Overview on ICS-REM exercises, lessons learned and their implications

Mikael Hult

.

3

Directorate for Nuclear Safety and security, JRC-Geel: Unit G2 (Standards for nuclear Safety, Security and Safeguards

d.

The European Commission's science and knowledge service

Joint Research Centre

The Joint Research Centre at a glance

Since 2016: **No more institute names!**

IRMM, ITU, IPSC, ... JRC-Geel JRC-Karlsruhe JRC-Ispra JRC-Petten JRC-Seville JRC-Brussels

Work conducted in directorates

distributed over the 6 sites in 5 Member States

Treaty establishing the European Atomic Energy Community (Euratom)*

Article 8

After consulting the Scientific and Technical Committee, the Commission shall **establish a Joint Nuclear Research Centre**.

This Centre shall ensure that the research programmes and other tasks assigned to it by the Commission are carried out.

It shall also ensure that a **uniform nuclear terminology** and a **standard system of measurements** are established.

It shall set up a central bureau for nuclear measurements (CBNM).

⇒ IRMM ⇒ **JRC-Geel**:

- Primary standardisation of radioactivity
- Decay data
- Realisation of the unit becquerel (Bq)

* Consolidated version of the Euratom Treaty 2016/C 203/01: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:02016A/TXT-20160901

Unit G2: Standards for Nuclear Safety, Security and Safeguards (at JRC-Geel site)

EURATOM Treaty (Art.8 and Annex V)

JRC "shall include a central bureau for nuclear measurements specialising in

- nuclear measurements for isotope analysis
- and absolute measurements of radiation
- and neutron absorption".~
- 3 Nuclear Data for safety of present-day and innovative nuclear energy systems measurements of neutron induced reactions and cross-section standards

2 – Radionuclides and Radioactivity

activities for the harmonisation of the European radioactivity - measurement system

1 – Metrological tools for nuclear safeguards

research in mass spectrometry, production of reference materials and ILC for nuclear safeguards

Treaty establishing the European Atomic Energy Community (Euratom)

Article 35

Each Member State shall establish the facilities necessary to carry out continuous **monitoring of the level of radioactivity in the air**, **water and soil** and to **ensure compliance with the basic standards**, defined in Article 30.

The Commission shall have the right of access to such facilities; it may **verify their operation and efficiency**.

Article 36

The appropriate authorities shall **periodically communicate information** on the checks referred to in Article 35 to the Commission so that it is kept informed of the level of radioactivity to which the public is exposed.

Article 35/36 Experts meeting Sept. 18-19, 2018

⇒JRC-Geel

- Organisation of proficiency tests
- Production of reference materials

⇒JRC-Ispra

Environmental monitoring network (EURDEP)

Results to Directorate-General for Energy

Treaty establishing the European Atomic Energy Community (Euratom)

Article 39

The Commission shall set up within the framework of the **Joint Nuclear Research Centre**, as soon as the latter has been established, a health and safety documentation and study section

This section shall in particular have the task of collecting the documentation and information referred to in Articles 33, 36 and 37 and of **assisting the Commission in carrying out the tasks assigned to it in Chapter 3.**

Rem. Chapter 3: Articles 30-39 (health & safety)

Overview of EC PTs organised by JRC-IRMM (2003-2014)

Year	Matrix	Radionuclide(s)	
2003	air filter	¹³⁷ Cs	
2005	milk powder	⁴⁰ K, ⁹⁰ Sr, ¹³⁷ Cs	
2008	mineral water	^{226/228} Ra, ^{234/238} U	Ë
2010	soil	⁴⁰ K, ⁹⁰ Sr, ¹³⁷ Cs, ^{212/214} Bi, ^{212/214} Pb, ²²⁶ Ra, ^{230/232} Th, ^{234/235/238} U, ^{238/239/240} Pu	
2011	bilberry	⁴⁰ K, ⁹⁰ Sr, ¹³⁷ Cs	
2012	drinking water	gross alpha/beta	
2014	air filter	¹³⁷ Cs	

Proficiency Tests in support of Article 35

Complementary to DG ENER verifications

	2011	Bilberry		⁹⁰ Sr, ¹³⁷ Cs, ⁴⁰ K		
	2012	Water		Total a / ß activity		
	2014	Air filter		¹³⁷ Cs		
	2016	Air filter	MetroERM	¹³⁴ Cs, ¹³⁷ Cs, ¹³¹ I		Also: First
	2017	Maize	⁴⁰ K	¹³⁴ Cs, ¹³⁷ Cs, ¹³¹ I		emergency
(0	2018	Water		Radon	·	ovorcicol
estions	2019	Water	Tot 210	al a / ß activity and, Pb ²¹⁰ Po	/or	
900	2020	e.g.air filter	e.g.	¹³⁴ Cs, ¹³⁷ Cs, ¹³¹ I, ¹⁰⁶	⁵ Ru	3 3 3
SU	2020	Water	Radon – Sampling!			First Sampling exercise???
					***	European European

Commission

Article 35/36 Experts meeting Sept. 18-19, 2018

Preliminary /

https://remon.jrc.ec.europa.eu/Services/Proficiency-Tests

Getting Authorized

Installing Widgets

Using Connect API

Proficiency Tests

EC-JRC Proficiency Tests for Radioactivity Environmental Monitoring Laboratories (EC-JRC REM PTs)

On the basis of the EURATOM treaty Articles 35-36, monitoring and reporting of environmental radioactivity is one of the EU member states' obligations. Article 39 stipulates that the JRC shall assist the Commission in carrying out the tasks in Chapter 3 on Health and Safety (Articles 30-39). To verify the quality and the comparability of measurement results delivered by member states laboratories, JRC-Geel organises Proficiency Tests (PTs) on the measurement of radionuclides in different environmental matrices. The EC-JRC REM (Radioactivity Environmental Monitoring) PTs are organised under a mandate from the European Commission's Directorate-General for Energy.

Ongoing Proficiency Test

REM 2018 Radon-in-water proficiency test

Table 1 Summary of FC-1RC proficiency tests

https://remon.jrc.ec.europa.eu/Services/Proficiency-Tests

European

Commission

Table1. Summary of EC-JRC proficiency tests.

Year	Matrix	Radionuclide(s)	Status	Report		
Tbd.*	Water	²¹⁰ P0 ^{/210} Pb	Planned			
Tbd.	Water	Gross alpha/beta activity	Planned			
2018	Water	²²² Rn	Announced for October			
2017	Maize powder	^{134/137} Cs, ¹³¹ I	Completed	Being drafted		
2016**	Air filter	^{134/137} Cs, ¹³¹ I	Completed	Link		
2014	Air filter	¹³⁷ Cs	Completed	Link		
2012	Water	Gross alpha/beta activity	Completed	Link		
2011	Bilberry	⁹⁰ Sr, ¹³⁷ Cs, ⁴⁰ K	Completed	Link		
2010	Soil	⁴⁰ K, ¹³⁷ Cs, ^{212/214} Bi, ^{212/214} Pb, ²²⁶ Ra, ^{230/232} Th, ^{234/235/238} U, ^{238/239/240} Pu, ⁹⁰ Sr	Completed	Link		
2008	Water	238/234U, 226/228Ra	Completed	Link	****	
Article	35/36 Expert	s meeting Sept. 18-19, 2018			****	

A dear child has many names

Naming of PTs in support of Article 35 carried out by JRC-Geel

- ILC Interlaboratory Comparison
- PT Proficiency Test
- REM Radioactivity Environmental monitoring

Some names that appear:

- EC PT
- EC REM PT
- Year ILC on analyte matrix e.g. 2012 ILC on gross- α activity in water
- ICS-REM International Comparison Scheme Radioact. Env. Monit.
- REM-ILC

JRC-GEE-REM-COMPARISONS@ec.europa.eu

2018 at JRC-Geel

Workshop+ Training course on radioactivity in feed

Benefits to stakeholders

- Independent evaluation of proficiency
- Possibility to use results for accreditation (increasingly asked)
- Obtaining (for free) a good quality Reference Materials with SItraceable activity (stable, homogeneous, transport issues clarified,...)
- Training course (no fee)
- Workshop (no fee)
- Key benefits to DG ENER: <u>Complementary</u> to verification visit
- Key benefit to population: Discovery of "gaps" \Rightarrow Better protection of the citizen.

JRC TECHNICAL REPORTS

Evaluation of the 2016 ENV57/MetroERM measurement comparison on simulated airborne particulates: ¹³⁷Cs, ¹³⁴Cs and ¹³¹I in air filters

> Timotheos Altzitzoglou Petya Malo

2017

Laboratory number

Article 35/36 Experts meeting Sept. 18-19, 2018

European Commission Many reasons for reporting too low values: Different filters than used for iodine, no decay correction, heating the filter prior to measurement, removing the filter from the bag in which it was delivered,...

JRC SCIENCE FOR POLICY REPORT

Evaluation of the 2012 EC interlaboratory comparison on gross alpha/beta activity concentration in drinking water

> Viktor Jobbágy, Jana Merešová, Timotheos Altzitzogiou, Mikael Hult, Petya Malo, Uwe Wätjen

2016

Fig. 22. Laboratory results for gross alpha activity concentration for Water B. The solid red lines indicate the reference activity concentrations (A_{ref}) of gross alpha activity. Their corresponding expanded uncertainties $\pm U_{ref}$ (k = 2) are plotted in dashed red lines.

Reasons for discrepancy

- Instrumentation
- Procedures
- Personnel (education, experience, continuous training,...
- Legal status
- Organisational structure
- International standards

....

European Commission

JRC Scientific Excellence Award to Stefaan Pommé Category 1: Scientific Excellence

European Commission

Invariability of decay constants

With 14 NMIs! Endorsed by CCRI Disproving claims of permille level solar influence on radioactive decay

Immense impact, (which will not reach the news)

6 8 recent articles in, Phys. Lett. B 761 + Metrologia 54 + Solar Phys. 292 + Astropart. Phys. 97,

Bureau International des Poids et		- the intergove on matters r	e intergovernmental organization through which Member States act together n matters related to measurement science and measurement standards.			Search facility:			
II + Mesu	Jres				💼 Site	e map News Contac	t us [_		
ABOUT US	WORLDWIDE	METROLOGY	INTERNATIONAL EQUIVALENCE	MEASUREMENT UNITS	SERVICES	PUBLICATIONS	MEE		

International metrology in the field of Ionizing Radiation

Overview	Units	Committee structure	Strategic plan	BIPM laboratory work		Ionizing Radia لا

Ionizing radiations are present in many aspects of life today, including both radiations occurring naturally in the environment – such as from radionuclides found in air (radon decay products), soils, food, water and the human body, as well as cosmogenesis and cosmic rays – and artificially produced radiations such as found in:

- medical uses of X-rays (kV tubes and MV accelerators), gamma rays from external beam/brachytherapy sources and from short-lived radionuclides used in nuclear medicine (^{99m}Tc, other SPECT, PET radionuclides), as well as other emerging techniques (e.g. hadron and neutron therapies),
- nuclear industry cycle, discharges and waste,
- radioactive fallout from nuclear industry emergencies and nuclear weapons testing,
- irradiation facilities using gamma sources (⁶⁰Co, ¹³⁷Cs) or electron accelerators for sterilization (food, medical equipment), industrial radiography or radiation processing for environmental remediation (flue gas, wastewater, sewage sludge),
- scientific research facilities for high-energy photon/particle beams, or low-energy X-ray photons in nanotechnology.

- Overview
- Measurement units
 Committee structur
- Strategic plan
- Strategic plan

☑ International equivalence

 Calibration and measurement capabili (CMCs) (KCDB)
 International comparisons (KCDB)

↘ At the BIPM

- BIPM laboratory wo
- Ongoing BIPM
- comparisons
- International Defer

BIPM web-site

Ionising radiation (CCRI) https://www.bipm.org/metrology/ionizing-radiation/

Key Comparison Data-base (~1000 entries) https://kcdb.bipm.org/

Participation in Supplementary Comparisons CCRI(II)-S13

Massic activity of Cs-134 and Cs-137 in <u>wheat</u> harvested in **Fukushima**. Provided by NMI-Japan.

 γ -ray spectrometry above ground and in HADES.

External access to JRC infrastructure

You find all instructions at <u>https://ec.europa.eu/jrc/en/research-facility/open-access</u> select RADMET and you come to:... <u>https://ec.europa.eu/jrc/en/research-facility/open-access/calls/relevance/2018-1-RD-EUFRAT-RADMET</u>

Call closing October 15. Open 2 times per year.

Or contact: Mikael.hult@ec.europa.eu

Methods/instruments for primary standardisation –Above ground – RADMET Lab.

Method	Instrument
4π counting with a pressurised proportional counter	Small PPC, Large PPC
Coincidence counting with PC-2Nal, 2Nal	PPC, Nal well
4πbeta gamma coincidence counting with SPPC- Nal well	PPC, Nal-well
4π beta gamma sum counting with a PPC and a Nal well detector	Small PPC, Large PPC, Nal well
4π gamma counting with a NaI well detector	Nal well
4π counting with a CsI sandwich spectrometer	Csl
X-ray counting at defined low solid angle	X-DSA
Alpha particle counting at defined low solid angle	α-DSA
Liquid scintillation counting	2 x Quantalus, 1 Packard
Article 35/36 Experts meeting Sept. 18-19, 2018	

Three types

- high-geometry (4π) methods
- coincidence counting
- defined solid angle counting

European Commission

"the old" and the new $4\pi\beta$ - γ -coincidence counter

Examples of ABOVE GROUND Instrumentation RADMET Lab.

HADES

HADES = High Activity Disposal Experimental Site - Operated by EURIDICE and located at SCK•CEN in Mol

Background Comparison – Gamma-ray spectrometry

EUFRAT HADES providing fundamental data to project supporting sustainable development goals

EUFRAT: Studies of biota and environment in Antarctica Baseline studies, uptake in food chain, *Ocean circulation*, etc.

Polish Academy of Science, Poland

Article 35/36 Experts meeting Sept. 18-19, 2018

Established 1977 on King George Island

General view of Henryk Arctowski station

Study of impact of hydrothermal vents

https://www.youtube.com/watch?v=mOtcpa4Ego4

Image Credits: National Oceanography Centre, NOAA, WHOI, OMER

Hydrothermal fluids from vents on the Mid Atlantic Ridge & East Pacific Rise

Radionuclides have been used to determine time scales of hydrothermal processes; few studies...

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: EU Science Hub

