

The green transition in Denmark

Targets for 2030 and 2050

Rethinking the energy system to reach the Danish targets

Several analyses are in process to analyse sectors and sector coupling

Key Danish political ambitions in the offshore wind sector

- Offshore wind to play a key role in Danish decarbonisation and renewable energy targets
- EU targets for decarbonisation and renewable energy to be supported by scaled-up regional offshore wind projects
- Regulatory frameworks in favor of innovation and efficiency
- A larger share of responsibilities and costs borne by OWF developers as technology matures

Energy Hubs / Energy Islands

The new trends

- Purpose: Gain access to the vast wind power potentials in the North Sea and distribute the power to the European electricity market.
- The renewable electricity from the energy hubs will contribute to the large scale green transition in Denmark and Europe.
- Energy Hub EAST: The island of Bornholm
- Energy Hub WEST: Artificial island constructed in the North Sea approximately 80 km from the Danish shore.

First phase:

- 5 GW wind turbines ≈ 23 TWh per year.
- By comparison Denmark consumed 35 TWh in 2019.
- Ambition: Constructed by 2030.
- Estimated costs: DKK 95-100 bln. (≈ € 13 bln.)

'021 Page

Electrification

The new trends

- Electrification is a central pillar in the green transition, converting energy processes from being based on fossil combustion to be based electricity.
- When an energy process is electrified, the process will be climate neutral, as long as the electricity is produced through renewables.
- Theoretically ≈ 60 pct. of Danish emissions can be electrified.
- However, widespread electrification requires strategic investments, further technological developments, sector integration and timely implementation.
- Therefore, the Danish government will present a Strategy for electrification of Denmark later this year.

Power-to-X – a solution for the sectors where electrification is not possible

Direct applications of 1 GW offshore wind... Vs.

Heating

Light road transport

Heavy road transport

Maritime

Aviation

Industry (high temp. heat)

Heating of ~ 750,000 households with heat pumps

Supply of ~ 1,500,000 electric cars with electricity

Heating of ~ 100,000 households via methanized gas

Supply of ~ 500,000 cars with green hydrogen

Supply of ~ 5,000 trucks with RE fuel

Supply of ~ 5 of Maersk's Triple E container vessels with e-ammonia

Supply of ~ 4 times Danish domestic aviation

~ 50% of industry energy consumption for high temperature heat with methanized gas

Note: The figures are rough estimates and are subject to considerable uncertainty. The purpose here is merely to illustrate a size ratio

The Danish Power-to-X strategy

The new trends

Key questions:

- What is the market potential of hydrogen and hydrogen derivatives both in Denmark and abroad?
- Where and how big is current and future demand for these fuels?
- How quick can PtX-technologies be upscaled?
- How can we secure a balance between national reductions and export potential?
- What role will state and private actors play in the development and upscaling of PtX?

Analyses Political process **Strategy**

Key areas of focus, which the strategy is expected to address:

- Technologies' role in the achievement of 2030- and 2050-goals
 - Infrastructure development
- Potential for technology- and energyexport
- Synergies with the rest of the energy system (incl. energy islands)
 - Regulatory framework
- Financing opportunities and solutions
 - International cooperation

Denmark can supply Europe with renewable energy and e-fuels

Offshore wind

+ 40 GW offshore wind potential

Energy islands

Offshore wind and power-to-x

Danish electricity is green

- 62% renewable energy in 2018
- 100% renewable energy in 2027

Green hydrogen from Denmark will be green!

Carbon Capture and Storage (CCS)

The new trends

- The Danish Climate Agreement for Energy and Industry from 2020
- CCS strategy this summer
- Subsidy scheme for CCS-projects
 - Approximately 2 billion Euro
- Large potential for storing CO2
- Projects demonstrating CCS

Transport and storage of CO₂

Source: European Commission, DG TREN

Power-to-X can reduce CO2-emissions from transport

Estimated CO2-reductions by 2030

Challenges relative to the 2030 target

Sectors where reductions are difficult to achieve

Source: Danish Energy Agency, Danish Energy and Climate Outlook 2020: https://ens.dk/sites/ens.dk/files/Basisfremskrivning/basisfremskrivning_2020-webtilg.pdf