joint aid schemes with other countries for the coming years.

iii. Specific measures on financial support, where applicable including Union support and the use of Union funds, for the promotion of the production and use of energy from renewable sources in electricity, heating and cooling, and transport

iv. Where applicable, the assessment of the support for electricity from renewable sources that Member States are to carry out pursuant to Article 6(4) of Directive (EU) 2018/...

v. Specific measures to introduce one or more contact points, streamline administrative procedures, provide information and training, and facilitate the uptake of power purchase agreements.

Summary of the policies and measures under the enabling framework Member States have to put in place pursuant to Article 21(6) and Article 22(5) of Directive (EU) 2018/...

to promote and facilitate the development of renewable self-consumption and renewable energy communities

Rural Development Programme

Decentralised energy production in rural areas can be promoted by funding under the Rural Development Programme for Mainland Finland 2014–2020 (the Rural Development Programme) for the investments of farms and rural SMEs and for more extensive rural innovation and development projects. For the part of energy production, the purpose of the aid is to promote the production of renewable energy on farms for their own consumption and to encourage enterprising related to renewable energy in rural areas.

Tax-free status of small-scale electricity production

In 2015, a legislative change easing the taxation of small-scale electricity production entered into force. Electricity production plants with a nominal output below 100 kVA and plants larger than that
but with an annual production of at most 800,000 kWh were relieved of the obligation to pay electricity tax. These producers may themselves use at the site tax-free the electricity they have generated. If the produced electricity is distributed through the electricity network, the network operator distributing the electricity to consumption will collect the electricity tax on it.

vi. Assessment of the necessity to build new infrastructure for district heating and cooling produced from renewable sources

A decision to invest in construction of new district heating or district cooling infrastructure is typically based on demand. In Finland, district heating networks have been built at almost all sites where it is economically viable. Even very small networks have been built to connect, for example, public buildings in small built-up areas. New investments are mainly related to the establishment of entirely new areas. The fuel or energy source used to produce the energy for the district heating or district cooling does not play a key role.

vii. Where applicable, specific measures on the promotion of the use of energy from biomass, especially for new biomass mobilisation taking into account:

- biomass availability, including sustainable biomass: both domestic potential and imports from third countries

- other biomass uses by other sectors (agriculture and forest-based sectors); as well as measures for the sustainability of biomass production and use

The use of wood-based fuels in Finland is mainly based on industrial side streams and such energy fractions created in connection with forest management work and felling for which there is no demand in the forest industry processes. The aim is to direct these biomass fractions to power and heat generation and to the manufacture of transport biofuels. In Finland, the use of wood-based fuels as a whole is promoted by the emissions trading system, the production aid for electricity from forest chips, the taxation of fossil fuels and peat and the aid schemes encouraging forest management, such as the sustainable forestry aid scheme designed for private forest owners. About one tenth of the raw materials used in the forest industry are imported, so the corresponding proportion of the generation of renewable energy based on industrial side streams is based on imported wood. Imports are not expected to account for a significant share of the total amounts of wood-based fuels in future, either.

The sustainability of the production of biomasses is regulated in RED II and Finland has legislation and monitoring systems in force to minimise the risk of unsustainable forest biomass production.

In agriculture, the potential in energy production lies especially in utilising biomass-based side streams of agriculture for CHP generation, as transport fuel and in solar electricity. The majority of the biogas potential is associated with farming. There has been wide interest in increasing biogas
production on farms or from agricultural biomasses for some time. While farms have plenty of bio-
masses suitable for biogas production, they have so far only been utilised to a minor extent, as
yield/cost analyses have been unable to identify adequate numbers of cost-effective applications. In
addition, profitable concepts for costly plants have been hard to find. Achieving profitability is par-
ticularly difficult if costs are incurred for the raw material. Typically, biogas production on farms has
advantages that are not directly associated with energy economy, including more efficient nutrient
recycling, cutting greenhouse gas emissions, improved hygiene and reduced odour nuisances. Circu-
lar economy-related benefits are often in a key role.

3.1.3 Other elements of the dimension

i. Where applicable, national policies and measures affecting the EU ETS sector and as-
essment of the complementarity and impacts on the EU ETS

ii. Policies and measures to achieve other national targets, where applicable

iii. Policies and measures to achieve low-emission mobility (including electrification of
transport)

iv. Where applicable, national policies, timelines and measures planned to phase out en-
ergy subsidies, in particular for fossil fuels

Activities related to techno-neutral support for electricity production and energy taxes are described
above 3.1.2. In addition, the Energy and Climate Strategy for 2030 outlines that Finland will phase
out the use of coal for energy by 2030. No new power plants burning hard or brown coal shall be
built, nor shall any replacement investments based on coal be made. Once the existing plants based
on pulverised fuel combustion have been decommissioned, coal will only be used as a backup fuel in
exceptional situations.

On 18 October 2018, the Government submitted a bill prohibiting the use of coal in energy production
as from 1 May 2029. The prohibition will reduce the use of coal by an estimated 3 TWh compared to
market-based development without the prohibition. A special incentive package to support replace-
ment investments is under preparation for those district heating companies in towns and cities that
undertake to give up the use of coal as early as 2025.

The measures in transport have been listed in 3.1.1 under the headings 2) “Improving the energy
efficiency of vehicles and other means of transport” and 3) “Improving the energy efficiency of the
transport system”.
3.2 Dimension energy efficiency

Planned policies, measures and programmes to achieve the indicative national energy efficiency contributions for 2030 as well as other objectives referred to in point 2.2, including planned measures and instruments (also of financial nature) to promote the energy performance of buildings, in particular as regards the following:

i. Energy efficiency obligation schemes and alternative policy measures under Articles 7a and 7b of Directive 2012/27/EU and to be prepared in accordance with Annex II

ii. Long-term renovation strategy to support the renovation of the national stock of residential and non-residential buildings, both public and private, including policies, measures and actions to stimulate cost-effective deep renovation and policies and actions to target the worst performing segments of the national building stock, in accordance with Article 2a of Directive 2010/31/EU

iii. Description of policy and measures to promote energy services in the public sector and measures to remove regulatory and non-regulatory barriers that impede the uptake of energy performance contracting and other energy efficiency service models

iv. Other planned policies, measures and programmes to achieve the indicative national energy efficiency contributions for 2030 as well as other objectives referred to in point 2.2 (for example measures to promote the exemplary role of public buildings and energy-efficient public procurement, measures to promote energy audits and energy management systems, consumer information and training measures, and other measures to promote energy efficiency)

v. Where applicable, a description of policies and measures to promote the role of local energy communities in contributing to the implementation of policies and measures in points i, ii, iii and iv

vi. Description of measures to utilise energy efficiency potentials of gas and electricity infrastructure

vii. Regional cooperation in this area, where applicable

viii. Financing measures, including Union support and the use of Union funds, in the area at national level
The policies and measures for the period 2021–2030 required in the updated Energy Efficiency Directive will be updated in connection with the reform of the energy efficiency act (energiatehokkuuslaki 1429/2014) during 2019. During the period 2014–2020, Finland has chosen the alternative policy measures described in Section 3.3.2 of NEEAP IV for the implementation of Article 7 of the Energy Efficiency Directive.

Energy efficiency agreements

Finland has a longstanding tradition of energy efficiency agreements. Agreements were already widely used in the field between 2007 and 2016 and current agreements have been concluded for the period 2017–2025. The energy efficiency agreements for the years 2017–2025 play a central role in the achievement of Finland's cumulative energy saving targets set for the periods 2014–2020 and 2021–2030 in Article 7 of the Energy Efficiency Directive. Agreements are a way chosen jointly by central government and the industries to meet the international energy efficiency obligations set for Finland and Finland's national obligations. The aim of the agreements is to steer companies and communities to improve their energy efficiency according to long-term goals. Energy efficiency agreements cover the business, real estate and municipal sectors and the distribution of heating fuel oils. The energy efficiency agreement of the business sector involves industry, the energy sector and private services.

The municipalities and companies joining the agreement undertake to

- promote energy efficiency in a goal-oriented and systematic manner, for example, through the deployment of an energy management system,
- explore the possibilities to save energy by carrying out energy audits,
- explore the financing solutions (e.g. PPP, EPC and ESCO) and use them as necessary when financing is an obstacle to investing in energy efficiency,
- train their personnel and inform the personnel about promoting energy efficiency, and
- monitor their energy consumption and report their consumption and energy savings on an annual basis.

Transport fuel taxation

Energy savings are created as a result of Finland's higher transport fuel taxation (including excise duty, carbon dioxide-based taxes, strategic stockpile fee and value added tax) compared with the EU's minimum requirements for the level of fuels taxes and value added tax. Further information in NEEAP IV, KETO-2-VM/LVM.

Road transport

The measures in transport have been listed in Chapter 3.1.1 under the headings 2) “Improving the energy efficiency of vehicles and other means of transport” and 3) “Improving the energy efficiency of the transport system”.
Energy audits

Along with the energy efficiency act (energiatehokkuuslaki 1429/2014), which entered into force at the beginning of 2015, energy audits have been divided into a voluntary side involving support and into compulsory four-yearly energy audits carried out in large companies. Energy aid for energy audit activities is granted to voluntary audits. These include four audit models for service properties, three audit models for industry, two audit models for the energy sector, a municipal renewable energy audit, energy planning for farms, and an energy audit model for transport chains which with minor adjustments can be used also as an energy audit model for transport companies (NEEAP IV, KETO-3-TEM). Energy audits designed for SMEs are under development and a new audit model will be introduced on a trial basis at the end of 2018.

Energy performance of buildings

As regards buildings, the most important energy efficiency measures are promoting the installation/use of heat pumps in terraced and single-family houses (RA-04-TEM), the energy efficiency agreement on the distribution of heating fuel oil, and the energy efficiency regulations on new buildings, which set the minimum level of building requirements. See NEEAP IV, Section 3.6.1 and RA-no-YM measures.

Promotion of energy efficiency at system level

Energy efficiency has been taken into consideration in the planning of networks and in tariffs and regulations (electricity market act 588/2013), see NEEAP IV, Section 5.2.1.

Maintaining the preconditions for combined power and heat generation

Efficient cogeneration works in an open energy market and competes with other generation methods. The energy efficiency measures in efficient cogeneration are related to improving the overall efficiency of primary energy use and the overall efficiency of energy production within the scope of energy efficiency agreement activities.

District heating and cooling

Energy efficiency measures in the field of district heating and cooling are related to improving the efficiency of primary energy use and the overall efficiency of energy production within the scope of energy efficiency agreement activities (NEEAP IV, ET-01-TEM).

Communication and training to promote energy efficiency

The communication, advisory and training activities related to energy efficiency cover all sectors from consumers to industry. The nationally coordinated Energy advice for consumers and the guidance implemented by energy companies cover all aspects of consumer communications and guidance related to the promotion of energy efficiency and use of renewable energy. Guidance for transport, renovation and partly also for farms is included in the nationally coordinated Energy advice for consumers service.
Energy efficiency in awarding public contracts

In compliance with the Directive, the energy efficiency act (energiatehokkuuslaki 1429/2014) lays down provisions on the energy efficiency requirements concerning central government authorities with regard to public procurements. Guidelines on the energy efficiency of public procurements, updated by the Ministry of Economic Affairs and Employment in January 2016, have been drawn up for central government authorities and other public administration.

In addition, Motiva Oy continues to organise annual training events focusing on the energy efficiency requirements of public procurements (NEEAP IV, Section 3.2). The energy efficiency of procurements is also promoted by the Competence Centre for Sustainable and Innovative Public Procurement, established in 2017. The aim of the Competence Centre is to increase procurements that promote the sustainable development goals from both the social and the environmental perspective.

Energy Aid Scheme

Based on its discretion, the Ministry of Economic Affairs and Employment may grant aid for innovative energy projects. Energy aid is granted to investment projects and research projects. It is aimed at promoting the production of renewable energy, energy savings and energy efficiency. The intention is to direct even more energy aid to projects on new technologies in future. The grant authority for the year 2018 is EUR 55 million.

New technologies mean new solutions that have not been widely trialled in Finland. They are typically the first or one of the first demonstration plants. In comparison with similar projects based on normal technologies, additional costs and risks are usually related to the introduction of new technologies. Solutions based on new technologies play a key role from the point of view of long-term energy and climate objectives.

In addition, energy aid will be used to promote investments related to energy efficiency agreements and to non-ETS investments related to decentralised energy production and renewable fuels in transport.

Regional cooperation

Regional cooperation is carried out with Sweden, Denmark, Norway and Iceland in the Nordic cooperation group for energy. Recently, this cooperation has focused on the preparation of the EU’s energy issues. The group has also worked in cooperation with the Baltic states.

Funding

A comprehensive report on financial solutions related to energy efficiency was compiled in 2017 and 2018. It was aimed at identifying financial instruments that could be used to improve energy efficiency in Finland. Obtaining financing for good projects is generally not a problem in Finland although the preconditions for granting financing are today examined more closely. It is essential to provide information on energy efficiency and its benefits so that the macroeconomic aspects can be considered when investments are made. Information must also be available at the right time. The
work will be continued in 2019 with the aim of bringing together actors both from the financial sector and from organisations that implement energy efficiency measures and finding concrete procedures to promote the implementation of energy efficiency measures.

Energy efficiency first-principle

Improved energy efficiency throughout the whole energy system, from production and transmission to distribution and end-use, makes a major contribution to the national goals of a competitive low-carbon economy and security of energy supply.

The future energy system will be flexible and intelligent. In addition to directing energy production, may energy consumption also be managed and coordinated as indicated by the current production situation. Hybrid systems that combine different forms of production will become more widespread. Flexibility of demand will change the role of the consumer. An active consumer will simultaneously consume, produce, save and store energy. Digitalization and the Industrial Internet will help improve the efficiency of energy use everywhere. Energy efficiency is a cost-effective way of reducing greenhouse gas emissions and the mentality of circular economy will further increase the efficiency of resources use.

Finland aims to benefit the “smart and efficient integrated energy system” approach to implement the idea of “energy efficiency first” principle: Combined generation of heat and power, and related district heating and cooling with smart demand response mechanisms improves energy efficiency, help to increase the share of renewables and link heating with electricity for flexibility.

For decades has Finland used the potential for aligning energy efficiency and renewable energy policies, linking heating with electricity for flexibility and integrating more renewables in both heating and electricity and utilise waste heat and waste cold. Having in mind the benefits from greater sector coupling through electrification as the energy system decarbonises, the heating/cooling sector is critical and the use of more renewable sources will be encouraged. Taking the cost-efficiency into account comprehensively at the whole energy system level from supply to end use of energy will help to facilitate the Energy efficiency first–principle also in practice.

3.3 Dimension energy security

i. Policies and measures related to the elements set out in point 2.3

In point 2.3 not only the national objectives with regard the energy security are described. Point 2.3 includes also some of the measures that are applied for energy security. In the area of energy security, it is not always easy to separate the objectives from the respective measures.

The measures that are mentioned and described in point 2.3 are for example:

- The National Emergency Supply Agency holds imported fuels in state-owned reserves to last for the normal consumption of an average of five months.
Of the Nordic countries, Finland has agreements concerning security of supply with Sweden and Norway.

In addition to the measures described in point 2.3 some further measures are listed below.

The power reserve system (strategic reserve) secures the security of electricity supply in Finland in situations in which the market-driven production of electricity does not cover consumption. The system has been in use since the beginning of 2007. Both power plants and facilities capable of demand-side flexibility can participate in the power reserve. The Energy Authority defines the size of the power reserve required in our country, organises the competitive tendering process for plants to be included in the reserve, confirms the terms of the reserve and monitors the operation of the system and compliance with the law. The total power reserve capacity over the period 1 July 2017–30 June 2020 is 729 MW. Thus, the national target for the security of supply related to the adequacy of electric power has been defined indirectly through the size of the power reserve. The National Energy and Climate Strategy outlines that the Government will define the target for the security of electricity supply associated with the adequacy of electric power according to Electricity regulation. The target will be defined once the Commission has approved the methodology compliant with the EU’s regulation.

An integral part of the energy security dimension is also the regulation on risk-preparedness in the electricity sector. The regulation sets the rules governing the cooperation between Member States to prevent, prepare for and manage electricity crisis situations. Cooperation is carried out in the spirit of solidarity and transparency, taking fully into account the requirements of the competitive market for electricity. The regulation includes provisions related to the assessment of risks in the security of electricity supply, drawing up risk-preparedness plans in case the risks are realised, the management of electricity crisis situations, ex-post evaluation of the crisis situations and different types of monitoring.

According to the regulation, the competent authority in each Member State, including Finland, should publish a preparedness plan based on national electricity crisis scenarios. The preparedness plan should include all planned or introduced measures to prevent, prepare for or mitigate an electricity crisis situation. The preparedness plan should also include regional and bilateral measures to ensure that electricity crises with cross-border effects are appropriately prevented and managed.

Finland will prepare and publish its own preparedness plan according to the timetable defined in the regulation.

In 2012, the National Emergency Supply Agency as a competent authority prepared plans for the prevention of risks in the security of supply of natural gas (prevention plan) and for measures to be

20 The act on the power reserve ensuring balance between generation and consumption of electricity (117/2011).
taken in disruptions of supply (emergency plan). The natural gas section of the Oil pool, a part of Finland's security of supply organisation, has also been engaged in the work. The plans are based on the repealed regulation of the European Parliament and of the Council concerning measures to safeguard security of gas supply (994/2010).

The prevention plans and emergency plans complying with the Regulation of the European Parliament and of the Council EU No 2017/1938 concerning measures to safeguard security of gas supply and repealing Regulation (EU) No 994/2010 (Security of Gas Supply Regulation) must be published and the Commission must be informed of them at the latest on 1 March 2019. The Commission informs the Gas Coordination Group (GCG) of notifications concerning the plans and publishes them on the Commission's website. Finland will draw up and publish the plans within the time limit.

The security of natural gas supply in Finland has been good, and there have been no significant disruptions in the supply over the past twenty years. In the event of a disruption in Finland's largest individual gas infrastructure, the remaining infrastructure will be able to satisfy the total demand for gas for 24 hours during peak consumption.

In Finland, the most challenging situation in terms of the supply norm set in the Regulation would be a situation in which the procurement of gas from Russia to Finland is interrupted entirely for a longer period of time. During a long-term disruption in the gas supply, biogas or LNG fed into the network would be supplied to protected gas customers, i.e. households that have joined the distribution network.

Balticconnector, the gas pipeline connecting the gas networks of Finland and Estonia, will be introduced into use towards the end of 2019.

Finland has implemented projects to build import terminals for liquefied natural gas: the first terminal was completed in Pori in autumn 2016 and the second one will be completed in Tornio in 2018. There are no plans to connect these terminals to the gas transmission network. The LNG terminal to be constructed in Hamina will be connected to the local supply network and is estimated to be in use by 2020.

Most of the natural gas consumption can quickly be replaced by alternative forms of energy or by shifting to an alternative fuel. Fuels that can replace natural gas primarily include light and heavy fuel oil and, for gas-specific use, liquified petroleum gas, LNG and biogas that is fed into the natural gas network. One alternative in disruptions in the availability of natural gas may also be to adapt production or to interrupt it.

The users of natural gas, except from consumer-clients, are primarily responsible for their own preparedness plans and the operability of the reserve fuel systems possibly related to them, the buffer stocks of reserve fuel and the organisation of the required transports.

To prepare for any disruptions in the availability of imported energy and to meet its commitments under international obligations, Finland keeps reserves of imported fuel covering on average the nor-
mal consumption of five months. This amount does not include the natural gas consumption by industry. As regards natural gas, the reserves comprise compulsory stockpiles of companies and state-owned reserves.

ii. Regional cooperation in this area

Regional cooperation in the field of energy security is carried out in the Electricity Market Group operating under the Nordic Council of Ministers. Among other things, the working group monitors the estimations ENTSO-E and the Nordic transmission system operators make of the adequacy of electric power.

Cooperation related to the security of gas supply is carried out between the authorities in Finland and the Baltic states. The authorities have drawn up contingency plans for gas supply.

General cooperation related to the security of energy supply is carried out between the Nordic emergency supply organisations (NordBER, Nordisk Beredskapsforum).

iii. Where applicable, financing measures in this area at national level, including Union support and the use of Union funds

The emergency stockpiling of imported fuels is financed through a strategic stockpile fee. No specific requirements regarding the security of supply are related to biofuels. However, a strategic stockpile fee is also levied on biofuels.

3.4 Dimension internal energy market

3.4.1 Electricity infrastructure

i. Policies and measures to achieve the targeted level of interconnectivity as set out in point (d) of Article 4

The National Energy and Climate Strategy outlines that well-functioning regional and European electricity markets and sufficiently strong cross-border connections are the most efficient and cost-effective way of guaranteeing competitive electricity prices and security of supply. The electricity market act (sähkömarkkinalaki 588/2013) requires the transmission system operator Fingrid to improve its grid according to the reasonable needs of its users.
ii. Regional cooperation in this area

The Nordic transmission system operators work in close cooperation for the development of the electricity infrastructure. The latest joint plan for network development was drawn up in June 2017\(^{21}\). Also, the ministries in the Nordic countries cooperate in the electricity market through the Electricity Market Group operating under the Nordic Council of Ministers and the national regulatory authorities through NordREG. Cooperation between the Nordic countries in the electricity market will be intensified by establishing a cooperation forum for the ministries, regulatory authorities, transmission system operators and market participants.

iii. Where applicable, financing measures in this area at national level, including Union support and the use of Union funds

The transmission system operator Fingrid has announced it will apply for CEF funding for the new cross-border connection between Finland and Sweden on the PCI list. Fingrid and Svenska Kraftnät will finance the rest of the investment.

3.4.2 Energy transmission infrastructure

i. Policies and measures related to the elements set out in point 2.4.2, including, where applicable, specific measures to enable the delivery of Projects of Common Interest (PCIs) and other key infrastructure projects

The electricity market act (sähkömarkkinalaki 588/2013) requires the transmission system operator Fingrid to improve its grid according to the reasonable needs of its users. The investments made in the projects described in Chapter 2.4.2 are based on this obligation.

The natural gas market act (maakaasumarkkinalaki 587/2017) sets an obligation for the natural gas system operators to develop the network. The system operator must maintain, use and develop its natural gas network and connections to other networks in accordance with customers’ reasonable needs and for its part secure the supply of natural gas to customers. The transmission system operator must also build sufficient cross-border transmission capacity for the integration of the European transmission system if building it is required from the financial point of view to satisfy reasonable and technically feasible demand for natural gas and to pay attention to the security of supply of natural gas.

The Finnish Government has established a separate company, Baltic Connector Oy, to lead the construction of the Balticconnector gas pipe connection between Finland and Estonia.

\(^{21}\) Nordic Grid Development Plan 2017, page 9

https://energinet.dk/-/media/10ACA6E691D94E0ABC600C0B07216E7E.pdf
ii. Regional cooperation in this area

The regional cooperation in the electricity market has been described above in Chapter 3.4.1.

In 2015, the ministries, the national regulatory authorities and the gas transmission system operators in Finland and the Baltic states established a regional group for the coordination of the gas market and will work in close cooperation within this coordination group to create a regional gas market for the beginning of 2020.

iii. Where applicable, financing measures in this area at national level, including Union support and the use of Union funds

The Balticconnector gas pipeline project on the PCI list received EUR 187.5 million through the EU’s CEF funding instrument. Finnish Baltic Connector Oy and Estonian Elering As will finance the rest of the project's costs.

3.4.3 Market integration

i. Policies and measures related to the elements set out in point 2.4.3

The regional electricity market formed by the Nordic and the Baltic states is promoted through cooperation of the ministries, regulatory authorities, transmission system operators and market participants.

ii. Measures to increase the flexibility of the energy system with regard to renewable energy production such as smart grids, aggregation, demand response, storage, distributed generation, mechanisms for dispatching, re-dispatching and curtailment, real-time price signals, including the roll-out of intraday market coupling and cross-border balancing markets

Increasing the level of flexibility is part of the regional cooperation described above. As regards the electricity markets, the countries already have a single day-ahead market and an intra-day market22. On 9 March 2018, five Nordic transmission system operators concluded a cooperation agreement on the development of a new Nordic balance service model23.

iii. Where applicable, measures to ensure the non-discriminatory participation of renewable energy, demand response and storage, including via aggregation, in all energy markets

iv. Policies and measures to protect consumers, especially vulnerable and, where applicable, energy poor consumers, and to improve the competitiveness and contestability of the retail energy market

The requirements related to consumer protection have been included in the electricity market act (sähkömarkkinalaki 588/2013) currently in force. On 20 September 2018, the Government submitted a bill concerning a Datahub of the electricity market. The Datahub will enable more efficient and consistent data communications, which will be essential for future electricity retail market.

To improve the competitiveness of the retail market, the Energy Authority publishes on its website an independent electricity price service, www.sahkonhinta.fi, in which users of electricity can compare the electricity offers of different sellers. The service is free and available to all users and sellers of electricity.

v. Description of measures to enable and develop demand response including those addressing tariffs to support dynamic pricing

In terms of the adequacy of electric power, it is also important that the preconditions for combined power and heat generation remain as part of an energy-efficient and low-emission energy system with a high degree of security of supply.

In October 2018, the Smart grid working group appointed by the Ministry of Economic Affairs and Employment proposed an extensive operational programme for increasing the demand-side response of electricity and the opportunities for customers to participate. The working group's key proposals were:

- Clarifying the roles of actors in the market-based implementation of demand-side response (e.g. principles for the storage of electricity, discontinuation of the flexibility implemented by distribution networks)
- Improving the operating preconditions for different energy communities and aggregation models
- Defining the functionalities of next generation smart meters
- Enabling flexibility in the operation of grid companies
- Enabling joint invoicing for all sellers

The objective set in the Government's energy and climate strategy is to create a regional gas market for Finland and the Baltic states. The ministries, the national regulatory authorities and the gas transmission system operators in Finland and the Baltic states work in close cooperation within the group for the coordination of the gas market to create a regional gas market for the beginning of 2020. Finland's aim is to join the regional gas market step by step. In the first stage, the aim is to join the regional agreement between the transmission system operators on the removal of capacity payments at interconnection points, harmonisation of feed-in charges and the compensation mechanism for transmission charges. In the second stage, the aim is to form a regional balance area.

3.4.4 Energy poverty

i. Where applicable, policies and measures to achieve the objectives set out in point 2.4.4

Finland does not have national indicative objectives to reduce energy poverty as indicated already in Chapter 2.4.4. The prevention of energy poverty is part of general social policy. Non-energy specific measures to mitigate energy poverty are presented in Chapter 2.4.4.

3.5 Dimension research, innovation and competitiveness

i. Policies and measures related to the elements set out in point 2.5

ii. Where applicable, cooperation with other Member States in this area, including, where appropriate, information on how the SETPlan objectives and policies are being translated to a national context

iii. Where applicable, financing measures in this area at national level, including Union support and the use of Union funds

Finland supports research, innovation and competitiveness in energy technology with a number of measures, of which energy aids are crucial. Based on project assessments, the Ministry of Employment and the Economy and Business Finland may grant energy aid to companies, municipalities and other organisations for investment and research projects that promote the use of renewable energy or energy efficiency.

The purpose of energy aid is particularly to promote the introduction and placing on the market of new energy technology. Energy aid plays an important role in the innovation chain when the development of the technologies is already advanced and the first commercial targets are sought. This way, the competitiveness of companies operating in Finland and the creation of new jobs can be supported. Energy aid can be granted to companies, municipalities and other communities. The aid is not granted, for example, to housing companies, residential properties or farms.
The primary purpose of the aid is to enhance the profitability of early-stage investment and minimise the risks associated with the introduction of new technology.

In the 2018 central government budget, the grant authority for energy aid is EUR 55 million. The budget authority for energy aid is established annually in the central government budget. In the past few years, aid has also been granted for certain specific purposes through separate budget reserves. In total, the Government has allocated EUR 100 million to investments in renewable energy and new technology for the period 2016–2018.

At the beginning of this decade, Finnish Funding Agency for Innovation Tekes made large investments in SHOK programmes (Strategic Centres for Science, Technology and Innovation). Of the energy and environmental sector programmes, SGEM (Smart Grid and Energy Markets) has produced significant competence that can be utilised in the development of intelligent electricity networks and smart control. The FLEXe programme (Flexible Energy Systems) initiated an examination of the requirements for a flexible energy system. Companies have taken the lead in utilising the programme’s research findings. The project completed in 2016 investigated the building of an intelligent and flexible energy system in the Åland Islands.

The Smart Energy programme of Business Finland was launched in 2018. It develops test platforms and innovation ecosystems that boost the competitiveness of Finnish companies and exports of Finnish expertise in the growing international markets and also attracts investments to Finland. The ecosystems will open up opportunities also for SMEs to enter energy markets, in which large investments are necessary.

The development of new business and new solutions requires opportunities for experimentation. Test platforms offer the opportunity to conduct experiments and pilots and to implement research and development projects in the programme focus areas. These include smart networks, renewable energy, energy efficiency, sustainable and smart energy solutions and systems, their related products and services, and resources-wise solutions based on user needs. Instead of developing an individual technology, the intentions is to develop ecosystems and integrate technology into a smart system. The aim is to create to Finland several test platforms that are internationally attractive and will also bring investments to Finland.

The importance of the Mission Innovation cooperation is growing. Finland was accepted to the Mission Innovation initiative in October 2016. When joining, Finland made a promise to double the public innovation funding for clean energy by 2020. The starting level was the average of the funding granted by TEKES to projects on renewable energy sources, storage of energy, energy systems and energy networks between 2013 and 2015 plus the average of the energy aid allocated to new energy technologies in the same theme areas over the same time period by the Ministry of Economic Affairs and Employment. Calculated in this manner, the starting level of public funding for RD&I in clean energy settled at EUR 54.7 million, which would be EUR 109.4 million when doubled in accordance with the objective. When doubling, also the demonstration aid for new technologies allocated to the key projects in the field of energy are taken into account. This was EUR 20 million in 2016 and EUR 40 million in 2017 and 2018.
Finland also participates in the Clean Energy Ministerial (CEM) cooperation, the first meeting of which was held in Washington in 2010. The participating countries account for about 80% of global energy use. A central part of CEM's operation consists of initiatives covering the following themes: bioenergy, CCS, energy and women, Clean Energy Solutions Centre, electric cars, energy efficiency, smart electricity network, solar and wind energy, solar energy and LED, hydropower and sustainable development. Finland participates in the Electric Vehicles and Smart Grids initiatives. Finland has also joined the 21st Century Power Partnership initiative, the Women in Energy (C3E) initiative and the until 30 campaign related to it, and the campaign promoting the more flexible use of power plants and electric transport between cities (Pilot City Programme).

Finland has also been actively involved in the operation of the SET-Plan. The SET-Plan combines the promotion and better coordination of energy technology in the EU and the EEC countries. A total of 14 implementation plans have been prepared in the SET-Plan between 2016 and 2018. Finland has participated actively in the preparation and introduction of these implementation plans. A good example of the flexibility of the SET-Plan is the eBattery plan. Finland has not yet been involved in the preparation of it as domestic interest has remained low, but as the level of interest is increasing, Finland participates in the implementation and has also strengthened its own activities, for example, through Business Finland's "Batteries from Finland" 2018–2020 activation programme.
SECTION B: ANALYTICAL BASIS
4 CURRENT SITUATION AND PROJECTIONS WITH EXISTING POLICIES AND MEASURES

4.1 Projected evolution of main exogenous factors influencing energy system and GHG emission developments

i. Macroeconomic forecasts (GDP and population growth)

ii. Sectoral changes expected to impact the energy system and GHG emissions

iii. Global energy trends, international fossil fuel prices, EU ETS carbon price

iv. Technology cost developments

Economic growth and the change in the structure of the economy play a key role in the estimation of energy consumption and emissions. The economic outlook provided by the Ministry of Finance forms the basis for the estimate regarding the development of the Finnish economy in the near future, whereas longer-term development assumptions are based on the Uutta, vanhaa ja sinivalkoista – Suomi 2040 -report of VTT Technical Research Centre of Finland Ltd 25 and the modelling related to the report. Table 6 shows the GDP and the average annual increase of the national economic output during the period 2016–2040. In the case of forest industry, the growth assumptions are based on the expertise of Pöyry Management Consulting and published in the report Suomen metsäteollisuus 2015–2035 26.

Table 6. GDP and the average annual increase of the national economic output in the projections.

<table>
<thead>
<tr>
<th></th>
<th>2016</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP, million EUR in 2016 prices</td>
<td>216,111</td>
<td>232,000</td>
<td>286,000</td>
<td>355,000</td>
</tr>
<tr>
<td>Annual growth</td>
<td>2.3 %</td>
<td>2.2 %</td>
<td>2.2 %</td>
<td></td>
</tr>
</tbody>
</table>

The Finnish economy has experienced a structural change in the 2010’s, where the role of services has increased and traditional industries have been forced to adapt to changes in global demand and competition. The Government is carrying out major reforms in order to cut expenditures of the public sector and to bring the Finnish economy onto a path of sustainable growth and higher employment. The impact of the reforms is included in the economic growth assumptions of the WEM and WAM projections.

With these fairly high economic growth assumptions the industrial activity, and hence also the energy demand, increases steadily during the projected period. If the assumed economic growth level, however, is not reached, one can expect the greenhouse gas emissions to be lower than the projections indicate.

The population growth in the projections is based on the population forecast drawn up by Statistics Finland. The development of the population is presented in Table 7.

<table>
<thead>
<tr>
<th>Table 7. Population [mill. inhabitants].</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
</tr>
<tr>
<td>5.50</td>
</tr>
</tbody>
</table>

Assumed fossil fuel prices in the world market and the assumed prices of emissions allowances in the EU’s emissions trading system correspond to the values recommended or suggested by the Commission for greenhouse gas emission projections. The default values are presented in Table 8.

<table>
<thead>
<tr>
<th>Table 8. The prices of the EU ETS emission allowances and fossil fuels [euros in 2016 prices].</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
</tr>
<tr>
<td>EU ETS, EUR/t CO(_2)</td>
</tr>
<tr>
<td>Crude oil, EUR/GJ</td>
</tr>
<tr>
<td>Coal, EUR/GJ</td>
</tr>
<tr>
<td>Natural gas, EUR/GJ</td>
</tr>
</tbody>
</table>

The assumptions for technology cost development that are used in the electricity market modelling work are presented in Table 9. The figures represent levelized cost of energy (LCOE) in 2016 prices for given technologies.

<table>
<thead>
<tr>
<th>Table 9. Technology cost development [euros in 2016 prices].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levelized Cost of Energy (LCOE)</td>
</tr>
<tr>
<td>Combined Cycle Gas Turbine (new)</td>
</tr>
<tr>
<td>Hard Coal (new)</td>
</tr>
<tr>
<td>Bio-CHP</td>
</tr>
<tr>
<td>Wind Power - onshore</td>
</tr>
<tr>
<td>Wind Power - offshore</td>
</tr>
<tr>
<td>Solar Power - large scale</td>
</tr>
<tr>
<td>Solar Power - small scale</td>
</tr>
</tbody>
</table>
4.2 Dimension Decarbonisation

4.2.1 GHG emissions and removals

i. Trends in current GHG emissions and removals in the EU ETS, effort sharing and LULUCF sectors and different energy sectors

ii. Projections of sectoral developments with existing national and Union policies and measures at least until 2040 (including for the year 2030)

Transport

The greenhouse gas emissions from domestic transport totalled 11.1 Mt CO$_2$ equivalent in 2015. Transport emissions account for approximately a fifth of Finland’s total greenhouse gas emissions and some 40% of emissions in the effort sharing sector. Greenhouse gas emissions from domestic transport increased from the economic depression in the early 1990s until 2007. Since 2008, they have mainly been decreasing. From 2005 to 2015, greenhouse gas emissions from transport dropped by some 1.8 million tonnes in total, or by 14%.

The WEM projection for transport is based on the traffic performance projected until 2030 by the Ministry of Transport and Communications and VTT. According to the projection, road transport performance will increase in 2016–2020 by approximately 0.9% a year and in 2021–2030 by approximately 0.8% a year. This rate would result in a total increase of 12% in road transport performance by 2030. Another key assumption in the WEM projection is the replacement rate of cars and the average CO$_2$ emissions of new vehicles. In the WEM projection, the annual replacement rate of cars is estimated at approximately 5%. In 2020, the specific emissions of new cars would be close to the limit of 95 g/km that the EU has established for car manufacturers, but they would no longer decrease after 2020 without new (EU-level) measures. The third factor with a substantial impact on transport greenhouse gas emissions in the WEM projection is the share of biofuels in the total consumption of fuel in transport. In the WEM projection, the actual share of biofuels is estimated at 13.5% in 2020 and onwards. The estimate is based on the act on promoting the use of biofuels in transport (laki biopoltttoaineiden käytön edistämisestä liikenteessä 446/2007), which stipulates that biofuels must account for a calculated share of 20% of all transport fuels sold in 2020. The blending obligation allows ‘double counting’, in which certain biofuels that do not compete with food production count double for compliance with the target. The WEM projection is based on the assumption that starting from 2020 the share of non-double counted biofuels will be 7% and the share of double counted biofuels 6.5%. Thus, the calculated share of biofuels would be 20% while their actual share would be 13.5% in 2020–2030.
Agricultural sector

The emissions reported by Finland in the agricultural sector in 2015 totalled about 6.5 Mt CO₂ equivalent. The agricultural sector accounts for approximately 11% of Finland’s total emissions and some 20% of emissions from the effort sharing sector. Emissions from the agricultural sector have remained at the same level between 2005 and 2015. According to the WEM projection, total emissions from agriculture are estimated to increase by 3% from 2005 to 2020, but in 2030 they will be 0.5% below the 2005 level.

Building-specific heating

Emissions from heating buildings are divided between the EU ETS sector and the effort sharing sector. In the effort sharing sector, the main source of emissions was building-specific oil heating, which accounted for 12% of all heating emissions from buildings. Emissions from certain small heating plants are also included in statistics concerning the effort sharing sector. In 2015, the emissions from building-specific heating amounted to 2.4 Mt CO₂ equivalent in the effort sharing sector, which is about 7% of the sector’s total emissions. The majority of these emissions were generated by oil heating. Emissions from building-specific heating have declined in recent years, but there has been some fluctuation because of year-to-year variation in temperatures. The majority of emissions from building-specific heating are produced in the heating of residential buildings followed by the heating of commercial and public buildings.

Waste management

Greenhouse gas emissions from waste management totalled 2.1 Mt CO₂ equivalent in 2015, or 7% of Finnish emissions in the effort sharing sector. The most significant greenhouse gas produced in waste management is the methane emitted from landfills. Waste management emissions in the effort sharing sector also include the greenhouse gases produced in the biological treatment of waste and in the disposal and treatment of waste water: CO₂, methane and nitrous oxide. These emission sources are of a limited importance, and their emission volumes are stable. Greenhouse gas emissions from waste management have reduced by approximately a third from 2005 to 2015. Greatest reductions have been achieved in methane emissions from landfills as landfilling of organic waste has decreased. The increased use of digestion in the biological treatment of waste has slightly reduced the CO₂ emissions of biological treatment. However, CO₂ is still being emitted from the digestion residue that will be composted and the remaining compost windrows. According to the WEM projection, emissions from the waste management sector will decrease by 61% by 2030 compared to 2005 levels.

Emissions from waste used as energy are included in the energy sector. They are covered by the EU ETS when waste is being burned together with other fuels as ‘co-incineration’ for example in power plants at industrial facilities. In 2030, total emissions from waste incineration will amount to approximately 0.8 Mt CO₂ equivalent, of which some 0.6 Mt CO₂ equivalent will be emissions from waste incineration plants included in the effort sharing sector.
F-gases

In 2014, F-gas emissions totalled 1.8 Mt CO\textsubscript{2} equivalent, which currently equals to approximately 3% of all greenhouse gas emissions and approximately 5% of emissions in the effort sharing sector. The emissions peaked in 2010 at approximately 1.84 Mt CO\textsubscript{2} equivalent. Fluorinated greenhouse gases (F-gases) are used for example as refrigerants and extinguishing agents and in plastic foaming. The use of F-gases will increase as appliances, such as air-conditioning equipment in cars and heat pumps, become more common.

In 2030, the emissions will be approximately 0.23 Mt CO\textsubscript{2} equivalent and will continue to decline. Measures under the original F-gas Regulation, applied between 2007 and 2014, and the new F-gas Regulation are estimated to reduce F-gas emissions to 0.8 Mt CO\textsubscript{2} equivalent by 2030 and further to 0.3 Mt CO\textsubscript{2} equivalent by 2040. According to the WEM projection, the emissions will reduce by 15% by 2030 compared to the reference year 2005.

Machinery

In total, various types of machinery currently account for 8% of emissions in the effort sharing sector. In recent years, their greenhouse gas emissions have remained stable at approximately 2.5 Mt CO\textsubscript{2} equivalent per year.

Machinery is used in industry and construction, trade, services, the public sector, households, agriculture and forestry. Machinery is usually equipped with combustion engines. Quantitatively, the most common fuel is gasoil (approximately 8.2 TWh) but petrol is also used (1 TWh). Among machinery emissions, CO\textsubscript{2} is the most significant greenhouse gas, but machinery also emits small quantities of methane and nitrous oxide.

Industry

The energy-related emissions from industry total 10.3 Mt CO\textsubscript{2} equivalent, of which 0.9 Mt CO\textsubscript{2} equivalent originated from non-ETS activities in 2016. Energy related emissions are mainly CO\textsubscript{2} emissions and they originate from all branches of industry. These days, the EU ETS also covers more than 90% of the industrial process emissions. According to the WEM projection, industrial activities continue to grow. As a result, the energy-based and process emissions will also slightly increase, amounting to approximately 11 Mt CO\textsubscript{2} equivalent in 2030. Industry is becoming more energy efficient and produce fewer emissions, which will offset the increase in emissions due to growth in industrial activities. Thus, in the WEM projection, energy-related emissions from industry will remain at their current level throughout the 2020’s.

Energy industry

The greenhouse gas emissions from the energy industry were 18.7 Mt CO\textsubscript{2} eq. in 2016. Although the emissions vary considerably from year to year, the trend is a steady decline. District heating emissions vary according to the heating demand (cold or warm winters) whereas the emissions from condensing power vary depending on the hydro situation in the Nordic-Baltic electricity market. Future years are
in the projections assumed to be standard years with respect to heating demand and hydro levels (i.e. long-term average plus impact of climate change).

The emissions from the energy industry mainly fall in the scope of the EU emissions trading system (EU ETS). In addition to the EU ETS, the energy industry is strongly affected by other policy measures to reduce the emissions, to enhance energy efficiency and to increase the share of renewable energy sources.

In the WEM projection, the most significant future changes in electricity and heat production are the startup in 2019 of a 1600 MW nuclear power plant unit currently under construction, one additional nuclear power plant unit in the late 2020’s and the increase in the use of renewable energy sources, mainly wind power and biomass in CHP plants. All these changes reduce emissions.

Small power plants and boilers are not included in the EU ETS. The total emissions of these plants excluding waste incineration plants amount to 0.2-0.3 Mt CO\(_2\) equivalent. In the WEM projection, the emissions from these plants are expected to slightly decrease in the future.

Other fuel consumption

Emissions from the greenhouse gas inventory category 1.A.5 *Other non-specified emissions of fuels* amount to 1.1 Mt CO\(_2\) equivalent. The unknown consumption of light and heavy fuel oil, LPG and natural gas account for the largest share of consumption in this subcategory. In practice, the consumed amounts are determined as the difference between total sales and known consumption. The subcategory also includes the fuels consumed by the Finnish Defence Forces, statistical adjustments and smaller emission sources, such as helicopters. According to the greenhouse gas inventory report, uncertainty regarding emissions in this subcategory may be up to ±10–50%, depending on the fuel, which is substantially higher than in other energy subcategories. In the WEM projection, emissions from this subcategory are expected to increase marginally to approximately 1.2 Mt CO\(_2\) equivalent by 2030 due to growing economic activity.

LULUCF sector

The annual net sink of the LULUCF sector reported by Finland to the United Nations Framework Convention on Climate Change between 1990 and 2016 varied between -13.7 and (-38.1) Mt CO\(_2\). In 2016, the LULUCF sector was a sink sized -27.1 Mt CO\(_2\) equivalents. As a whole, the LULUCF sector is expected to remain as a sink during the obligation period 2021–2030.

Agricultural land, or arable land and grassland, are a net source of greenhouse gas emissions in Finland, sized approximately 6.5–8.1 Mt CO\(_2\) equivalent per year in the reporting period 1990–2016. Of these, the emissions from arable land account for approximately 90%. After 2020, the emissions from agricultural lands are expected to increase. The development of the surface area of grasslands and the emissions from these grasslands is expected to continue stable until 2030. The trend of emissions from grasslands has been declining since 1990.

The reported sink of managed forest land has varied between -19.3 and -51.5 Mt CO\(_2\) equivalent between 1990 and 2016. The size of the sinks varies from year to year, mainly as a result of the
volume of commercial fellings. In 2016, managed forest lands were a sink sized -34.1 Mt CO₂ equivalents. According to the estimation of the Natural Resources Institute Finland, forests will continue to act as a sink in Finland also in future.

With the exception of 2009, wood products in Finland have mainly been a sink over the period 1990–2016. In 2016, wood products were a reported net sink sized -3.6 Mt CO₂ equivalent. Wood products are estimated to remain sinks during the period 2021–2030.

The National Forest Strategy 2025 contains the key outlines of Finnish forest policy. The Strategy aims at a competitive operating environment for forest-based business, a renewal and diversification of the forest sector and its structures, and active and economically, ecologically and socially sustainable and diverse use of forests. The objectives and development needs at the level of counties have been recorded to regional forest programmes. The Forest Biodiversity Programme for Southern Finland METSO 2008-2025 supplements the National Forest Strategy in terms of the objectives related to ecological sustainability. The aim of the METSO programme is to stop the decline of forested biotopes and forest types and stabilise the favourable development of biodiversity in nature. The Finnish Bioeconomy Strategy 27 drawn up under the leadership of the Ministry of Economic Affairs and Employment aims at new economic growth and new jobs through the sustainable use of renewable natural resources. The National Forest Strategy 2025 implements the bioeconomy strategy in forests.

Finland will submit by the end of the year 2018 the forest reference level for the period 2021–2026 as set in the LULUCF regulation. The net removals or accounted emissions from managed forest land is accounted against the forest reference level.

About 72% of the land area of Finland is forests. The shift of forests to other land use purposes is estimated to continue for such reasons as the structural change in agriculture and urbanisation. The emissions from deforestation over the second period of the Kyoto Protocol have been approximately 3.3–3.9 Mt CO₂. The emissions from deforestation during the period 2021–2030 are expected to decline slightly. The most significant factor reducing the emissions from deforestation in the reduction of emissions from the clearing of fields when the oldest cleared sites become managed agricultural lands. During the second period of the Kyoto Protocol, afforestation has in Finland been both a small sink (about -0.2– -0.4 Mt CO₂ and a small emission in 2015 (0.3 Mt CO₂). According to the estimation of the Natural Resources Institute Finland, afforestation will be a sink until 2030, but the sink gained from afforestation is estimated to continue to decline mainly because of emissions caused by the afforestation of wetlands and agricultural lands.

The decision on including wetlands in the calculations in accordance with the LULUCF regulation for the period 2026–2030 will be made later. The annual emissions from reported wetlands have been approximately 1.5–2.4 Mt CO₂ equivalent during the period 1990–2016. The land area of the areas used in peat production and consequently also emissions from managed wetlands are expected to

decline until 2030. However, the current estimations are very uncertain and do not include, for example, the emissions or removals caused by the restoration of mires.

Natural Resources Institute Finland (Luke) is updating long term scenarios and greenhouse gas projections respectively for LULUCF sector based on new data. Their results will be available in 2019.

Figure 5 shows the historical development of greenhouse gas emissions and removals and the estimated development based on the current national and EU policies and measures until 2040.

Figure 5. The historical development of greenhouse gas emissions and removals and the estimated development until 2040 based on current national and EU policies and measures.

4.2.2 Renewable energy

i. Current share of renewable energy in gross final energy consumption and in different sectors (heating and cooling, electricity and transport) as well as per technology in each of these sectors

ii. Indicative projections of development with existing policies for the year 2030 (with an outlook to the year 2040)

Finland is one of the world’s leading users of renewable energy sources. The most important renewable energy sources is bioenergy wood and wood-based fuels in particular. In addition to that, also hydropower, wind power, air and ground heat pumps and solar energy is used. Renewable energy is one of the most significant means by which Finland’s energy and climate targets can be achieved. The current high level of wood utilization in forest industry forms a backbone in meeting renewable energy targets.
The share of renewable energy in the gross final consumption of energy was approximately 40% in 2017. The EU target for the share of renewable energy in Finland in 2020 is 38% of the gross final energy consumption and this was reached for the first time in 2014. The share of renewable energy in the gross final consumption in Finland is the second highest among the EU countries.

The share of renewable energy in the gross final consumption of energy in 2005, 2010 and 2015–2016 is presented in Table 10. The shares have been calculated using coefficients and normalisations compliant with the ILUC Directive.

Table 10. Total and sector-specific share of renewable energy in the gross final consumption of energy. Source: Eurostat ShaRES.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RES</td>
<td>28.8%</td>
<td>32.4%</td>
<td>39.2%</td>
<td>38.7%</td>
</tr>
<tr>
<td>RES-E</td>
<td>26.9%</td>
<td>27.7%</td>
<td>32.5%</td>
<td>32.9%</td>
</tr>
<tr>
<td>RES-H&C</td>
<td>39.1%</td>
<td>44.2%</td>
<td>52.5%</td>
<td>53.7%</td>
</tr>
<tr>
<td>RES-T (with coefficients)</td>
<td>0.9%</td>
<td>4.4%</td>
<td>22.0%</td>
<td>8.4%</td>
</tr>
</tbody>
</table>

Table 11 shows the amounts of energy from renewable sources in 2005, 2010 and 2015–2016. The amounts of hydropower and wind power have been normalised using the utilisation periods of maximum load over 15 and 5 years, respectively. The quantities of energy in the transport sector correspond to actual quantities without coefficients.

Table 11. Amount of renewable energy as final consumption by energy source in different sectors [TWh]. Source: Eurostat ShaRES.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RES-H&C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar energy</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Biomass</td>
<td>63.1</td>
<td>73.7</td>
<td>77.4</td>
<td>83.2</td>
</tr>
<tr>
<td>Heat pump energy</td>
<td>0.6</td>
<td>2.7</td>
<td>4.7</td>
<td>4.9</td>
</tr>
<tr>
<td>Total</td>
<td>87.2</td>
<td>103.3</td>
<td>115.6</td>
<td>119.1</td>
</tr>
<tr>
<td>RES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropower</td>
<td>13.9</td>
<td>13.9</td>
<td>14.1</td>
<td>14.2</td>
</tr>
<tr>
<td>Wind power</td>
<td>0.2</td>
<td>0.3</td>
<td>2.0</td>
<td>3.1</td>
</tr>
<tr>
<td>Solar energy</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Biomass</td>
<td>72.6</td>
<td>86.3</td>
<td>94.6</td>
<td>96.8</td>
</tr>
<tr>
<td>Heat pump energy</td>
<td>0.6</td>
<td>2.7</td>
<td>4.7</td>
<td>4.9</td>
</tr>
<tr>
<td>Total</td>
<td>87.2</td>
<td>103.3</td>
<td>115.6</td>
<td>119.1</td>
</tr>
</tbody>
</table>
Figure 6 presents the historical development of renewable energy between 2000 and 2016 and the projected development based on existing policies until 2030 and an outlook until 2040.

![Figure 6](image)

Figure 6. Historical development of renewable energy between 2000 and 2016 and the projected development based on current policies until 2030 and an outlook until 2040.

4.3 Dimension energy efficiency

i. Current primary and final energy consumption in the economy and per sector (including industry, residential, service and transport)

ii. Current potential for the application of high-efficiency cogeneration and efficient district heating and cooling

iii. Projections considering existing energy efficiency policies, measures and programmes as described in point 1.2.(ii) for primary and final energy consumption for each sector at least until 2040 (including for the year 2030)

iv. Cost-optimal levels of minimum energy performance requirements resulting from national calculations, in accordance with to Article 5 of Directive 2010/31/EU

In the WEM projection, the primary energy supply in 2030 is 422 TWh and the final consumption of energy 310 TWh. According to sector-specific examination of the WEM projection the final energy consumption in 2030 of the industry would be about 145 TWh, households 66 TWh, the service sector 37 TWh, transport 44 TWh, and other sectors including distribution losses etc. together 18 TWh. There is no estimation of primary energy supply by sector. Historical development 2005–2016 and
projections until 2040 for total primary energy supply and final energy consumption for each sector are shown in Figure 7.

![Figure 7. Historical development of primary energy and final energy consumption by sector between 2005 and 2016 and the projected development based on current policies until 2030 and an outlook until 2040.](image)

Finland's energy saving target in accordance with Article 7 for the period 2021–2030 will be estimated. After the period 2014–2020, the intention is to continue the ongoing national energy efficiency measures for the period from 2021 to 2030. These include: energy efficiency agreements, energy advice for consumers, promotion of deployment of heat pumps in detached and terraced houses, energy audit activities (in addition to the compulsory audit in the EED) and promotion of investments in heating plants.

Efficient cogeneration and efficient district heating and cooling operate in open energy markets and compete with other generation, heating or cooling methods. District heating and cooling are built especially in towns, cities and densely inhabited municipalities. In these areas, a significant part of the heated building stock has been connected to district heating. Based on statistics 90% of blocks of flats, 30% of industrial buildings and more than 60% of other buildings use district heating. The share in single-family houses is about 10%. The total market share of district heating is 38%. In 2017, the sales of district heating were 33.2 TWh. With temperature correction, the consumption equals 35.7 TWh. The consumption of district heating is projected to be 34 TWh in 2025 and just over 33 TWh in 2030.
In 2017, district cooling was sold by nine companies and the sales of district cooling amounted to 220 GWh. In 2030, the sales of district cooling are projected to be 490 GWh.28

4.4 Dimension energy security

\textit{i. Current energy mix, domestic energy resources, import dependency, including relevant risks}

Finland is dependent on imported fuels. Accordingly, the cornerstones of Finnish energy policy are a diversified and reliable supply of energy and improved self-sufficiency. The energy-intensive basic industries, cold climate and long distances underline the significance of energy for the wellbeing of its inhabitants and the country’s competitiveness.

Until the 1960s, Finland’s energy policy relied on the electricity produced by hydropower stations and the extensive use of wood. Due to the limited hydro resources, the use of coal and oil started to increase rapidly, and the need to find new energy sources became clear. A gas pipeline from Russia to eastern Finland was completed in 1973 and later extended to the capital area and to some other cities. The first nuclear power plant unit was taken into use in 1977, followed by three other units in the years 1979 to 1982. A fifth unit is currently under construction and is expected to be completed in 2019. The 1970s also brought peat into the Finnish energy mix.

In 2017, the total energy supply was 378 TWh. Finland’s domestic energy sources are wood-based fuels, hydropower, wind power, waste and peat. Its energy dependence, calculated as the proportion of imported net energy in the total primary energy supply (TPES), was 47 \% in 2015. The current distribution of the different energy sources in the total energy supply is presented in Figure 8.

28 Report by Finnish Energy in 2015: https://energia.fi/ajankohtaista JA_materiaalipankki/materiaalipankki/rakennusten jaahdytysmarkkinat_-_tutkimushanke.html#material-view
The domestic electricity generation was 65.1 TWh in 2017. This consisted of combined heat and power production (32%), both in connection with district heat production and by industry for its own use, nuclear power (33%), hydro power (22%), conventional condensing power (5%) and wind power (7.3%). The total electricity consumption was 85.5 TWh.

The power system is interconnected with the power systems in Russia, Sweden, Norway and Estonia. Net imports from the Nordic and Baltic countries and Russia vary considerably from year to year, mainly due to variations in hydropower production in the Nordic countries. Between 1990 and 2017, maximum net imports were 20.1 TWh (2017) while minimum net imports were 3.7 TWh (1996).

The share of net imports of electricity has grown during the last years and about 2,000 MW of generation capacity has been shut down since 2010. High share of net imports is not a problem in itself. Well-functioning regional and European electricity markets and sufficiently strong cross-border connections are the most efficient and cost-effective way of guaranteeing competitive electricity prices and security of supply. However, generation adequacy during winter peak hours is a concern before the commercial operation of Olkiluoto 3 nuclear power unit starts in early 2020. Two simultaneous large failures over 1,200 MW (e.g. largest generation unit and significant interconnector) in an especially cold winter day would create a situation where curtailment of demand could be needed\(^\text{29}\).

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{energy_sources.png}
\caption{The distribution of different energy sources in the total energy supply in 2017. Source: Statistics Finland.}
\end{figure}

In Finland, renewables accounted consistently around 30% for the period 2000 to 2007, but it has increased over the last years, reaching 39% in 2015. In 2010, an extensive package of specific targets concerning different renewable energy sources was launched in order to reach the EU 2020 renewable energy target set for Finland, i.e. 38% of its gross final energy consumption. The package promotes the use of forest chips and other wood-based energy in particular, alongside wind power, the use of transport bio-fuels, and increased utilisation of heat pumps. Since 2010, measures have been strengthened and adjusted when needed. Wood energy and wooden pellets are exported and imported to some extent, the net amount depending on the year is typically between -1 and +1 TWh.

Combined heat and power production (CHP) provides opportunities for the cost-effective use of renewables both by industrial producers and at district heating plants. The amount of energy Finland saves annually through CHP approximately corresponds to one-tenth of all primary energy used in the country. CHP accounts for more than one third of all electricity production compared with the EU average of 12%. Installed wind power capacity has increased steadily in Finland since 1990 as a result of the Government’s support measures. The capacity was only about one MW in 1992, whereas it climbed to 82 MW in 2005 and reached 630 MW at the end of 2015. By the beginning of 2017, the installed wind power capacity had increased to 1,553 MW.

For several decades the use of primary energy, as well as electricity were increasing and they reached their peak values in 2006 to 2007. Demand rose more rapidly than GDP until 1994. Thereafter, both the energy intensity and the electricity intensity of the economy have decreased. The decrease reflects the structural change within the economy from basic industry towards services and less energy-intensive industry. Furthermore, increased energy efficiency has contributed to the positive development of energy intensity. Figure 9 shows the historical development of the different energy sources in the period 2000 to 2016.

ii. Projections of development with existing policies and measures at least until 2040 (including for the year 2030)

As described in Chapter 4.2 the most significant future changes in the WEM projection in electricity and heat production are the nuclear power plant units currently under construction and the increase of renewable energy sources, mainly wind power and biomass. District heat production from heat-only plants is expected slightly to increase its share at the expense of combined heat and power production, which is struggling with the feasibility due to low electricity prices. The primary energy supply by energy source in the WEM projection until 2040 is outlined in Figure 9.

The projected development of self-sufficiency in total energy supply is shown in Figure 10. The self-sufficiency is 55% today and is expected to rise to around 70% at the end of next decade. The positive development is mainly achieved due to an increased use of domestic renewable energy and new nuclear power that reduce the need for imported fossil fuels and electricity import.
The projected electricity demand at peak load increases from 15,300 MW in 2020 to 16,200 MW in 2030. After the start of Olkiluoto 3 nuclear power plant unit the margin between electricity supply and demand in terms of capacity decreases being only about 1,620 MW in 2020. In mid-2020’s the generation adequacy may decline temporarily when some conventional condensing and CHP plants are likely to shut-down. The investment of Fennovoima Hanhikivi nuclear power plant is expected to increase the generation adequacy again in the end of 2020’s despite a constantly growing electricity consumption and peak demand. The operation permits of Loviisa 1 and 2 nuclear power units are in force until 2027 and 2030 respectively. Unless the operation permits of Loviisa nuclear power units are prolonged, generation adequacy margin decreases clearly again. In the projections, these
two units are dismantled in the late 2030’s. Table 12 presents the projected development of peak load demand and available generation and interconnector capacity in peak load situations for the years 2020, 2030 and 2040.

| Table 12. Projection of demand, generation capacity and interconnector capacity in peak load situations [MW].
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak demand</td>
</tr>
<tr>
<td>2020</td>
</tr>
<tr>
<td>15,300</td>
</tr>
<tr>
<td>Generation capacity *</td>
</tr>
<tr>
<td>13,680</td>
</tr>
<tr>
<td>Deficit</td>
</tr>
<tr>
<td>1.620</td>
</tr>
<tr>
<td>Interconnector capacity</td>
</tr>
<tr>
<td>4,850</td>
</tr>
</tbody>
</table>

* Including strategic reserves in 2020, wind power equalling 6% of installed capacity, PV capacity not included

4.5 Dimension internal energy market

4.5.1 Electricity interconnectivity

i. Current interconnection level and main interconnectors

Chapter 2.4.1 describes current status of the interconnection level and its development in the near future.

The main interconnectors are listed in Table 13.

<table>
<thead>
<tr>
<th>Table 13. List of main interconnectors.</th>
</tr>
</thead>
<tbody>
<tr>
<td>To country</td>
</tr>
<tr>
<td>Sweden SE1</td>
</tr>
<tr>
<td>Sweden SE3</td>
</tr>
<tr>
<td>Estonia EE</td>
</tr>
<tr>
<td>Norway</td>
</tr>
<tr>
<td>Russia</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

ii. Projections of interconnector expansion requirements (including for the year 2030)

Table 14 presents planned interconnector investments and decommissionings.

Table 14. Planned interconnector investments and decommissionings.

<table>
<thead>
<tr>
<th>To country</th>
<th>Type</th>
<th>Export</th>
<th>Import</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden SE1</td>
<td>AC</td>
<td>+900 MW</td>
<td>+800 MW</td>
<td>Completion 2025</td>
</tr>
<tr>
<td>Sweden SE3</td>
<td>HVDC</td>
<td>+800 MW</td>
<td>+800 MW</td>
<td>FennoSkan 1 replacement late 2020’s</td>
</tr>
<tr>
<td>Sweden SE3</td>
<td>HVDC</td>
<td>-400 MW</td>
<td>-400 MW</td>
<td>FennoSkan 1 decommissioning</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>+1300 MW</td>
<td>+1200 MW</td>
<td>Net increase of capacity</td>
</tr>
</tbody>
</table>

4.5.2 Energy transmission infrastructure

i. Key characteristics of the existing transmission infrastructure for electricity and gas

Electricity

The Finnish electricity system is part of the Nordic synchronous power system along with the Swedish, Norwegian and Eastern Denmark systems. Finland is also connected to the Russian and Estonian power systems by direct current connections. The Nordic synchronous system is connected to the Central European power system and the Baltic power systems through direct current connections.

The main grid is the primary electricity transmission network and includes the 400, 220 and 110 kV lines that are most important for power transmission, and substations. The size of the main grid operated by Fingrid is presented in Table 15. Local transmission to small users takes place in the distribution grids.

The main grid serves electricity producers and consumers by enabling a functional electricity market throughout the country as well as cross-border trade. The majority of electricity consumed in Finland is transmitted via the main grid. Fingrid is responsible for main grid operation, planning and supervision.
Table 15. Current size of the main grid operated by Fingrid (2017).

<table>
<thead>
<tr>
<th>Component</th>
<th>length/number</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 kV transmission lines</td>
<td>5,100 km</td>
</tr>
<tr>
<td>220 kV transmission lines</td>
<td>1,600 km</td>
</tr>
<tr>
<td>110 kV transmission lines</td>
<td>7,600 km</td>
</tr>
<tr>
<td>total transmission lines</td>
<td>14,300 km</td>
</tr>
<tr>
<td>submarine cables</td>
<td>320 km</td>
</tr>
<tr>
<td>substations</td>
<td>119</td>
</tr>
</tbody>
</table>

Gas

At the moment, Finland's gas pipeline network is isolated from the networks of the other Member States. The gas pipeline network has been connected to the Russian network with two transfer pipes. The maximum import capacity is 24.1 million cubic metres per day (in 20 degrees Celsius). Finland's gas pipeline network is located in the southeast and southern Finland and its length is 1,300 kilometres. The transmission system operator is the state-owned company Gasum Oy.

ii. Projections of network expansion requirements at least until 2040 (including for the year 2030)

Electricity

Fingrid has a EUR 1.2 billion investment program for the years 2015–2025. In the latter half of the present decade and start of the 2020’s, grid investments will focus mainly on renewing aging transmission lines and substations. The most significant new cross-border interconnector will be the third AC interconnector between Finland and Sweden. This project is scheduled to be completed in 2025. Existing subsea DC cables to Sweden and Estonia will be renewed in this timeframe (2040). When these interconnectors are replaced also their capacity will be reviewed. Also the DC interconnectors to Russia will be renewed but the capacity will remain the same.

Gas

In October 2016, Finnish Baltic Connector Oy and Estonian Elering AS made a decision to invest in the construction of the Balticconnector gas pipeline connection between Finland and Estonia. The Balticconnector gas pipeline is under construction and the intention is to put it into operation at the end of 2019. The new gas pipeline connection is needed in order to open Finland's gas market and to
create a joint gas market of Finland and the Baltic states. The capacity of the Balticconnector pipeline will be 7.2 million cubic metres per day.

In 2020 a new LNG terminal in city Hamina that is under construction at the moment will be connected to the gas transmission network.

4.5.3 Electricity and gas markets, energy prices

i. Current situation of electricity and gas markets, including energy prices

Electricity

Finland forms an integrated wholesale electricity market with Denmark, Norway, Sweden, Estonia, Lithuania and Latvia. The Nordic-Baltic market has been price coupled with the North Western European electricity market since 2013. There is currently one power exchange (Nord Pool AS) active in the Nordic market. In 2016 72% of the electricity supply in Finland was traded through Nord Pool day-ahead market. Historical time series of monthly and hourly average day-ahead spot prices are shown in Figure 11 and Figure 12.

Finland is heavily dependent on integrated European electricity markets as there is a significant deficit in generation capacity compared to peak load. Finland is importing over 20% of its annual electricity supply and around 30% of the power consumption during the winter peaks.

![Figure 11. Monthly average prices in Finland's price area in 2003-2018.](image-url)
Gas

Finland applies the exception for isolated markets in accordance with Article 49(1) of Directive 2009/37/EC. As regards natural gas, there is no access to a third-party pipeline network, so the buyers of natural gas are not able to organise a tendering process for their natural gas supply. Wholesale and retail sellers must buy their natural gas from Gasum Oy, the owner of the transmission network. Gas produced from renewable energy sources has limited access to the pipeline network, however. In addition, the buyers of natural gas can between themselves trade in the secondary market the natural gas they have bought from Gasum.

Because of the monopoly situation in the natural gas supply, both the wholesale and the retail market prices are regulated.

Figure 13 and Figure 14 shows the time series starting form 2001 of as well energy price as total price of natural gas for different type (T1 – T8) industrial size natural gas consumers. All the prices are without taxes, calculated with gross calorific value and in EUR per MWh. The total price of natural gas includes both the price for transmission and energy.

For the different type of natural gas consumers (three examples T1, T4 and T8 are given here), the detailed information of annual consumption, peak load time and contracted capacity are as follows.
Table 16. Description of natural gas consumer types T1, T4 and T8.

<table>
<thead>
<tr>
<th>Type of consumer</th>
<th>T1</th>
<th>T4</th>
<th>T8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual consumption (GWh)</td>
<td>50</td>
<td>150</td>
<td>1000</td>
</tr>
<tr>
<td>Peak load time (h)</td>
<td>4000</td>
<td>6000</td>
<td>6000</td>
</tr>
<tr>
<td>Contracted capacity (MW)</td>
<td>12.5</td>
<td>25</td>
<td>166.7</td>
</tr>
</tbody>
</table>

Complete price statistics is presented in the Energy Authority’s web pages31.

31 https://www.energiavirasto.fi/maakaasun-hintatilastot
Electricity

According to the SMK Market Predictor’s study the Nordic countries will increasingly integrate into the Central European electricity market, and thus the importance of the Central European region as a price-driver for the Nordic electricity market is emphasized. Although the share of wind and solar power in the European electricity balance will significantly rise over the coming decades, fuel prices and emission allowance prices will remain important price-drivers for the Central European electricity market for a long time. Another important price-driver for the Central Europe is the abandonment of nuclear and coal-fired power capacity because of aging or political decisions.

Despite the growth in wind and nuclear power, the rising central European price level keeps also the Nordic price level rising. The regional price of Finland follows the Nordic system price until the end of the 2020s, when the introduction of Hanhikivi 1 nuclear power plant and the new interconnection between Northern Sweden and Finland will lower Finland’s regional price to the price level in northern Sweden. The regional price of Finland follows the regional price of northern Sweden until the exit of Loviisa 1 and 2 nuclear power plant units increases the regional price of Finland closer to the Nordic system price after the mid-2030s (Figure 15).
Gas

It is expected that as from 2020, the gas supply conditions in Finland will comply with the conditions determined for agreements with Gazprom by the Commission's investigation concerning competition. The price of gas energy will thus be determined on the basis of the reference price of the liquid gas hubs in Central Europe.

4.6 Dimension research, innovation and competitiveness

i. Current situation of the low-carbon-technologies sector and, to the extent possible, its position on the global market (that analysis is to be carried out at Union or global level)

ii. Current level of public and, where available, private research and innovation spending on low-carbon-technologies, current number of patents, and current number of researchers

iii. Breakdown of current price elements that make up the main three price components (energy, network, taxes/levies)

iv. Description of energy subsidies, including for fossil fuels
The competitiveness of low-carbon technologies compared with the alternatives has improved considerably over the past few years. The competitiveness of renewable forms of energy with particularly great variation (solar and wind power) has improved. According to monitoring of energy technology exports carried out in Denmark, energy technology exports accounted for just under 10% of Finland's goods exports in 2016, which is among the highest percentages in Europe. Finland's traditional strengths include bioenergy solutions. Finland is also a significant importer of energy technology. Finland imports solar energy systems, among others.

Public research and development funding targeted at the energy sector has declined over the past few years. In 2015, EUR 177.5 million of public R&D funding was allocated to the energy sector, EUR 69.7 million in 2016, EUR 61.7 million in 2017 and the estimate for 2018 is EUR 42.4 million. In 2015, the financing provided to innovations in the energy sector by Finland was highest of the IEA countries in relation to the GDP.

The consumer price of electricity for households in Finland is below the EU average, which improves Finland's competitiveness. In 2017, Finnish households paid on average 16 cents per kWh for electricity (EU average 20 cents per kWh). The price of electricity for others than households in Finland was about 7 cents per kWh (EU average 11 cents per kWh). Finland taxes fossil fuels fairly heavily and the difference is considerable when compared with countries outside the EU, in particular. The competitiveness of an individual industry in terms of the price of energy also partly depends on the granted electricity tax reliefs and refunds.
5 IMPACT ASSESSMENT OF PLANNED POLICIES AND MEASURES

5.1 Impacts of planned policies and measures described in section 3 on energy system and GHG emissions and removals including comparison to projections with existing policies and measures (as described in section 4)

i. Projections of the development of the energy system and GHG emissions and removals as well as, where relevant of emissions of air pollutants in accordance with Directive EU 2016/2284 under the planned policies and measures at least until ten years after the period covered by the plan (including for the last year of the period covered by the plan), including relevant Union policies and measures.

The development of greenhouse gas emissions and removals in the WEM and WAM projections are shown in Figure 2 and Figure 5. The WEM projection estimates that the total greenhouse gas emissions (without LULUCF) in 2020 and in 2030 will be 52 and 45 million tonnes CO\textsubscript{2} eq. respectively, whereas the WAM projection assesses that they will be 52 and 40 million tonnes CO\textsubscript{2} eq., respectively.

Finland is in the course of fulfilling its EU 2020 emission reduction goal and its corresponding emission reduction obligation under the second commitment period of the Kyoto Protocol with the existing policy measures. The effect of the additional measures is aimed at the 2020’s and in full at the year 2030 at the latest. With the measures of the WAM projection the renewable energy share will rise to around 50% of final energy consumption and the use of imported oil for the domestic needs will be cut by half by 2030. The use of coal in energy production will end by 2029.

Ban of coal in energy production will have an impact on the energy system. Coal CHP plants will mainly be replaced by heat only boilers using biomass. The use of forest chips is expected to increase by 2.0–2.8 TWh. Market based development of coal use would lead to 200 MW decrease in coal CHP generation capacity during years 2025-2030. Ban of coal based on legislation in 2029 further decrease the CHP generation capacity by 300 MW. This will decrease the flexibility of the electricity system and the generation adequacy between supply and demand will be tighter. Ban of coal by 2029 will also have a marginal impact on power prices, EUR 0.1–0.3 per MWh depending on the fuel price scenarios.

Even though the electricity demand increases steadily in the WAM projection the electricity generation from district heating CHP plants is likely to decrease. In the 2020’s, after the technology neutral tendering of 1.4 TWh, wind and solar power are expected to be competitive and grow their share of generation. The development of the electricity supply in the WAM projection until 2040 is shown in Figure 16.
The dependency of electricity import in particular at peak load situations remains a challenge in the 2020’s despite investments in smart grid solutions and system flexibility. Further measures will be considered the coming years.

![Electricity supply graph](image)

Figure 16. Development of electricity demand and supply in the WAM projection.

The planned transport sector policy to increase the number of electric vehicles to 250,000 by 2030 increases significantly the amount of electricity used by the sector (Figure 17). At around 2030 electricity demand of road transport equals that of railways. Thereafter the road transport electricity is expected to double by 2040. The electricity use in the transport sector in total is not more than 1–2% of the total electricity demand during the assessed period. Its impact on electricity generation is on a yearly level small, but charging batteries and an active use of them as two-way electricity storage can affect both the short-term electricity market and local grid. Thus, electric vehicles can with clear rules and developed market solutions contribute to an over-all efficient and advanced energy system.
ii. Assessment of policy interactions (between existing policies and measures and planned policies and measures within a policy dimension and between existing policies and measures and planned policies and measures of different dimensions) at least until the last year of the period covered by the plan, in particular to establish a robust understanding of the impact of energy efficiency / energy savings policies on the sizing of the energy system and to reduce the risk of stranded investment in energy supply.

The planned new premium system for renewable electricity increases annual electricity generation with (only) 1.4 TWh, which can well be integrated in the existing power system. The premium system plays an important role in contributing to market-based deployment of wind power in the future. Large scale integration of variable renewable energy into the electrical system requires greater flexibility in the system. There is a need for a variety of service providers and for more diversified markets, for which a number of proposals have been presented in the report of the Smart Grid Working Group.

Installation of large wind farms requires the electricity grid to be strengthened at both the local and national grid level. Electricity companies must develop the network according to the customers' reasonable needs. In addition, as the use of energy in society as a whole moves more into electricity the electricity demand increases and there is a continuous need to invest in network infrastructure. Therefore, in relation to the network infrastructure, there is no risk of stranded costs, rather the opposite.

32 https://tem.fi/documents/1410877/2132296/%C3%84lyverkkoty%C3%B6ryhm%C3%A4n_keskeiset_ehdotukset_241018/3800ce98-68bc-da20-52e9-494722cfc2bd/%C3%84lyverkkoty%C3%B6ryhm%C3%A4n_keskeiset_ehdotukset_241018.pdf
https://tem.fi/alyverkot
The 1.4 TWh subsidized production slightly weakens the profitability of existing power plants as they cannot produce just as much electricity as before. In addition, the spot price drops slightly, which reduces the returns of all electricity producers. This renewable energy measure is not considered to be of any importance to the energy security dimension, and the direct impact on the internal market dimension is also marginal, see also Chapter 4.5.

The planned Datahub facilitates the development of services that are related to small-scale electricity production, the creation of energy communities, etc. This is expected to speed up the deployment of small-scale electricity production and thus supports the low-carbon dimension. An increase in small-scale electricity production that is used on site results in lesser billing for network companies and vendors. Consequently, it is likely that network companies change the structure of distribution tariffs over time so that they emphasize less the energy component and introduce capacity based components.

The ban on the use of coal is good for the low carbon dimension but not necessarily favorable for the energy security dimension, at least with regard to the security of electricity supply. Ban of coal based on legislation in 2029 decrease the CHP generation capacity by 300 MW. This will decrease the flexibility of the electricity system and the generation adequacy between supply and demand will be tighter. The policy measure increases slightly the market price of electricity, see Chapter 5.4.

Policies and measures for the dimension of decarbonisation, such as biofuels/bioliquids blending obligations for the transport and heating sectors, requires development of new technology. Thus, the dimension of decarbonisation has policy interactions with the dimension of research, innovation and competitiveness.

As an additional consideration, building sector projections show that improvement of the energy efficiency of buildings reduces the use of district heating. This development is likely to happen even if the total building volume increases. As the district heating network has already been fully built out, there a risk that the number of paying customers is not sufficient for maintaining the district heat infrastructure. The problem is even accelerated if district heat customers chose to disconnect and switch to decentralized heating such as f.ex. heat pumps. Consequently, it is important to ensure the competitiveness of district heating and CHP.

iii. Assessment of interactions between existing policies and measures and planned policies and measures, and Union climate and energy policy measures.

All the implemented and planned measures in all the five dimensions that Finland has indicated in this report are either related to implementation of the EU legislation or contribution to achieving the EU energy and climate targets. The policy measures will ensure that Finland takes care of its own share and contributes adequately to the EU's common energy and climate goals. The policy measures also ensure that Finland is also on the path to achieving long-term goals by 2050.
5.2 Macroeconomic and, to the extent feasible, the health, environmental, employment and education, skills and social impacts including just transition aspects (in terms of costs and benefits as well as cost-effectiveness) of the planned policies and measures described in section 3 at least until the last year of the period covered by the plan, including comparison to projections with existing policies and measures.

The impact assessment of NECP is based on two separate impact assessments reports, one prepared for the Finland’s National Energy and Climate Strategy33 and the other prepared for the Medium-term Climate Change Plan (KAISU)34. In addition, Finland’s National Energy and Climate Strategy and Medium-term Climate Change Plan both include one chapter for impact assessments. In Energy and Climate Strategy it is Chapter 4 including also impacts on national economy (Chapter 4.5) and environmental impacts including also for example quantity of air impurities (Chapter 4.6). In Medium-term Climate Change Plan Chapter 13 is about the impacts of the policy plan including economic impacts and also impact on national economy (Chapter 13.2), impacts on human health and the environment (Chapter 13.3) and impacts on security (Chapter 13.4). These documents are available also in English1 and 2.

The conclusion of the impact assessments of the National Energy and Climate Strategy is that the proposed actions and measures allows Finland to reach the targets of the EU Effort Sharing Decision and national targets to increase renewable energy, to reduce fossil fuel consumption, and to increase self-sufficiency of energy consumption. The largest share of additional emission reductions would be achieved in the transport sector followed by reduction of emissions from oil heating of buildings, work machinery, waste management, F-gases and agriculture.

The realization of the targets of the energy and climate strategy affects economic steering and the national economy. According to the impact assessments, the gross domestic product would be 0.6 %-points lower than the baseline in 2030. The employment would grow over 3% by 2030 compared to 2015, but would remain 0.15 %-points lower than in the baseline.

Forest biomass is the largest growing renewable energy source from 2015 to 2030. The impact assessment of Finland’s National Energy and Climate Strategy from 2016 concludes that the existing felling potential in the Finnish forests will be large enough to supply the estimated needs of both forest and energy industries. Finnish forests will remain a carbon sink. Natural Resources Institute Finland (Luke) is updating scenarios for carbon sinks based on new data on forest growth.35

The strategy will affect climate change, nature’s biodiversity and water basins, air pollution, health and living conditions. The details of the practical implementation are essential. They will influence

35 Study will be published in January 2019.
how the increased harvesting affects biodiversity and what welfare impacts different population
groups will experience.

In the impact assessment of the Medium-term Climate Change Plan the assessments of the measures
of the non-ETS sector under the effort sharing regulation have been updated and extended. According
to the results of the energy system model TIMES, a realistic overall emission reduction potential
compared to baseline (WEM projection) sums up to 5.1–6.8 Mt CO₂-eq. in year 2030. The largest
potentials are identified in transportation, but there are also substantial uncertainty regarding these
emission reductions and associated costs. Additional emission reductions are achievable especially
through decreasing the use of mineral oil in heating of buildings and in fuel use of work machines.
An increased share of biofuels in transport, heating and machinery is the most significant individual
measure. In total, the measures of KAISU have only a minimal impact on the growth of gross domes-
tic product. In combination with other policy measures, the measures of KAISU affect environment,
people’s health and living conditions in many ways. The level of impacts depends on many factors,
making the anticipation of impacts uncertain. Careful monitoring is therefore needed to verify the
reaching of targets and other impacts.

Economic impacts of policies and measures have also been reported in Section 5.5. of the Finland’s
Seventh National Communication under the United Nations Framework Convention on Climate
Change\(^6\). The information in the Seventh National Communication is based on the situation at the
end of 2017 and the impacts of the policy measures of Finland’s National Energy and Climate Strategy.
The results related to the Medium-term Climate Change Plan on macroeconomic level are very
similar to those of the National Energy and Climate Strategy.

For the economic impact assessment, a dynamic applied general equilibrium model that describes the
economy from the perspective of decisions made by households, companies and the public sector is
used.

The impact of the WAM measures on the national economy in 2030 in comparison to the WEM
projection is shown in Table 17.

Table 17. Impact of the WAM measures on the national economy in 2030. The WM (with measures) projections in the Table is the
same as WEM (with existing measures) projections the text.

<table>
<thead>
<tr>
<th></th>
<th>Change compared to the WM scenario, per cent</th>
<th>Impact on the domestic product compared to the WM scenario, percentage points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic product</td>
<td>−0.59</td>
<td>−0.23</td>
</tr>
<tr>
<td>Private consumption</td>
<td>−0.40</td>
<td>−0.10</td>
</tr>
<tr>
<td>Investments</td>
<td>−0.86</td>
<td></td>
</tr>
<tr>
<td>Public consumption</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Exports</td>
<td>−1.75</td>
<td>−0.76</td>
</tr>
<tr>
<td>Imports</td>
<td>−1.33</td>
<td>0.49</td>
</tr>
</tbody>
</table>
5.3 Overview of investment needs

i. Existing investment flows and forward investment assumptions with regards to the planned policies and measures

Investment needs for the ban of coal

Economic impact of the premature investment costs in cities Helsinki and Vaasa are EUR 34 million. In addition to this EUR 2–4 million has to be invested in additional equipment in other cities with multi-fuel boilers.

Investment generated by the tender process for renewable electricity production

Energy Authority has started the tendering process and the deadline for tenders is 31 December 2018. According to the SKM report, investment cost for wind power is 1,500 MEUR/MW. Based on this the overall investment cost would be EUR 600–750 million.

Investment needs for the centralized data exchange solution

The total cost of the centralized data exchange solution, the Datahub, is approximately EUR 36 million, of which the transmission system operator accounts for EUR 19.6 million and the electricity companies EUR 16.6 million. The average investment of electricity companies per customer is EUR 0.5 per year during 10 years. Investments are almost equally distributed between retailers and distribution system operators.

Investment needs for the production if biofuels

According to the research study "Biopolttoaineiden kustannustehokkaat toteutuspolut vuoteen 2030"36, the development of the WAM projection presented in the energy and climate strategy is estimated to amount to a total of 800,000 oil equivalent tonnes (toe) of biofuels in 2030. The amount of bioliquids needed to replace light fuel oil is estimated at 34,000 toe/a in heating and 69,000 toe/a in machinery, i.e., a total of 103,000 toe/a. Biofuels production capacity in Finland is currently more than 500,000 toe, so the additional requirement by 2030 would be around 400,000 toe, if the obligations presented are to be fully met with domestic production.

Based on the estimates made earlier, the cost of investing 400 ktoe in production capacity would be up to EUR 1.300 million by 2030. However, there are significant uncertainties about the estimation.

of the amount of biofuel needed. If, for example, the energy efficiency did not improve and the number of electric cars would be half of the 250,000 vehicles expected in 2030, the required amount of biofuels would be raised annually by about 600 ktoe in 2030 situation.

Investment needs for the public recharging points for electric vehicles

Finland’s national plan for distribution network for alternative transport fuels\(^{37}\) estimates that in 2030 at least 25,000 public recharging points should be provided for a minimum of 250,000 electric vehicles. The amount is based on the Alternative Fuels Infrastructure directive (2014/94/EU), which indicates that the appropriate average number of recharging points should be equivalent to at least one recharging point per 10 cars.

If we assume that the average investment cost of one fast charger is approximately EUR 40,000 and the average investment cost of one medium speed charger is approximately EUR 14,000\(^{38}\), the estimated investments of building the public charging infrastructure are EUR 415 million by 2030. This is based on an assumption that ten percent of the public recharging points are fast chargers.

Investment needs for the security of supply of electricity networks

For the security of supply of electricity networks, the investments needs are estimated in the report of the electricity transmission pricing and security of supply\(^{39}\).

Based on the report, according to the Electricity Market Act, grid companies must develop their grids and operations so that after 2028 a single disruption may not last more than 6 hours in areas covered by local detailed plans and 36 hours in other areas.

Since the 2017 legislative amendments, the Energy Authority has been able to grant companies extension until 2036 at the most where there are very serious grounds. Total investments by grid companies amounted to EUR 9.5 billion in 2016–2018, of which about EUR 3 billion is related to security of supply requirements.

\(^{38}\) The average costs are estimated based on research report of VTT Technical Research Centre of Finland: Tieliikenteen 40 %:n hiilidioksidipäästöjen vähentäminen vuoteen 2030: Käyttövoimavaihtoehdot ja niiden kansantaloudelliset vaikutukset (in Finnish). http://www.doria.fi/bitstream/handle/10024/162111/Tieliikenteen%2040%20hiilidioksidip%C3%A4%C3%A4st%C3%B6jen%20v%C3%A4hent%C3%A4minen%20vuoteen%202030%20K%C3%A4ytt%C3%B6voimavaihtoehdot%20ja%20niiden%20kansantaloudelliset%20vaikutukset%20(VTT%20Oy).pdf

The investments exceed significantly the required amount of straight-line deprecations under the Energy Authority control scheme, resulting in considerable needs for equity capital or non-equity capital. The domestic content of the security of supply investments is 70–90%. The effect of significant and accelerated investments on grid companies’ turnovers is estimated at +10–40% in 2018–2028, depending on regional circumstances.

Investment needs in electricity interconnector capacity

The estimated costs of the construction of an alternating current connection of 800 MW between northern Finland and northern Sweden are just under EUR 200 million. The transmission line is planned from Messaure in Sweden via Keminmaa to Pyhänselkä in Finland, spanning a distance of around 370 kilometres. 40

ii. Sector or market risk factors or barriers in the national or regional context

No significant sector or market risk factors are recognised.

iii. Analysis of additional public finance support or resources to fill identified gaps identified under point (ii)

5.4 Impacts of planned policies and measures described in section 3 on other Member States and regional cooperation at least until the last year of the period covered by the plan, including comparison to projections with existing policies and measures

i. Impacts on the energy system in neighbouring and other Member States in the region to the extent possible

Ban of coal in energy production and the new premium system for 1.4 TWh renewable electricity will have marginal impacts on the Nordic power system. By 2030, CHP generation capacity is expected to decrease by 300 MW compared to market based development. This will decrease marginally the flexibility of the Nordic power system. The inertia of the power system will decrease marginally when conventional power plants are shut down and variable renewable energy production increases.

ii. Impacts on energy prices, utilities and energy market integration

The impact of Finnish subsidized renewable electricity generation on neighbouring countries, energy market integration and electricity prices has been examined in SKM Market Predictor’s study 30. Finland has decided to increase its renewable electricity generation by 1.4 TWh through tendering process in 2018–2019. After that, renewable energy is expected to be deployed without subsidies.

On an annual basis, Finland is a net importer of electricity and is expected to remain a net importer at least until the mid-2020s, despite of an increase in domestic production capacity. Consequently, subsidized renewable energy production primarily reduces the need for imports from neighbouring countries. According to SKM Market Predictor’s analysis, the increase in renewable energy output of 1.4 TWh reduces electricity imports from Sweden by about 0.9 TWh annually, which is equivalent to about one-twentieth of Sweden's estimated total export at the beginning of next decade. Similarly, imports from Russia would decline by about 0.2 TWh on an annual basis whereas exports to Estonia would increase by about 0.2 TWh.

The increase of renewable electricity generation by 1.4 TWh will, according to our estimates, reduce the Nordic-Baltic system price by about EUR 0.25 per MWh at the beginning of the next decade. As Nordic renewable electricity production at the same time continues to grow, the price effect of Finnish subsidized production will be smaller later on. As a conclusion, SKM Market Predictor notes that the impact of Finnish subsidized renewable electricity generation on neighbouring countries, electricity prices and the integration of energy markets is small.

Ban of coal by 2029 will have a marginal impact on power prices, depending on the fuel price scenarios an increase of EUR 0.1–0.3 per MWh can be expected.

Finland, Sweden and Norway all have ambitious goals to reduce emissions in the transport sector. Blending obligation of biofuel in the transport sector has an important role in the beginning. This will create a joint Nordic market for biofuels in transport.

iii. Where relevant, impacts on regional cooperation

The renewable energy target in transport sector increase the activities of private companies and research institutes especially in biofuels and electric vehicles. This offers an excellent opportunity for regional cooperation in the dimension of research, innovation and competitiveness.

In the dimension of internal energy markets, the blending obligation of biofuels is expected to foster the joint Nordic biofuel market.