IRSN institut de radioprotection et de sûreté nucléaire

DÉPARTEMENT DE PRÉVENTION ET D'ÉTUDE DES ACCIDENTS

Service d'Études de Criticité

Courrier : BP 17, 92262 FONTENAY-AUX-ROSES CEDEX, France - Téléphone : (33) 01.58.35.74.21 - Télécopie : (33) 01.46.57.29.98 Siège social : 77-83, avenue du Général de Gaulle - 92140 CLAMART - Standard : (33) 01 58 35 88 88 - RCS Nanterre B 440 546 018

Demandeur	DG	TREN Mme Van	den Berghe		
Référence de la de	mande Cor	ntract N° 4.1020/I	D/01-001		
Numéro de la fiche	d'action				
Référence de la no	ote SEC	C/T/03.146			
TITRE :		Fina	l report		
Evaluatio	n of nuclear (data and limits fo 2001/200-1	r actinides in trans	port
		eliminary list of ort of radioactiv		that should be intro	
reactivity. Secondly, as quantities, a i on calculation different para	many of thos rule to excep ns for Norma meters that r fety factors t	se actinide nucli ot them from the I and Accidenta nay have an infl o include the di	ides are supposed e fissile requireme I Conditions of Tra uence on reactivit	I to be transported ents was set. This ansport and takes i any (like reflectors or een the results obt	in very small rule is based into account: moderators)
reactivity. Secondly, as quantities, a on calculatior different para and some saf	many of thos rule to excep ns for Norma meters that r fety factors t	se actinide nucli ot them from the I and Accidenta nay have an infl o include the di	ides are supposed e fissile requireme I Conditions of Tra uence on reactivit	I to be transported ents was set. This ansport and takes i y (like reflectors or	in very small rule is based into account: moderators)
reactivity. Secondly, as quantities, a i on calculatior different para and some saf participants (I	many of thos rule to excep ns for Norma meters that r fety factors t IRSN, EMS ar	se actinide nucli ot them from the I and Accidenta nay have an infl o include the di	ides are supposed e fissile requireme I Conditions of Tra uence on reactivit iscrepancies betw	I to be transported ents was set. This is ansport and takes is by (like reflectors or een the results obt	in very small rule is based into account: moderators)
reactivity. Secondly, as quantities, a on calculatior different para and some saf participants (I	many of thos rule to excep ns for Norma meters that r fety factors t	se actinide nucli ot them from the I and Accidenta may have an infl to include the di nd SERCO).	ides are supposed e fissile requireme I Conditions of Tra uence on reactivit iscrepancies betw	I to be transported ents was set. This ansport and takes i y (like reflectors or	in very small rule is based into account: • moderators)
reactivity. Secondly, as quantities, a i on calculatior different para and some saf participants (I	many of thos rule to excep ns for Norma meters that r fety factors t IRSN, EMS ar	se actinide nucli ot them from the I and Accidenta may have an infl to include the di nd SERCO).	ides are supposed e fissile requireme I Conditions of Tra uence on reactivit iscrepancies betw	to be transported ents was set. This is ansport and takes is y (like reflectors or een the results obt	in very small rule is based into account: moderators) tained by the Directeur Généra
reactivity. Secondly, as quantities, a i on calculation different para and some saf participants (I Noms	many of thos rule to excep ns for Norma meters that r fety factors t IRSN, EMS ar DATE	se actinide nucli ot them from the I and Accidenta may have an infl to include the di nd SERCO).	ides are supposed e fissile requireme I Conditions of Tra- uence on reactivit iscrepancies betw	to be transported ents was set. This is ansport and takes is cy (like reflectors or een the results obt DBJET Autorisation de diffusion	in very small rule is based into account: moderators) tained by the
reactivity. Secondly, as quantities, a i on calculation different para and some saf participants (I Noms	many of thos rule to excep ns for Norma meters that r fety factors t IRSN, EMS ar DATE DATE Réservé Auteur(s) LAVARENNE / MENNERDAHL /	se actinide nucli ot them from the I and Accidenta may have an infl to include the di nd SERCO).	ides are supposed e fissile requireme I Conditions of Tra- uence on reactivit iscrepancies betw	I to be transported ents was set. This is an	in very small rule is based into account: moderators) tained by the Directeur Général de l'IRSN

* rapport sous assurance de la qualité

REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	2 /	4(
SUI	MMARY			
1. Introduction				
2. The nuclides properties				
2.1 Theoretical densities of single nuclide	es, elements and mixtu	ures		
2.2 Actinide nuclides ways of formation a				
2.3 Radioprotection safety restrictions -				
2.4 Nuclear properties – Cross sections 2.4.1 Different types of nuclides rega				
2.4.2 Nuclear cross sections – capat				
2.4.2.1 Cross section evaluations	-			
2.4.2.2 Capability to sustain a cha				
2.5 Criticality properties				
3. Calculations in normal and				
3.1 Criticality risk in normal conditions of 3.1.1 Calculations with thermal spect				
3.1.1.1 Calculations with thermal spec				
3.1.1.2 Calculations with a steel w				
3.1.1.3 Calculations with others m	oderators			
3.1.2 Calculations with fast spectrum				
3.1.2.1 Calculations with APOLLO 3.1.2.2 Calculations with TRIPOLI				
3.1.3 Conclusions on Normal Conditi				
3.2 Criticality risk in accidental conditions				
3.3 Comparison between the normal and	the accidental conditi	ons		
4. Method for the definition o	f exception crite	ria		
4.1 Additional parameters leading to an i				
4.1.1 Different moderators and reflect				
4.1.2 Non uniform repartition of the f4.1.3 Mixture of actinide nuclides nuclides				
4.2 Safety margins determination and ne				
4.3 Exception limits criteria				
5 Conclusion				
5. Conclusion		•••••		
REFERENCES				
APPENDIX				
APPENDIX A - Capability to sustain a chain	reaction			
APPENDIX B - Values of k infinite	a ativida un calida a			
APPENDIX C - Available evaluation for the APPENDIX D - Graphs of ETA	actinide nuclides			
APPENDIX E - Thermal NUBAR for the new	vevaluations			
APPENDIX F - Recapitulative table on the t		accidental c	onditions	
APPENDIX G - Crosschecking calculations	by SERCO with MONI			
APPENDIX H - Exception criteria and limits				
APPENDIX I - Effect of a Carbon moderato APPENDIX J - Most penalizing case for arra		ka of Cm24/	1 or Pu228	
APPENDIX K - Effect of reflectors on critica		Ng 01 011244		

1

3

1. INTRODUCTION

Until the 1996 Revision of the IAEA Safety Standards series no.TS-R-1, there were five nuclides that were listed in the Regulations as capable, on their own or in mixtures, of supporting criticality events with neutrons. These nuclides were ²³³U, ²³⁵U, ²³⁸Pu, ²³⁹Pu and ²⁴¹Pu. Other nuclides were known to have similar properties but were not considered a threat since they only existed in small quantities or concentrations. Those nuclides belong to the element group *actinides*.

In 1995, the international criticality safety community did not express any worries about those new nuclides. Instead, ²³⁸Pu was removed from the list. A major reason was that ²³⁸Pu cannot sustain a chain reaction in a thermal spectrum; it can only support criticality in a fast neutron energy spectrum. The reason why ²³⁸Pu was not considered a criticality safety threat in 1995 was that it is a very strong heat source. A critical mass during transport was not considered credible.

Since 1998, there have been some speculations about future transport of significant quantities and concentrations of other actinide nuclides than the four already listed. Therefore, it raised a need, first, to define a list of actinide nuclides presenting a criticality hazard, secondly, as most of those actinide nuclides will be shipped in very small quantities, to specify exception limits from the criticality safety requirements of the regulation for such actinide nuclides. But, to set such a list and define credible exception limits, it is necessary to have <u>reasonably accurate data for all actinide nuclides</u>.

To establish exception limits for new nuclides it is also necessary to understand and validate the assumed criteria for the current exception limits.

During the revision process to establish the 1996 version of the IAEA standards, it was decided to add to the limit of 15 g of an excepted isotope per package a general limit on the total mass per consignment [7]:

$$\frac{Mass(^{235}U)}{X} + \frac{Mass(other \ excepted \ isotopes)}{Y} < 1^{1}.$$

This additional limit improves the safety of the transport for one <u>consignment</u> but it can be noted that several consignments can be shipped on the same <u>conveyance</u>.

Moreover it appears that the 15 g value has been determined with the Woodcock and Paxton method (described in reference [4]) considering a minimum volume of 10x10x10 cm³ for each package. This value per package has to be guaranteed whatever the package is (excepted, industrial, A, B, C) since para.634 [7] applies for all types of packages which contain fissile materials (for excepted packages see para.515(c)). Those dimensions are guaranteed only for non-accidental conditions.

The ICNC article in reference **[3]** showed that the "15 g" rule is not acceptable if the number of packages is unlimited. The "15 g" limit is linked to the maximal number of packages that can be shipped together. When the Woodcock and Paxton rule was set, the maximum number of packages shipped at the same time was equal to 50; a safety factor of 5 was considered and, then, the rules were set for 250 packages. Influence of the other materials than water (e.g. carbon) and damaged packages were not considered. This rule has therefore to be updated.

The DGTREN/project copes with the problems raised above. The report is divided as follows:

- the physical properties of the actinide nuclides of interest are given in paragraph 2; it concerns densities, half lives, k infinite, cross-section parameters; the values of the critical masses and other criticality properties that have been calculated are given in § 2.5. Those studies give an evaluation of the available data and the confidence one can have in the calculated critical mass,
 - ¹ the values of X and Y are roughly equal to 50% of the critical mass

REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	4	/	40
 Paragraph 3 gives the calculations achieved conditions of transport, with various quantities Paragraph 4 presents the principles of an nuclides studied, using the results of the conditions of transport and taking into accoun actinide nuclides. 	s of actinide nuclide exception rule and calculations achi	s per packag d its applica eved for no	je, tion to ormal a	the and a	actinide accident
This document is a collaboration of IRSN – EMS with the help and the information provided by SER		and DTLR a	nd has	s beei	n written
The authors of the document would like to ackr individuals around the world. First of all, Frédéric Jean who performed a grea and whose help was appreciated to answer ma DTLR (UK), Veronique Rouyer, Gilles Sert and M to cope with the problems raised and participate to Dr. Choon-Sup Gil and Dr. Do Heon Kim from K provided Dennis Mennerdhal with a sub-set of JI access to their generation of an ENDF/B-VI.8 lit BARC in Trombay, India gave valuable commer Calvin Hopper from ORNL, USA updated D. Me fissile and fissionable materials in the U.S. Dr. Hir and colleagues at the NEA Data Bank helped to released from the Data Bank in a short time. The ANS 8.15 WG for providing some data and co Jacques Anno from IRSN and member of ANS providing materials of interest for this project. Dennis Mennerdahl also thanks Eric Häggblom support of the actinide project and its continuation	at number of calcul any questions. Jim larie Thérèse Lizot to the meetings. (AERI in Korea wh ENDL-3.3 in MCNF brary in MCNP-form nts and results of re ennerdhal on a rec roshi Okuno at JAE o arrange for a revis onclusions on actin 8 8.15 has been h n, Swedish Nuclea	lations in sup Stewart, Nie from IRSN (F o, for the be format and nat. Dr. Srin recent work ent discussion RI, Japan an sed version of ides nuclides elpful in disc	pport to cholas rance nefit of also g ivasan on min on on d Dr. E of JEN	o this Barto) who f this jave I Gan or ao defini Enrico DL-3	project on from helped project, nim fast esan at ctinides. tions of o Sartori .2 to be

REFERENCE : SEC/T/03.146 INDICE	: A PAGE :	5 /	40
---	------------	-----	----

2. THE NUCLIDES PROPERTIES

The ANS 8.15 standards working group, who study the actinides, limits its selection of actinides according to radioactive half-life of more than 40 days and to the capability to support criticality alone or with non-fissionable nuclides. In addition to the ANS 8.15 actinide nuclides, other nuclides have been included in the scope of this project. The new nuclides, on their own or in combinations, may have quite different properties than the nuclides that are common today and will require open-minded evaluation².

The main parameters we have been interested in are:

- the densities of the isotopes of interest; the maximum densities for a given isotope will then be used in the calculations (§ 2.1),
- the half lives of the actinide nuclides (§ 2.2),
- the radioprotection properties of the actinide nuclides; it has been checked to determine the probability to have a steel wrapper in the package (§ 2.3),
- the cross sections evaluation; the capability of sustaining a chain reaction for different types of spectrum will be discussed then (§ 2.4),
- finally the critical masses have been calculated (§ 2.5).

2.1 THEORETICAL DENSITIES OF SINGLE NUCLIDES, ELEMENTS AND MIXTURES

The theoretical densities for individual nuclides or for elements are taken from various handbooks and other references. For actinides, the maximum theoretical densities are expected for metals. Mixtures of some metals and water are probably not normal or even realistic during transport but will be assumed possible.

When a theoretical density is given in a reference, it is assumed that it refers to a specific nuclide or to an element with a given isotope distribution. The theory commonly used is based on the assumption that the theoretical atomic number density for all isotopes of an element is a constant. Given the theoretical density for one isotope, the corresponding theoretical densities for other isotopes can be calculated easily using the atomic masses of each isotope.

In mixtures of isotopes and of elements, the assumed theoretical density of the mixture is based on the assumption that the sum over all elements and isotopes of the fractions of theoretical density for each isotope will add to the total of unity. Less conservative approaches should to be verified by experimental data.

The ANS 8-15 standards working group has extensive experience with actinide properties. The densities proposed in current work by this working group in reference **[2]** should be used. Newer information can be used whenever it is considered reliable.

The different values are given in the *Table 1*, next paragraph.

2.2 ACTINIDE NUCLIDES WAYS OF FORMATION AND RADIOACTIVE HALF-LIVES

All actinide nuclides are unstable. The natural ones that still exist on earth (²³⁸U, ²³⁵U, ...) have very long decay periods. Most of the other are artificial nuclides created by men by irradiation of others actinide nuclides in reactors or in laboratories for different reasons (energy production, properties nuclides studies, nuclear physics, ...). Some of them are created in large amounts in reactors and others in small quantities (also in reactors and in laboratories). As they are given by neutron capture

² Two fissionable nuclides, which individually cannot support criticality, may cause criticality together in some configurations. This is not expected, but a large variety of new actinides with different properties require open-minded evaluation.

REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	6	/	40	
--------------------------	------------	--------	---	---	----	--

or others nuclear reactions like (n, 2n) reaction, they disappear by radioactive decay (α , β - or β + reaction). Some of them might have a high number of neutrons and protons (Californium (Z = 98), Einsteinium (Z = 99), ...). During the decay of those actinide nuclides, some might decrease from a low-reactive isotope to a high-reactive one. This phenomenon has to be taken into account for the calculation of exception limits criteria for the transport of fissionable material. Mass exception limits have to include the isotopes that will be formed during a certain period after analyse of the package and could increase the reactivity of the package (**reference [8]**).

Table 1 lists isotopes of the various actinide nuclides with indications of radioactive half-lives. Nuclides with shorter half-lives than 40 days are excluded.

This selection is in agreement with the criteria selected by the ANS 8.15 Standards working group (N.L. Pruvost, ANS Trans. Winter 2000 and presented in reference **[2]**).

Element	Nuclide ³	Atomic	Density	Atoms/barn	T _{1/2} (y)
A a 1 ¹ a ¹ a 2	²²⁷ Ac	weight	(g/cm ³)	-cm	
Actinium ⁴	228-1	227.027750	10.043	0.02664	21.77
Thorium	²²⁸ Th	228.028731	11.524	0.03043	1.913
	²²⁹ Th	229.031754	11.575	0.03043	7340
	²³⁰ Th	230.033126	11.626	0.03043	75400
	²³² Th	232.038050	11.727	0.03043	1.4 x 10 ¹⁰
Protactinium	²³¹ Pa	231.03588	15.336	0.03997	32500
Uranium	²³² U	232.03715	18.681	0.04848	69.8
	²³³ U	233.039628	18.762	0.04848	1.59 x 10⁵
	²³⁴ U	234.040946	18.842	0.04848	2.45 x 10⁵
	²³⁵ U	235.043924	18.923	0.04848	7.04 x 10 ⁸
	²³⁶ U	236.045561	19.004	0.04848	2.34 x 10 ⁷
	²³⁸ U	238.050784	19.165	0.04848	4.46 x 10 ⁹
Neptunium	²³⁵ Np	235.04406	20.303	0.05202	1.058
	²³⁶ Np	236.04657	20.389	0.05202	155000
	²³⁷ Np	237.048167	20.476	0.05202	2.14 x 10 ⁶
Plutonium	²³⁶ Pu	236.04605	19.601	0.05001	2.87
	²³⁷ Pu	237.04840	19.685	0.05001	45.7 d
	²³⁸ Pu	238.04955	19.768	0.05001	87.74
	²³⁹ Pu	239.05216	19.851	0.05001	24110
	²⁴⁰ Pu	240.05381	19.934	0.05001	6537
	²⁴¹ Pu	241.05684	20.017	0.05001	14.4
	²⁴² Pu	242.05874	20.101	0.05001	3.76 x 10 ⁵
	²⁴⁴ Pu	244.064199	20.267	0.05001	8.2 x 10 ⁷
Americium	²⁴¹ Am	241.05682	13.662	0.03413	432.2
	^{242m} Am	242.059543	13.717	0.03413	141
	²⁴³ Am	243.061375	13.774	0.03413	7370
Curium	²⁴² Cm	242.05883	13.407	0.03335	162.8 d
	²⁴³ Cm	243.06138	13.463	0.03335	28.5
	²⁴⁴ Cm	244.06275	13.518	0.03335	18.11
	²⁴⁵ Cm	245.06548	13.574	0.03335	8500
	²⁴⁶ Cm	246.06722	13.629	0.03335	4780
	²⁴⁷ Cm	247.070347	13.685	0.03335	1.56×10^7
	²⁴⁸ Cm	248.07234	13.740	0.03335	3.4 x 10 ⁵
	²⁵⁰ Cm	250.07835	13.851	0.03335	9700

Table 1. General data for actinide isotopes

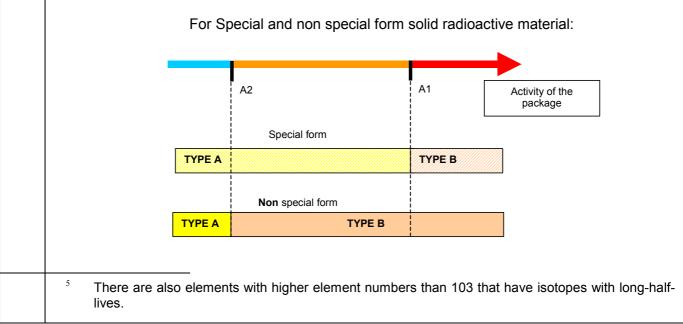
⁴ This nuclide is included for demonstration purpose only.

³ There are also elements with higher element numbers than 103 that have isotopes with long-halflives.

REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	7	1	40	
		-			-	

Element	Nuclide ⁵	Atomic weight	Density (g/cm ³)	Atoms/barn -cm	T _{1/2} (y)
Berkelium	²⁴⁷ Bk	247.070300	14.671	0.03576	1400
	²⁴⁸ Bk	248.073080*	14.731	0.03576	9
	²⁴⁹ Bk	249.07498	14.790	0.03576	320 d
Californium	²⁴⁸ Cf	248.07218	15.050	0.03653	333.5 d
	²⁴⁹ Cf	249.07485	15.110	0.03653	351
	²⁵⁰ Cf	250.07640	15.171	0.03653	13.1
	²⁵¹ Cf	251.079580	15.232	0.03653	900
	²⁵² Cf	252.08162	15.292	0.03653	2.64
	²⁵⁴ Cf	254.08732	15.412	0.03653	60.5 d
Einsteinium	²⁵² Es	252.082944	8.808	0.02104	1.29
	²⁵⁴ Es	254.08802	8.878	0.02104	276 d
Fermium	²⁵⁷ Fm	257.095099			100.5 d
	²⁶² Fm				250
Mendelevium	²⁵⁸ Md	258.09857			51.5 d
	²⁶¹ Md				215d
	²⁶⁵ Md				76d
Nobelium	²⁵⁸ No	258.09857			1.2
	²⁶⁰ No				49d

* Value coming from 1995 Mass evaluation and Tuli January 2000 Wallet Card


The values used in the calculations during the project are the ones in the 5th column (Atoms/barn-cm).

2.3 RADIOPROTECTION SAFETY RESTRICTIONS - TYPES OF PACKAGES

The radioactive properties of the actinide nuclides selected in **Table 2** (below – values derived from reference **[6]**) gives the type of the package (excepted packages, type A or B packages) depending on the quantity of actinide nuclide per package.

Actually the activity of the package, compared to the limits of activities A_1 and A_2 (reference [7] para 201.) and the specific activity (reference [9]), gives, for a special form or non-special form material, the type of the package.

The type of the package has some consequences for our study, as **Type B** packages are very likely to have a steel wrapper around the fissionable material. Further calculations tend to find out which cases (with and without steel) are the most reactive (§ 3).

REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	8	/	40	
--------------------------	------------	--------	---	---	----	--

-					
				Mass limitation for	Mass limitation for non-
	A ₁ limit	A ₂ limit	Specific activity	special form radioactive	special form radioactive
				material (g)	material (g)
	Bq	Bq	Bq/g	Type A package limit	Type A package limit
U 235	unlimited	unlimited	8.014E+04	infinite	infinite
U 233	4.00E+13	6.00E+09	3.589E+08	111452	16.72
Pu 239	1.00E+13	1.00E+09	2.305E+09	4338	0.434
Pu 241	4.00E+13	6.00E+10	3.819E+12	10.5	0.0157
Am 242m	1.00E+13	1.00E+09	3.603E+11	27.8	0.0028
Np 237	2.00E+13	2.00E+09	2.613E+07	765404	76.54
Cm 244	2.00E+13	2.00E+09	3.000E+12	6.7	0.0007
Pu 238	1.00E+13	1.00E+09	6.347E+11	15.8	0.0016

Table 2. Classification of the different types of packages

For special form radioactive materials, we can see that transport of type A fissile excepted packages are possible (the mass limits per package due to radioprotection are greater than the mass limits for fissile excepted packages that are in the regulation (for ²³³U, ²³⁵U and ²³⁹Pu)): there is no reason to have a type B package when those nuclides are transported as fissile excepted materials (for Pu239, it can be transported in a type B package, if it is a non special form radioactive material). However, the effect of the presence of a steel wrapper needs to be checked for other nuclides (e.g. for ²⁴¹Pu).

2.4 NUCLEAR PROPERTIES – CROSS SECTIONS

For criticality safety, it is important to understand the nuclear properties of various nuclides that may be involved in the operation being studied. Some of those properties are often specified by neutron cross sections (σ). A neutron cross section may be seen as the probability for interaction between a nucleus and a neutron. The neutron energy together with the material structure and temperature are important. Properties specified by cross sections involve probability of nuclear absorption (fission, capture, (n, 2n) reaction), scattering (elastic, inelastic), etc. Other nuclear properties are number of neutrons per fission (v), fission neutron energy spectrum, energy of scattered neutrons and probabilities for radioactive decay through spontaneous fission as well as through alpha, beta and gamma radiation.

2.4.1 Different types of nuclides regarding fissions

The nuclides can be divided into 3 groups:

1/ Nuclides that can be made to fission with neutrons. All actinide nuclides are <u>fissionable</u>. Many other nuclides are also fissionable. The fission cross-sections for ²⁰⁸Pb and other non-actinide nuclides are discussed in reference [5] (appendix A ref.5.1). In transport and most operations where criticality safety is a potential concern, the fissionability selection should be restricted to neutron energies lower than any significant source in the system studied. The maximum significant neutron energy from fission of any fissionable nuclide could be used as a limit. This limit is probably lower than 20 MeV. In criticality safety, the ²⁰⁸Pb fission cross section below 20 MeV is not significant. ²⁰⁸Pb can be excepted as a fissionable material in criticality safety applications. In other applications, where much higher neutron energies are expected, ²⁰⁸Pb could be significant as a fissionable nuclide.

1	REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	9	1	40
2/	Nuclides that support fission with slow r definition is related to the capability of the neutrons. Another fissile definition is relate neutron energy fission cross-section. The p criticality is made. Most actinide nuclides fissile. ²²⁹ Th appears to be an exception. C neutrons appear to be fissile, examples are the same thermal energy "focus" as the nucl	a nuclide to suppor d to the product of preferred definition with odd numbers Only a few actinide ²³² U, ²³⁶ Pu and ²⁵²	$ \begin{array}{c} \mbox{t} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	with the ere σ_f^t is en direct ns in the vith even are fissile	ermal s the t refe eir nu n nur	or slow therma rence to uclei are mbers of
3/	There is no established term for nuclides that fast neutrons. The term fissible will be use by definition the fissile nuclides from those also be and usually is fissible.	ed in this report. S	ome specia	alists wa	nt to	exclude
fissil abso	difference may not be significant between us ble and using the ratios of fission cross so prption cross sections ($\sigma_f * v / \sigma_a$). In the latter ect neutron spectrum.	ections multiplied	by fission	neutron	s div	ided by
	absorption probability of a nuclide is obvi uced neutron leakage (reflection) and to slowe		•		•	
may syst	ionable nuclides that are not fissile or fissible be more efficient than typical reflector materia em. Also between fissile or fissible materia ease the probability of criticality.	als when surround	ing a fissile	or fissib	ole ma	aterial of
incre	ioactive decay may change the properties of eases the potential for criticality. This includes e was identified during the project but has not	s nuclides with sho	rter half-live			•
2.4	I.2 <u>Nuclear cross sections – capability to</u>	sustain a chain re	eaction			
libra estir each time know base sect	afety applications, it is necessary to rely on ries. In this project, it seems better to take ac nate data. Correction, safety or uncertainty fa n application type. The IAEA transport regula between determination of data and application wledge and experience. The currently availant ed on earlier releases of the major basic cro- ion libraries are ENDF/B, JEF and JENDL ries are based on ENDF/B-IV, ENDF/B-V, EN	dvantage of the lat actors can then be ations are seen as on can lead to modi able applied cross ss section data lib . Currently popula	est informa adjusted to s such an a ified factors s section li raries. Exa ar and wide	tion to e o fit each application o. The re braries mples o ely avail	establ n nuc on ty ason are r f bas	ish best lide and pe. The is more normally ic cross
Info	rmation on evaluations of actinide nuclide cro	oss sections with p	oreliminarv	applied	cross	section

Information on evaluations of actinide nuclide cross sections with preliminary applied cross section libraries based on ENDF/B-VI.8, JENDL-3.3 and JEF-3 are of interest to this project. Comparisons between libraries and with experiments as well as likely causes of differences are also of interest.

2.4.2.1 CROSS SECTION EVALUATIONS

Preparation to evaluate minimum critical mass of individual actinide nuclides has highlighted some significant changes in published masses resulting from the use of the latest evaluated data. Initial proposals for this project suggested using existing product libraries available with APOLLO, SCALE, MONK, MCNP and TRIPOLI. This would yield a spread in the mass due to different methods and current processed nuclear data from JENDL3.2, JEF2.2 and ENDF/B-Vir4. The statuses of the relevant data in the three latest evaluations relative to those used in the product libraries are listed below.

REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	10	/	40	
--------------------------	------------	--------	----	---	----	--

The JEFF Project

In preparation for the release of JEFF3.0, review of JEF2.2 benchmarking program was firstly considered. However an overall review of the status of the data in public domain libraries was also undertaken by John Rowlands and published internally to the JEFF project as JEF/DOC-657. His document attempts to select the best evaluation for inclusion in JEFF3.0. Hence JEFF3.0 should contain the best data prior to the release of revision 8 of ENDF/B-VI and JENDL3.3.

Modern product libraries based on JEF2.2 have been validated for use in criticality studies by UK industry using the MONK code. Similar validation has been seen for SCALE and APOLLO within the JEFF project and at conferences. This validation covers the JEF_PROJECT "major actinides⁶" (²³³U, ²³⁵U, ²³⁶U, ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴¹Am, ²⁴³Am plus ²³²Th and ²³⁸U). This validation does not cover the minor actinides.

Unfortunately for this project scattering and resonance shielding are important for the JEF_PROJECT "minor actinides". However the quality of the data and hence uncertainty in results must be influenced by the category division. Further it is probable that existing product libraries contain adequate data for the "major actinides". Indeed these are currently used for criticality assessment.

ENDF/B-VI release 8

Amongst the actinide nuclides of interest to this project, ENDF/B-VIr8 contains new evaluations for ²³²U and ²³⁶Np. These are based on JENDL evaluations with important parts of ENDF/BV retained.

During the project (November 2002) a complete ENDF/B-VI release 8 library for MCNP was obtained from KAERI, Korea for evaluation.

<u>JENDL3.3</u>

This library contains many new evaluations of interest. Without further review it is difficult to judge the impact on this project. However JENDL publish values of thermal and fission spectrum average cross-sections, together with resonance integrals. Once the minimum critical mass has been found to apply to a thermal solution or to a fast metallic system, it should be possible to review the pertinent data and consider the impact.

During the project (November 2002) a sub-set of the JENDL 3.3 library for MCNP was obtained from KAERI, Korea for evaluation. The sub-set included the fissionable nuclides that were significantly changed compared with the previous version, JENDL 3.2 as well as new nuclides. KAERI prepared this sub-set for the benefit of this project. JAERI has published several reports and journal articles discussing JENDL 3.3 and comparing it with other cross section libraries.

New Evaluations for Actinide nuclides

It is important to note that all three of the most modern libraries are yet to be validated for criticality. Certainly the JEFF project is asking project members and keen industrial users to test this first version noting its 18 Month expected lifetime before further development. Hence it would not yet be appropriate to use the data for "major actinides" in this project. It would of course be interesting to rerun criticality studies using the new data as part of library validation

The same is not true for the "minor actinides" where considerable development seems to have taken place particularly in JENDL.

The table in **appendix C** notes the source of the evaluation included in the three latest libraries (plus the library JEF/DOC-657). It also gives the conclusions from the JEFF review.

For those actinides, it has been considered necessary to have good scattering cross-sections (in addition to the reaction cross-sections (capture, fission, (n,2n), (n,3n)), which are sufficient to determine the production and transmutation of the other actinides). Note that those "major actinides" don't correspond to the major actinides in criticality, that is U and Pu.

REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	11	/	40	
--------------------------	------------	--------	----	---	----	--

2.4.2.2 CAPABILITY TO SUSTAIN A CHAIN REACTION

During the second meeting of the working group it appeared necessary to define 2 types of parameters to determine if an isotope should be listed in the IAEA rules:

- the η^7 parameter as a function of energy; it gives the capability of a given isotope to increase the number of neutron in a system for any incident neutron energy (production on absorption),
- the k infinite of the system made of one single isotope.

Parameter ETA

The **Table 3**, which gives the capability of sustaining a chain reaction regarding the parameter η , is given with some comments in **appendix A**. When η is above 1 for a certain energy range, then there is a possibility of criticality. This table also points out the impact of inelastic scattering (e.g. for ²²⁷Ac, ²³¹Pa, ...) to determine if an isotope can sustain a chain reaction (η can be greater than 1.0 above the fission threshold but, if inelastic scattering is more likely than fission, it will scatter the neutrons below the fission threshold).

Parameter k infinite

In order to determine the capability of sustaining a chain reaction, it is also of interest to calculate k_{inf} , the infinite neutron multiplication factor, for each actinide nuclide. Pure metals are calculated for all actinide nuclides ([5] appendix A). For actinide nuclides that are potentially fissile with slow neutrons, mixtures with water are also calculated.

The evaluated data have to be processed before use in the computer codes. The processing includes condensation over energy into various numbers of energy groups for use with codes such as SCALE and APOLLO. Even continuous energy Monte-Carlo codes (MCNP, MONK, TRIPOLI) reform some of the energy distributions of neutrons resulting from scattering and fission. They are binned to help selection of energies using random numbers.

The processed cross section libraries are expected to determine the results. The computer codes are not expected to make any significant difference for these simple systems. SCALE 4.4, MCNP4C2 and MONK were used to calculate k_{inf} for all available nuclides. Actually, some calculations were performed with the same libraries but with different codes (see **appendix B**). It shows some differences in the k infinite when using the same library but a different code. This might be due to the fact that the fission spectrum varies with the incident neutron energy and between isotopes. Most broad group codes use a fission spectrum for each isotope but do not include variation with incident neutron energies. This led here to a 10% difference in k infinite between MCNP and MONK. When MONK_BINGO was used (it models the incident energy dependence as does MCNP), then the 10% difference disappeared. Consequently, it is important to note that this phenomenon can have large effects, for metals, and should therefore be modeled.

SCALE 4.4 was used with three different cross section libraries. The 238-group and the 44-group libraries have been processed from ENDF/B-V (using different neutron energy spectra) basic cross sections while the 27-group library has been processed from ENDF/B-IV basic cross sections. For some nuclides, more recent data have been included.

MCNP4C2 was used with nine different cross section libraries. Four of them are included in the LANL data set for MCNP4C2; the basic ENDF/B-VI.0 (.60c) library, the delayed neutron ENDF/B-VI.1 (.61c) library, the tabular unresolved resonance ENDF/B-VI.1 (.49c) library. In addition to these, an ENDF/B-VI.5 library (KAERI, Korea), a JEF 2.2 library (ENEA, Italy), a JENDL –3.2 library (JAERI, Japan), an ENDF/B-VI.8 library (KAERI, Korea) and a JENDL 3.3 library sub-set (KAERI, Korea) were used in the project.

REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	12	/	40
The results show that the 238-group ENDF/B-V results with ENDF/B-VI cross-sections for MCNI ²⁴¹ Am, ²⁴³ Am (large differences also between diffe	P4C2. Large devi	ations are f	ound fo	or ²³⁶ l	
At the beginning of the project, the Korean ENDF ENDF/B-VI libraries. It differs from other ENDF processed evaluation of each actinide nuclide go cross sections (ENDF/B, JEF, JENDL, etc.). For e was taken from a very different source, JENDL-3 sections. The three different LANL ENDFB/VI neutron library causes a slight softening of the f significant effect when this can be expected, for n	/B-VI libraries prin es back to specific example, in this Ko 3.2.There was als libraries appear t ission spectrum.	marily for ²³ c releases c orean MCNI o a problen o be very This appear	³⁶ Pu an of the ba P forma n with th similar.	d ²⁴³ A asic e t libra ne ²⁴⁹ The	Am. T valuat iry, ²²⁷ Cf cro delay
The JEF 2.2 library differs from other libraries for	all the Pu and for t	he lower Cr	n isotop	es.	
Other parameters - NUBAR ⁸					
The tables of critical values observed in the literation for ²³² U and ²³⁶ Np. These are correlated to a characteristic of the files in the three latest evaluation ENDF/B-V NUBAR also adopted by JEFF, whereas	nge in thermal NU ions indicates EN	BAR when	JENDL: etained	3.2 is the	applie previo
 for ²³²U the ENDF/B-Vir8 file retains a measure Al. compared by Howerton with a value systematics from Bois and Frehaut; 					
 for ²³⁶Np the ENDF/B-Vir8 file retains a meas which is again based on work by Jaffey R. J Seegmille and systemetics from R.J. Howertor 	ENDL has adopte				
As a result of this large variation it was felt relevant nuclides of interest in appendix E . Some large of some smaller differences are also obtained for ²⁴¹	evant to list therma discrepancies can Am, ²⁴³ Am, ²⁴² Cm,	al NUBAR v be observe ²⁴⁴ Cm, ²⁴⁷ C	/alues f ed for ²³ m, ²⁴⁹ C	or all ² U an f and	actini nd ²³⁶ N ²⁵² Cf.
Conclusion					
The following table summarizes the results obtain reaction with Fast or Slow incident neutrons.	ned and lists the i	sotopes tha	t can sı	ustain	a cha

⁸ NUBAR is the mean production of neutrons per fission.

Actinide nuclide	Slow (S) / Fast (F)	K _∞ >1
²²⁸ Th	F?	
²²⁹ Th	F but see comment	Υ?
²³¹ Pa	F ?	No ?
²³² U	S + F*	Y
²³³ U	S + F	Y
²³⁴ U	F	Y
²³⁵ U	S + F	Y
²³⁶ U	F?	No
²³⁵ Np	F	Y
²³⁶ Nn	S + F	Y
²³⁷ Np	F	Y
²³⁰ Pu	S + F *	Y
²³⁷ Pu	S + F	Y
²³⁸ Pu	S** ? + F	Y
²³⁹ Pu	S + F	Y
²⁴⁰ Pu	F	Y
²⁴¹ Pu	S + F	Y
²⁴² Pu	F	Y
²⁴⁴ Pu	F	Y
²⁴¹ Am	F	Y
²⁴² ¹¹¹ Am	S + F	Y
²⁴³ Am	F	Y
²⁴² Cm	S ?*** + F	Y
²⁴³ Cm	S + F	Y
²⁴⁴ Cm	F	Y
²⁴⁵ Cm	S + F	Y
²⁴⁶ Cm	S ?*** + F	Y
²⁴⁷ Cm	S + F	Y
²⁴⁸ Cm	F	Y
²⁵⁰ Cm	F	
²⁴⁷ Bk	S + F	
²⁴⁸ Bk	No evaluated data available	
²⁴⁹ Bk	F	Y
²⁴⁸ Cf	No evaluated data available	
²⁴⁹ Cf	S + F	Y
²⁵⁰ Cf	F	Y
²⁵¹ Cf	S + F	Y
²⁵² Cf	S + F	Y
²⁵⁴ Cf	S? + F	
²⁵² Es	No evaluated data available	
²⁵⁴ Es	S + F	
²⁵⁷ Fm	S + F	
²⁵⁸ Md	No evaluated data available	

* For those actinide nuclides, the critical mass of metal is smaller than the critical mass obtained for solution (see appendix D for comments), except for Pu236 for which last evaluations seems to give a higher critical mass for metal.

** For ²³⁸Pu, η is greater than one only for Fast neutrons in ENDFB/VI. In JEF2.2 and JENDL3.3 the η can be greater than one for Slow and Fast neutrons (see **appendix D**)

*** See comments in appendix D

For the JEFF_PROJECT "major actinides", it is appropriate to use current product libraries for critical mass studies. For others actinide nuclides the three latest libraries would probably offer better data; however the data are not likely to be as accurate as those for "major actinides".

REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	14	/	40
Care needs to be taken for those nuclides whose hard spectrum. Lack of high quality inelastic scatt that a critical mass cannot be obtained for ²³⁸ U du	tering data could h	ave a consid		2	
To derive the critical masses, we considered all versions of the evaluated data libraries JENDL-3 that a minor change in the cross section data will Very conservative limits may cause unnecess unacceptable safety margins. Some balance is re and quality of data.	.3, ENDF/B-VI.8. 1 not require or moti ary problems whi	he intentior vate a chan le best est	n is to so ge of th imates	elect e regi may	limits so ulations lead to
More experimental data is required to confirm sor	ne selections.				
2.5 CRITICALITY PROPERTIES					
Given adequate cross sections, it is easy to en- isotope. The properties selected here are k_{inf} , the effective neutron multiplication factor for spheres the reflectors, we decided to first focus on the bar steel. Some additional calculations have been per- water, ²³¹ Pa,) and are presented in reference	ne infinite neutron s of metals and of re systems and the rformed by EMS w	multiplication mixtures with the systems re-	on factor th water eflected	r and r. Cor by wa	k _{eff} , the ncerning ater and
Table 4 includes the best estimates of each p energy spectrum is included and it is supposed contains others results that are of interest, include or geometries (e.g. spherical but different radius t	I to be either S(lo ding those for othe	w) or F(ast) er reflector r	. Refere	ence	[5] also
The values of the critical masses in white have CSAS1X and the ENDF/B-V 238-groups library.	e been calculated	with SCAL	E 4.4 w	rith se	equence
The values in yellow have been calculated with N ²³⁵ Np and LANL ENDF/B-VI library for ²³⁷ Np, ²³⁷ P	//CNP4C2: ENDL-9 u, ²⁴¹ Am, ²⁴³ Am, ²⁴⁹	92 library wa 'Bk [1] .	as used	for ²³	⁶ Np and
EMS has obtained several cross section librarie libraries reported before: JENDL-3.2 from JAE ENDF/B-VI.8, also from KAERI have been obta actinide nuclides that were significantly changed on EMS request for the purpose of this project. A also made available by KAERI to EMS for this pu- libraries were also obtained, in particular for thos before (²²⁹ Th, ²⁵⁰ Cm, ²⁴⁷ Bk, ²⁵⁴ Cf and ²⁵⁴ Es).	RI (Japan), JEND ained. The JENDL from JENDL-3.2) preliminary versio urpose. Many valu	L-3.3 from 3.3 library was genera n of the EN es of critica	KAERI (a sub- ted quic DF/B-VI I masse	(Kor set in kly by .8 libr s usir	ea) and ncluding / KAER rary was ng these
A table with updated k infinite values for avail- values from the new JENDL-3.2, JENDL-3.3 an reported in appendix B.					
The values in green have been calculated with J and 172-groups, except for Cm246 and Pu236 used. The values in orange have been calculate Carlo (continuous) code. Results are mainly base	(thermal spectrum ed with JEF2.2 ev) where 20 aluation an	energy	grou	ps were
The values obtained with Monte Carlo codes (MC deviation (σ) on the k effective lower or equal to 0		were detern	nined wi	th a s	tandaro
The data given in this table still need to be preliminary results that have not been fully dis		red and ev	valuateo	d. Th	ese are

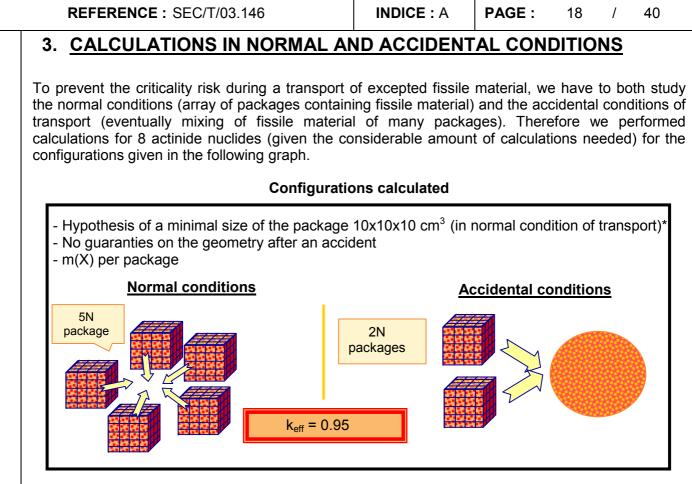
REFERENCE : S	SEC/T/03.14	6		INDIC	E:A	PAGE	: 15	5 /	40
Table 4. Va	alues of k ir	nfinite a	nd critie	cal mass	ses calcu	lated fo	or the pr	oject	
	Element	Nuclide	Density (g/cm ³)	Spectrum (S, M, F)	Library	k _{inf}		ass (kg) wit reflectors H ₂ O	h differen Steel
							Bare	(20cm)	(30cm
	Thorium	²²⁹ Th	11.575	F	JENDL 3.2	NA	2839	2262	994
EMS	Protactinium	²³¹ Pa	15.336	F	ENDF/B V 238	0.95	-	-	-
ENDF/B-V 238gr	Uranium	²³² U	18.681 18.678	F F	ENDF/B V 238	3.08	3.57 3.697	2.13 2.178	1.85 1.96
			18.678	F F	JEF 2.2 JEF 2.2		3.65	2.178	1.90
5140			0.467*	, S	ENDF/B V 238		9.05	5	3.05
EMS ENDL92 or		²³³ U	18.762	F	ENDF/B V 238	2.56	15.8	7.32	6.11
ENDF/B-VI			18.758	F	JEF 2.2		16.34	7.464	6.39
			18.758	F	JEF 2.2		17.69	4.563	
EMS			0.056*	S	ENDF/B V 238		1.08	0.568	0.42
New evaluations			0.059 0.059	S S	JEF 2.2 JEF 2.2			0.5594 0.5415	
		²³⁴ U	18.842	F	ENDF/B V 238	1.52	145	134	83
		0	18.839	F	JEF 2.2	1.02	148.52	137.353	85.3
APOLLO2 172gr			18.839	F	JEF 2.2		145.987	135.544	
IN OLLOZ IZYI		²³⁵ U	18.923	F	ENDF/B V 238	2.28	46.7	22	16.8
			18.92	F	JEF 2.2		48.23	22.09	17.15
			18.92	F	JEF 2.2	ļ	47.31		_
* TRIPOLI 4.1 JEF2.2			0.057*	S S	ENDF/B V 238 JEF 2.2	 	1.42	0.784 0.7846	0.58
			0.056 0.056	S S	JEF 2.2 JEF 2.2	ł – – –		0.7846	
		²³⁶ U	19.004	F	ENDF/B V 238	0.74	-	-	-
		²³⁸ U	19.165	F	ENDF/B V 238	0.34	-	-	-
	Neptunium	²³⁵ Np	20.303	F	ENDL 92	1.75	66.2	60	38.8
			20.303	F	JENDL 3.3	1.75	12	9.48	6.18
		²³⁶ Np	20.389	F	ENDL 92	2.89	6.79	3.21	3.3
			0.012*	S	ENDL 92		0.147	0.072	0.06
		²³⁷ Np	20.476	F	ENDF/B VI.2 DN	1.7	63.6	57.5	38.0
			20.45	F	JEF 2.2		81.935	75.44	49.96
	Plutonium	²³⁶ Pu	20.45 19.601	F F	JEF 2.2 ENDF/B V 238	2.87	80.62 8.04	4.99	3.74
	Flutonium	Pu	19.001	F	ENDF/B V 238	2.07	6.56	3.31	3.1
			19.61	F	JEF 2.2		8.418	5.04	4.0
			19.61	F	JEF 2.2		8.222	5.02	
			0.235*	S	ENDF/B V 238		16.65	10.8	6.9
			0.050	S	ENDF/B VI.8			10.050	0.9
			0.258 0.258	S S	JEF 2.2 JEF 2.2			10.356 3.7	6.2 2.3
		²³⁷ Pu	19.685	F	ENDF/B VI.8	3.05	3.1	3.7 1.71	1.6
		гu	0.014*	S	ENDF/B VI.8	0.00	0.257	0.136	0.1
		²³⁸ Pu	19.768	F	ENDF/B V 238	2.76	9.49	7.35	4.7
			19.777	F	JEF 2.2		9.157	7.383	4.77
			19.777	F	JEF 2.2		8.946	7.285	
		²³⁹ Pu	19.851	F	ENDF/B V 238	2.99	9.99	5.45	4.4
			19.86	F	JEF 2.2		10.331	6.002	4.78
			19.86 0.030*	F S	JEF 2.2 ENDF/B V 238	<u> </u>	10.09 0.885	0.494	0.35
			0.030*	S	JEF 2.2		0.000	0.494	0.35
			0.033	S	JEF 2.2			0.505	
		²⁴⁰ Pu	19.934	F	ENDF/B V 238	2.27	35.7	32.1	19.8
				F	JENDL 3.3				18.3
			19.943	F	JEF 2.2		39.033	34.951	22.5
		2/1-	19.943	F	JEF 2.2		37.547	33.605	
		²⁴¹ Pu	20.017	F	ENDF/B V 238	2.9	12.27	5.87	5.0
			20.027 20.027	F	JEF 2.2 JEF 2.2	<u> </u>	13.042 12.774	6.683	5.48
			0.034*	S F	ENDF/B V 238		0.511	0.246	0.20
			0.0264	S	JEF 2.2			0.269	
			0.027	S	JEF 2.2			0.272	
		²⁴² Pu	20.101	F	ENDF/B V 238	1.87	85.6	78.2	48.1
	1				JENDL 3.3				36.2

REFERENCE : SI	_0/1/03.140	J		INDIC		PAGE		6 /
EMS ENDF/B-V 238gr	Element	Nuclide	Density	Spectrum	Library	k _{inf}	Critical m	ass (kg) wi reflectors
	Liement	Nuclide	(g/cm ³)	(S, M, F)	LIDIALY	Ninf	Bare	H ₂ O (20cm)
EMS	Americium	²⁴¹ Am	13.66	F	ENDF/B VI.2 DN	2	57.6	52.5
ENDL92 or		7	13.67	F	JEF 2.2		75.614	67.768
ENDF/B-VI			13.67	F	JEF 2.2		72.695	65.776
5140		^{242m} Am	13.717	F	ENDF/B V 238	3.55	8.83	3.21
EMS New evaluations			13.727	F	JEF 2.2		14.501	6.437
			13.727	F	JEF 2.2		14.577	
			0.0034* 0.0035	S S	ENDF/B V 238 JEF 2.2		0.042	0.0203
- IRSN		²⁴³ Am	13.774	F	ENDF/B VI.2 DN	1.69	209	195
APOLLO2 172gr		AIII	13.774	F	ENDF/B VI.8	1.05	203	190
0			13.784	F	JEF 2.2		209.639	192.839
			13.784	F	JEF 2.2		203.924	189.342
IRSN	Curium	²⁴² Cm	13.407	F	ENDF/B V 238	1.5	371	260
TRIPOLI 4.1 JEF2.2			13.407	F	JENDL 3.3			
			13.399	F	JEF 2.2		25.771	17.603
			13.399	F	JEF 2.2		24.823	16.994
		²⁴³ Cm	13.463	F	ENDF/B V 238	3.58	8.35	2.82
			13.455	F	JEF 2.2		7.515	2.897
			13.455	F	JEF 2.2		7.415	
			0.036*	S	ENDF/B V 238		0.28	0.127
			0.0582	S	JEF 2.2			0.2689
		244	0.0582	S	JEF 2.2	0.04	00.0	0.2687
		²⁴⁴ Cm	13.518 13.51	F F	ENDF/B V 238 JEF 2.2	2.64	26.6 33.051	22.1 27.072
			13.51	F	JEF 2.2 JEF 2.2		33.051	21.012
		²⁴⁵ Cm	13.574	, F	ENDF/B V 238	3.69	9.11	3.08
		Cill	13.566	F	JEF 2.2	0.09	6.846	2.639
			13.566	F	JEF 2.2		6.739	2.000
			0.012*	S	ENDF/B V 238		0.116	0.054
			0.0115	S	JEF 2.2			0.0473
			0.0115	S	JEF 2.2			0.0473
		²⁴⁶ Cm	13.629	F	ENDF/B V 238	2.4	38.9	33.6
			13.621	F	JEF 2.2			
		²⁴⁷ Cm	13.685	F	ENDF/B V 238	3.79	6.94	3.52
			13.677	F	JEF 2.2		7.117	3.463
			13.677	F	JEF 2.2		6.982	0.40
			0.246*	S S	ENDF/B V 238 JENDL 3.3		4.06	2.18
			0.2442	S	JEF 2.2			2.195
			0.2452	S	JEF 2.2			2.207
		²⁴⁸ Cm	13.74	F	ENDF/B V 238	2.56	40.4	34.7
		²⁵⁰ Cm	13.851	F	JENDL 3.3	NA	23.5	21.4
	Berkelium	²⁴⁷ Bk	14.671	F	JENDL 3.3	NA	75.7	41.2
				S	JENDL 3.3		124	90
		²⁴⁸ Bk	14.731	F		NA		
		²⁴⁹ Bk	14.79	F	ENDF/B VI.5	1.54	192	179
	Californium	²⁴⁸ Cf	15.05	F		NA		
		²⁴⁹ Cf	15.11	F	ENDF/B V 238	4.04	5.91	2.28
			0.015*	S	ENDF/B V 238		0.129	0.06
		²⁵⁰ Cf	15.171	F	ENDF/B V 238	3.67	6.55	5.61
		²⁵¹ Cf	15.232	F	ENDF/B V 238	4.32	5.46	2.45
			0.040*	S	ENDF/B V 238		0.048	0.025
		²⁵² Cf	15.292	F	ENDF/B V 238	3.63	5.87	2.91
				S	ENDF/B V 239		7.93	3.86
		²⁵⁴ Cf	15.412	F	JENDL 3.2	NA	<mark>4.27</mark>	2.86
	Einsteinium	²⁵² Es	8.808	F		NA	?	?
		²⁵⁴ Es	8.878	F	JENDL 3.2	NA	9.89	2.26
		257		S	JENDL 3.2		0.077	0.033
	Fermium	²⁵⁷ Fm ^{258a} Md		F		NA	?	?
	Mendelevium	7682		F		NA	?	?

The optimum densities for bare, slow systems are different than for reflected systems, the densities here are given for reflected systems. Reference **[1]** contains additional results.

REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	17	/	40
It appears that the values of critical masses are the multigroups code with JEF2.2, except for Pu236.	ne very similar whe	n we use a	continu	ous c	ode or a
The same values are obtained with ENDF/B and ²⁴⁰ Pu. The values differ:	JEF2.2 for: ²³² U,	²³³ U, ²³⁴ U, ²	³⁵ U, ²³⁸	Pu, ²³	³⁹ Pu and

- of less than a factor 2 for ²³⁷Np, ²⁴¹Pu, ²⁴²Pu, ²⁴¹Am, ²⁴²Am, ²⁴³Am, ²⁴³Cm, ²⁴⁴Cm, ²⁴⁵Cm, ²⁴⁷Cm;
- of a factor 2 to 7 for 235 Np, 236 Pu;
- of a factor of 30 for ²⁴²Cm.


The differences of NUBAR can not explain alone those discrepancies.

Some very large differences on the masses have been obtained for ²⁴²Cm (factor 30). This should be explained by the data coming from the ENDFB/VI evaluation, which have to be revised. We can still insist on the importance on the safety factors that will be used for the definition of the exception limit depending on the confidence we have in the data. The calculations achieved with JENDL3.3 give more consistent results.

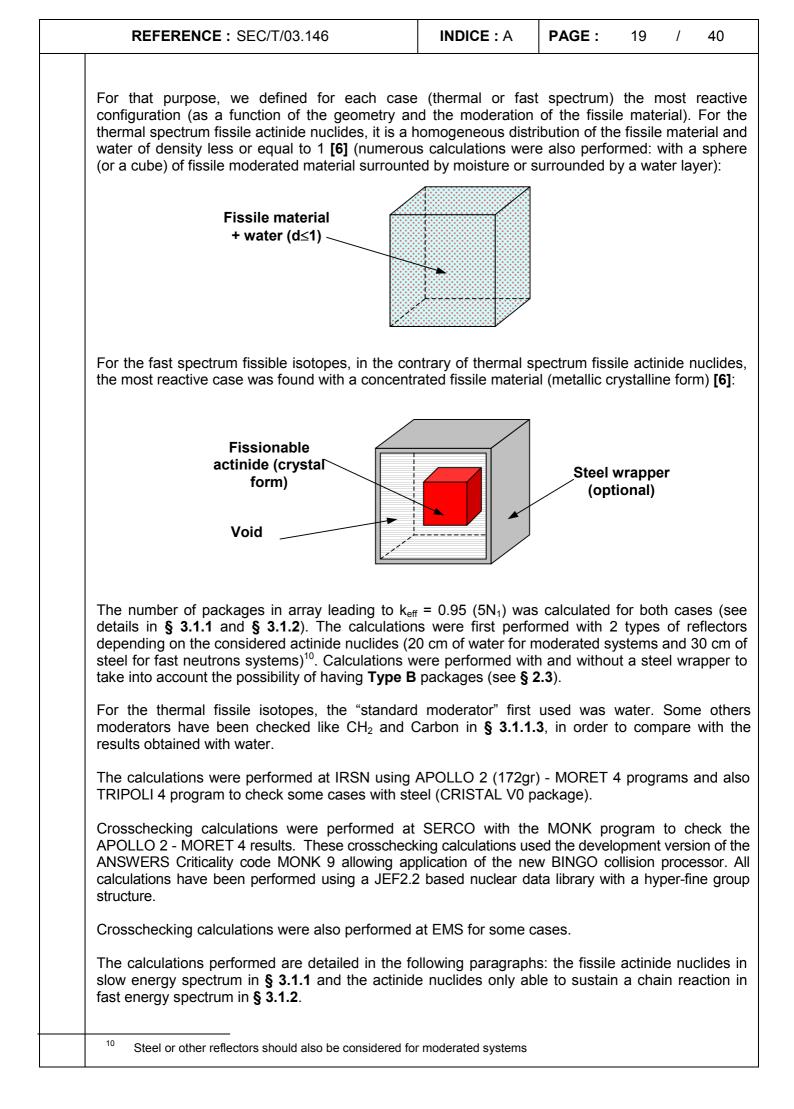
For ²³²U, the effect of the greater value of the ETA parameter with Fast neutrons explains the lower critical masses obtained for metal system than for mixture with water (see **appendix D**).

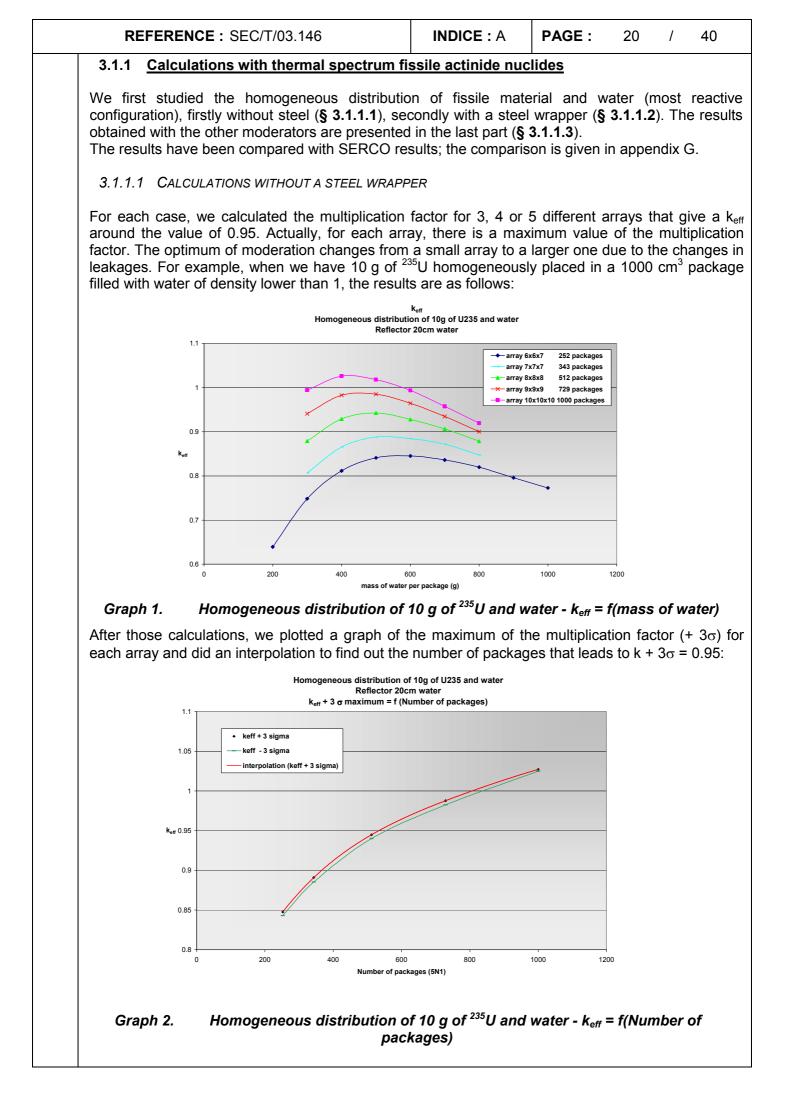
For ²³⁶Pu, this effect is not observed any more with the new evaluations with ENDF/B VI-8 and JEF2.2 with point-wise energy spectrum. The calculations with APOLLO2 (172 groups) gives the same results as ENDF/B VI (238 gr.), where the critical mass in fast spectrum was calculated as lower than the critical mass in thermal spectrum.

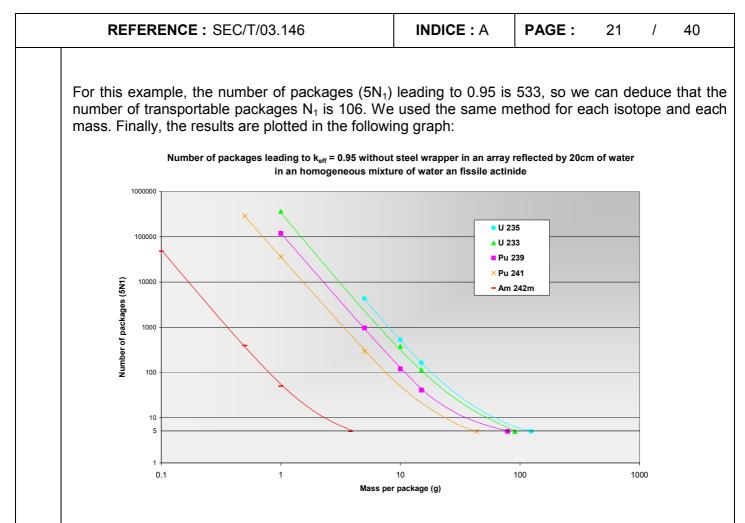
Some work is still on going to try to compare and analyze those results. The last results given by EMS (Blue/Purple) have not been analysed.

The 1996 edition of the IAEA regulations changed the condition of each package in a 5N array from routine to normal conditions of transport. The 10 cm minimum dimension is obvious for the routine condition of transport but not for the normal condition of transport (normal conditions are related to the configuration after the testing). We have chosen to keep the 10 cm minimum dimension for the normal condition and also to assume a cube.

Calculations have been performed with: ²³⁵U, ²³³U, ²³⁹Pu, ²⁴¹Pu and ^{242m}Am in thermal energy spectrum and ²³⁷Np, ²⁴⁴Cm and ²³⁸Pu in fast energy spectrum. We chose the actinide nuclides already present in the regulation (²³⁵U, ²³³U, ²³⁹Pu, ²⁴¹Pu and ²³⁸Pu, even if it was removed) and the ones where large discrepancies with the different calculations between CRISTAL (IRSN) and SCALE or MCNP (EMS) appeared (²³⁷Np, ²⁴⁴Cm and ^{242m}Am) (see **Table 4**).


This study will allow to check the most penalizing cases and help to set a rule and determine exception limits for the transport of excepted fissile material (§ 4).

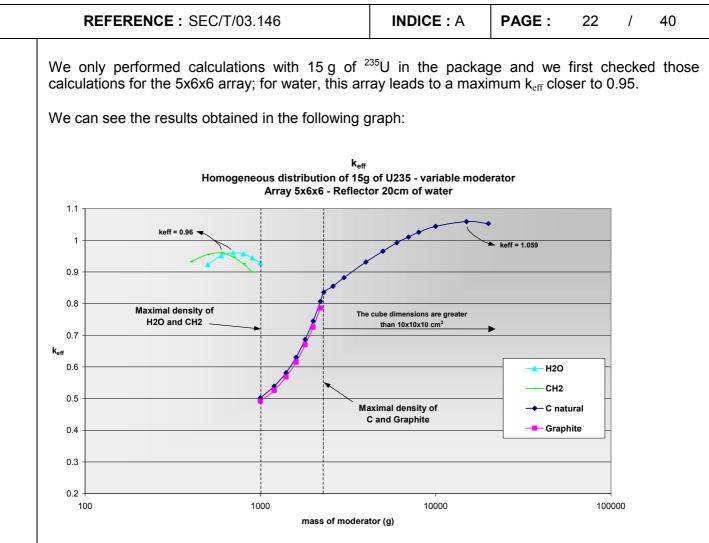

3.1 CRITICALITY RISK IN NORMAL CONDITIONS OF TRANSPORT


We determine the number N_1 of packages that could lead to a criticality risk in normal conditions. Each cubic package dimensions is greater⁹ or equal to $10 \times 10 \times 10 \text{ cm}^3$. In order to be consistent with the regulation, it is postulated to have $5N_1$ packages close together.

Then different calculations were performed, depending on the mass m(X) per package, to find the number of $5N_1$ packages leading to $k_{eff} + 3\sigma = 0.95$ (CSI equal to 50). The aim is to find the relation N1 = f (m(X)) that lead to no criticality risks.

⁹ For every case, we checked if an increase of the dimensions of the cube is able to lead to an increase of the reactivity (see also reference [6]).

Graph 3. Number of allowable packages as a function of the mass of actinide nuclide per package*


*For 5 packages, we plotted the maximal allowable mass under a sphere form divided by 5 for each isotope reflected by 20 cm of water. This constitutes a conservative approach because the sphere minimizes the leakage comparing to an array of 5 cubic packages. Actually, the allowable mass per package will be greater for an array of 5 packages.

3.1.1.2 CALCULATIONS WITH A STEEL WRAPPER

Due to the possibility to have **Type B** packages (for non-special form radioactive materials), we performed calculations for the thermal energy spectrum isotopes ²³³U and ²³⁹Pu. The results **[6]** confirms that, when packages include a wrapper of steel, it is possible to transport a higher number of packages for these two isotopes but also for the other thermal spectrum fissile isotopes, because, in this range of energy, the steel is mainly a neutron absorber. Therefore, the more the thickness of the steel wrapper increases, the higher the number of packages (that can be transported) is.

3.1.1.3 CALCULATIONS WITH OTHERS MODERATORS

We also checked the effect of other moderators than water that could lead to an increase of the effective multiplication factors. We studied moderators that are common materials as water: CH_2 , natural carbon and graphite materials.

Graph 4. Homogeneous distribution of 15 g of ²³⁵U with different moderators

We can deduce from those results that CH_2 moderator leads to the same value of maximum k_{eff} as water but with a lower mass of CH_2 , which is due to the higher concentration of Hydrogen per cubic centimetre. As we performed calculations with graphite and natural carbon moderators, we see that natural carbon leads to a higher k_{eff} . We first carried out calculations with a density of carbon inferior to its theoretical density (2.3 g/cm³), and, as reactivity increased, we reached this final density. So, we increased the quantity of carbon per package and the size of the package until we found the maximum k_{eff} . We found a difference of 10% in Δk with the water case!

An explanation is that carbon, although it has a lower scattering cross-section, has a very low capture cross-section comparing to water in thermal spectrum (see table below). As there is a large amount of carbon necessary to slow down neutrons enough, there are less absorptions in the array but more leakage of neutrons. It is the first effect that prevail and is characterized by the k infinite given for the maximum of reactivity:

	Water	Carbon
σ scattering (b)	107	4.75
σ capture (b)	0.644	0.0034
k infinite	1.285	1.874

Of course, we can deduce from those results that packages containing graphite or carbon under any form (solid, powder or others) constitute a potential for criticality. This assertion has been taken into account when exceptions criteria have been defined (§ 4) and further calculations will have to ensure that the margins (safety factors) taken for the transport of actinide nuclides are sufficient enough to prevent such a risk (§ 4.2.1).

REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	23	/	40	
			-0	,	10	

3.1.2 Calculations with fast spectrum fissile actinide nuclides

In the following paragraph, we present the calculations achieved with the CRISTAL package including the APOLLO 2 and MORET 4 programs (multigroups energy model). Then, we give the ones with steel (especially for the ²³⁸Pu) with the TRIPOLI 4 program, which uses continuous energy data, as crosschecking calculations were performed by SERCO with MONK and showed discrepancies between APOLLO 2 - MORET 4 and MONK calculations in the case of ²³⁸Pu with a steel wrapper (see **appendix F**).

3.1.2.1 CALCULATIONS WITH APOLLO 2 – MORET 4

We performed calculations with the 3 fast spectrum "fissible" isotopes ²³⁷Np, ²⁴⁴Cm and ²³⁸Pu. In those cases, in the contrary of (thermal) fissile isotopes, the most reactive cases are found when the fissible material is concentrated. We have reached for each isotope the crystal density (metal density). An explanation is that, here, each package has an important quantity of actinide nuclide closer to the critical mass (approximately 1/10th) comparing to the mass per package set for the (thermal) fissile actinide nuclides. This could explain the difference because each unit is very reactive. This configuration tends to reduce the leakage from each package even if it reduces the interactions between packages.

We also carried out calculations with a steel wrapper around the ²³⁸Pu: As we increased the steel thickness, the reactivity also increased. An explanation should be that there is a better reflection in each package when there is a steel wrapper around the package: effectively, we checked that the total leakage of neutrons outside the array is lower in this case (steel is a good reflector in fast spectrum).

When the mass in each package becomes less important, the most reactive configuration is when there is no steel wrapper (see table in **appendix F**). This phenomenon is due to two effects: When we decrease the mass per package, we go far from the allowable mass: each package is less reactive. The second effect is a spectrum effect: we checked from the listing files that the scattering is better with a lower mass of 238 Pu, the spectrum becomes less tough and more neutrons are captured in the steel wrapper (the steel thickness is more important in this case because the volume of actinide nuclide (crystal) is lower).

We have also performed a calculation with a steel wrapper for ²⁴⁴Cm under a crystal form, but we found an opposite effect than with ²³⁸Pu: in this case, the reactivity is lower with a steel wrapper than the case with a "void" wrapper. An explanation comes from the fact that, in the case of ²⁴⁴Cm, m(X) was equal to 1 kg (compared with critical mass around 15 kg) while, for Pu238, m(X)=1 kg but with a critical mass around 5 kg: in this second case the reactivity is mainly due to each unit of fissible matter and the reflection with steel increases the reactivity. Another explanation should come from the shape of the microscopic cross section of ²⁴⁴Cm (given in **appendix J**).

3.1.2.2 CALCULATIONS WITH TRIPOLI 4

Crosschecking calculations were performed at SERCO with the MONK program and discrepancies were found with the cases treating of the fast fissile isotopes with a steel wrapper. Then, we checked our calculation with TRIPOLI 4 (continuous energy) for the ²³⁸Pu with a steel wrapper. We effectively found new multiplication factors of 4000 pcm less than the ones found with APOLLO 2 - MORET4 programs. An explanation comes from the fact that APOLLO 2 minimizes the steel absorption in fast spectrum because the multigroup model (172 gr) of APOLLO 2 in fast spectrum is not optimised.

So, new calculations were carried out to find the $5N_1$ value leading to 0.95 with 1000 g and 500 g of ²³⁸Pu under a crystal form:

REFERENCE : SEC/T/03.146	INDICE : A	PAGE :	24	1	40	
--------------------------	------------	--------	----	---	----	--

Actinides	Allowable mass g	Mass per package g	Steel thickness mm	Program used	5N1	N1		
		1000 31.5 C	CRISTAL (A2-M4)	48	9			
Pu 238	2020		1000	1000	1000	51.5	TRIPOLI 4	66
(crystal form)	(crystal form) 3930	500	35.325	CRISTAL (A2-M4)	761	152		
, , ,		500	35.525	TRIPOLI 4	915	183		

Table 5. Calculations on ²³⁸Pu with a steel wrapper with TRIPOLI 4

We can see that the number of packages that can be carried increase with the new calculations done with TRIPOLI 4 and fit with the results given by SERCO (**appendix G**).

However, the global conclusions of the calculations done with APOLLO2-MORET4 remains:

- the crystal form is the most reactive form for those actinide nuclides and approximately 1/10 of the critical mass per package,
- the steel wrapper increases the reactivity for the case of Pu238 with 1 kg of Pu238 per package.

3.1.3 Conclusions on Normal Conditions of Transport

The most reactive configuration in thermal spectrum is the homogeneous distribution of fissile material and moderator (here, water¹¹); the presence of a steel wrapper around the fissile material allows transporting more packages.

This is not the case with the fast spectrum fissible actinide nuclides were the most reactive form can be obtained when the fissible material is under a crystal form with void or steel around it. This last conclusion depends on the amount of fissile material put inside the package: If the mass of fissible material is close to the critical mass, the cases with a steel wrapper are the most reactive.

SERCO has performed crosschecking calculations of k_{eff} with MONK 9 for different configurations of fissile and fissible actinide nuclides.

The differences in Δk are less than 600 pcm (**appendix G**), which is consistent with other comparisons performed between the calculation tools, except for ²³⁸Pu, where the calculations performed by SERCO showed an over-estimation of the keff obtained in the IRSN calculations. Thus, IRSN performed calculations with a point-wise code (TRIPOLI 4) and found the same results as SERCO. The discrepancy came from the 172 groups cross-sections of the steel used in CRISTAL that under-estimate the absorption of the steel for a hard spectrum.

EMS has also performed some specific calculations for the k_{eff} values of arrays proposed by IRSN. The results are consistent with the ones obtained by IRSN and SERCO, except for fast spectrum cases. However the discrepancies are consistent with the discrepancies already obtained for the calculated critical masses of those actinide nuclides.

3.2 CRITICALITY RISK IN ACCIDENTAL CONDITIONS OF TRANSPORT

We determined the number N (called N_2) of packages that could lead to a criticality risk in accidental conditions. In order to be consistent with the regulation for fissile material, we consider that $2N_2$ damaged packages can gather together (for accidental conditions).

Then, we calculated the number of packages $2N_2$ leading to $k_{eff} = 0.95$ (maximal allowable mass).

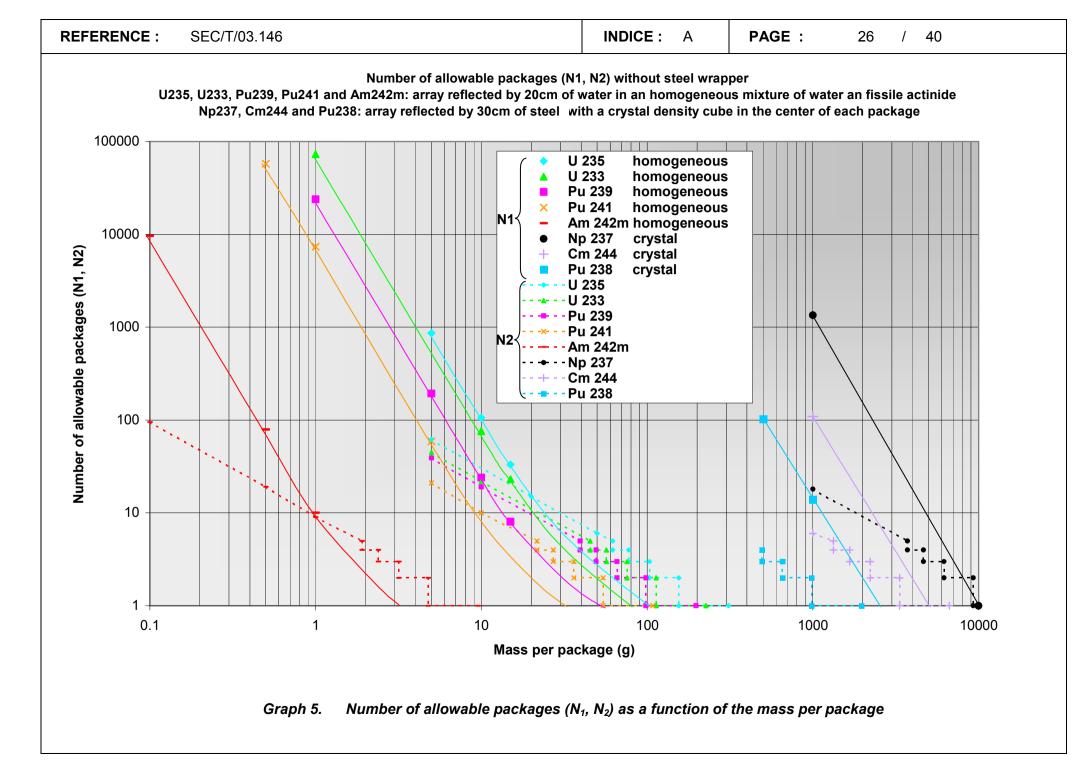
¹¹ Other mixtures than fissile material and water can be potentially more limiting

REFERENCE : SEC/T/03.146 INDICE : A PAGE : 25 / 40	REFERENCE : SEC/T/03.146		PAGE :	25	/	40	
--	--------------------------	--	--------	----	---	----	--

For certified packages, leakage from all packages must be collected into the most reactive form. Since we must assume that all fissionable material can escape from excepted packages, the assumption of a reflected sphere is consistent with the current IAEA Regulations.

We performed calculations of allowable masses with CRISTAL (APOLLO2 - Sn 2D (20 gr)) to determinate the N_2 value **[6]**. For the cases with steel, we assumed that the steel wrapper is removed, in order to take the most penalizing case (when steel is homogeneously mixed with the fissile matter, the reactivity decrease mainly due to steel absorption). The fact of taking steel into account allows to carry a higher number of packages (see appendix 3 of reference **[6]**).

N₂ is calculated as follows:


$N_2 = (1/2)^*$ (Allowable Mass(X) / m(X)).

With m(X) the mass of actinide nuclide X per package. Allowable Mass is minimum mass of X in a sphere (with the reflector - water, steel or lead- that gives the lowest value) that gives a k-effective equal to 0.95

Calculations have been performed with the same 8 nuclides as for the normal conditions of transport: ²³⁵U, ²³³U, ²³⁹Pu, ²⁴¹Pu and ^{242m}Am in thermal energy spectrum and ²³⁷Np, ²⁴⁴Cm and ²³⁸Pu in fast energy spectrum.

3.3 COMPARISON BETWEEN THE NORMAL AND THE ACCIDENTAL CONDITIONS

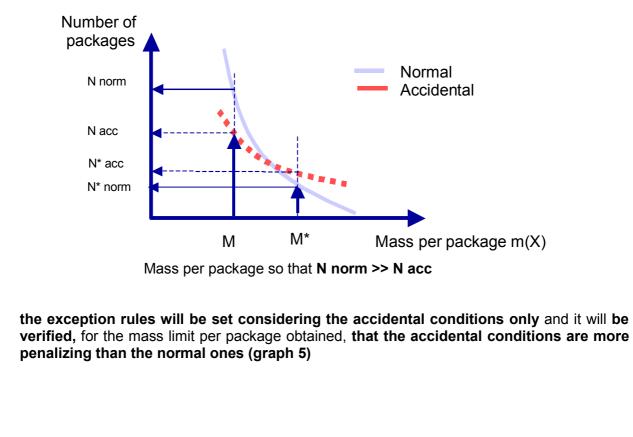
The results of the whole calculations are shown in **appendix F** which gives the values of N₁, N₂, N'₂ (calculated for k_{eff} = 1) and N, which is the minimal value of these 3 values and in the following graph (N₁, N₂):

REFE	RENCE :	SEC/T/03	.146		INDIC	E : A	PA	AGE :	27	1	40	
		•		N depending		ss m(X)	per	package	(for	the	8 actir	nide

nuclides studied). It shows that the accidental conditions are always more penalizing than the normal conditions up to a given amount of mass of actinide nuclide per package. For big masses of actinide nuclides per packages, the normal cases become more reactive.

When the number of packages allowed gets close to 1 package (this means we are close to the allowable mass of each actinide nuclide), the most reactive case is obtained with the normal conditions of transport (for example, with 15 g of ²³⁹Pu per package, N₁=8 and N₂=13).

Considering those results, exception criteria will be defined for each actinide nuclide (see § 4).


4. METHOD FOR THE DEFINITION OF EXCEPTION CRITERIA

As calculations were performed to determine the most penalizing case between normal and accidental conditions of transport, it is now possible to set a rule and give mass limits for the excepted fissionable nuclides packages, with those data as starting point. The rule and the exception limits will be extended to the others actinide nuclides.

We presented in the previous paragraph (§ 3) the work achieved to determine the number of allowable packages (N) that can be transported in normal and accidental conditions for different masses of actinide nuclide per package. The normal conditions consist on an array of 5xN packages of 10x10x10 cm³ containing m(X) g of a given actinide nuclide, with water or moisture. The accidental conditions consist of a spherical mass of 2xNxm(X) g of a given actinide nuclide.

Then the principles to set the rule are the following:

1. The accidental configuration should be the most penalizing¹²

¹² EMS doesn't consider that accidental configuration should necessarily be the most penalizing.

 2. Take into account every environment and possible configurations (reflectors, moderators mixtures); if the package is excepted there will be no possibility to re-check the reaconfigurations of transport. 3. Research the minimum of package leading to a criticality risk and check that this number is greater or equal to 10 (N > 10); it will guaranty a certain dilution of the matter and reduce the consequences of human errors. 4. Keep the limit of 15 g per package for U235 that exists in the current regulation. The following paragraphs will therefore concern the determination of the mass per package allower in accidental conditions: considering that this evaluation is linked to the accidental conditions; consequently, it can be directly derived from the critical mass of each actinide nuclide, studying the effect of additional parameters that can lead to an increase of the reactivi (different reflectors and moderators, non uniform repartition of the moderation, mixture actinide nuclides); this will give some "safety factors"¹³ to apply on the critical mass to tak those phenomena into account; using the minimum number N° of packages containing 15 g of U235 that are safe in ever condition of transport. This number N° will be then used for every actinide nuclide as the minimum of packages needed to have a criticality risk in every condition of transport (it will be checked that 2N° packages in accidental condition and 5N° packages in normal condition an safe); It will be verified that N° is greater than 10. 	RENC	E: SEC/T/03.146	INDICE : A	PAGE :	28	/	40
 greater or equal to 10 (N > 10); it will guaranty a certain dilution of the matter and reduce the consequences of human errors. 4. Keep the limit of 15 g per package for U235 that exists in the current regulation. The following paragraphs will therefore concern the determination of the mass per package allower in accidental conditions: considering that this evaluation is linked to the accidental conditions; consequently, it can be directly derived from the critical mass of each actinide nuclide, studying the effect of additional parameters that can lead to an increase of the reactivit (different reflectors and moderators, non uniform repartition of the moderation, mixture actinide nuclides); this will give some "safety factors"¹³ to apply on the critical mass to tak those phenomena into account; using the minimum number N° of packages containing 15 g of U235 that are safe in ever condition of transport. This number N° will be then used for every actinide nuclide as the minimum of packages in accidental condition and 5N° packages in normal condition are safe); It will be verified that N° is greater than 10. 	mix	tures); if the package is excepted					
 The following paragraphs will therefore concern the determination of the mass per package allower in accidental conditions: considering that this evaluation is linked to the accidental conditions; consequently, it can be directly derived from the critical mass of each actinide nuclide, studying the effect of additional parameters that can lead to an increase of the reactivit (different reflectors and moderators, non uniform repartition of the moderation, mixture or actinide nuclides); this will give some "safety factors"¹³ to apply on the critical mass to tak those phenomena into account; using the minimum number N° of packages containing 15 g of U235 that are safe in ever condition of transport. This number N° will be then used for every actinide nuclide as the minimum of packages needed to have a criticality risk in every condition of transport (it will be checked that 2N° packages in accidental condition and 5N° packages in normal condition are safe); It will be verified that N° is greater than 10. 	gre	ater or equal to 10 (N > 10); it will gua					
 in accidental conditions: considering that this evaluation is linked to the accidental conditions; consequently, it can be directly derived from the critical mass of each actinide nuclide, studying the effect of additional parameters that can lead to an increase of the reactivit (different reflectors and moderators, non uniform repartition of the moderation, mixture actinide nuclides); this will give some "safety factors"¹³ to apply on the critical mass to tak those phenomena into account; using the minimum number N° of packages containing 15 g of U235 that are safe in ever condition of transport. This number N° will be then used for every actinide nuclide as the minimum of packages needed to have a criticality risk in every condition of transport (it will be checked that 2N° packages in accidental condition and 5N° packages in normal condition are safe); It will be verified that N° is greater than 10. 	4. I	Keep the limit of 15 g per package for U23	5 that exists in the cu	rrent regulat	tion.		
CONTONIATIONS ARE THE ACCIDENTIAL ONES	in ac - - Fina	ccidental conditions: considering that this evaluation is linked directly derived from the critical mass of studying the effect of additional paran (different reflectors and moderators, n actinide nuclides); this will give some " those phenomena into account; using the minimum number N° of pack condition of transport. This number N° minimum of packages needed to have a checked that 2N° packages in accidenta safe); It will be verified that N° is greater	to the accidental con- each actinide nuclide, eters that can lead on uniform repartition safety factors" ¹³ to ap ages containing 15 g will be then used for criticality risk in even I condition and 5N° p than 10.	nditions; co to an incre of the mo oply on the of U235 th or every ac y condition ackages in	nseque ase of oderatio critical nat are tinide r of trans norma	ently, the on, m mas safe nuclid sport I cond	it can b reactivit nixture o s to tak in ever le as th (it will b dition ar
	4.1				_		
	othe (ther the o	rs moderators than "standard" water m mal spectrum) or steel (fast spectrum) (s definition of the exception criteria (§ 4.1.)	oderator or others r see § 4.1.1) reflectors ?). Non-uniform repart	eflectors th ; they need	an "sta 1 to be	andar cons	rd" wate sidered
This paragraph gives the effects of parameters that may have an influence on the reactivity, such a others moderators than "standard" water moderator or others reflectors than "standard" water (thermal spectrum) or steel (fast spectrum) (see § 4.1.1) reflectors; they need to be considered	4.1	.1 Different moderators and reflectors	<u>; (F1)</u>				
This paragraph gives the effects of parameters that may have an influence on the reactivity, such a others moderators than "standard" water moderator or others reflectors than "standard" water (thermal spectrum) or steel (fast spectrum) (see § 4.1.1) reflectors; they need to be considered the definition of the exception criteria (§ 4.1.2). Non-uniform repartition of fissile material (§ 4.2.2)	EMS	has performed some calculations to stud	y the effect of:				
This paragraph gives the effects of parameters that may have an influence on the reactivity, such a others moderators than "standard" water moderator or others reflectors than "standard" wate (thermal spectrum) or steel (fast spectrum) (see § 4.1.1) reflectors; they need to be considered the definition of the exception criteria (§ 4.1.2). Non-uniform repartition of fissile material (§ 4.2.2 mixture of actinide nuclides (§ 4.1.3) will be checked.	-	different types of reflectors: water, stainle	s steel, lead, water p	us steel or l	lead,		

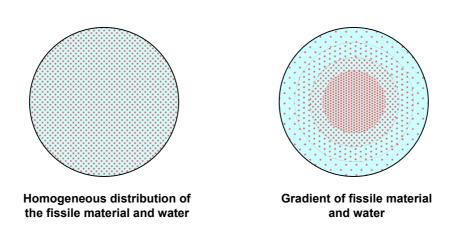
- different types of reflectors: water, stainless steel, lead, water plus steel or lead,
- for diluted systems, (due to the 10 cm minimum dimension), different types of neutron scatterers such as water, carbon powder (including carbonised or de-hydrated materials, lead and steel) and combinaison of these.

The calculations showed that the k_{eff} can increase by more than:

13 The exception limits should preferably be based on measured data supported by critical experiments as well as reflection, moderation, and mixed configuration conditions optimised for each nuclide. In the absence of such data, experiments and evaluations for many nuclides, safety factors based on experience with "similar" nuclides and conditions may be derived in a conservative way. The safety factor method should be sufficiently conservative to encourage derivation of better data and critical experiments when a large quantity of each nuclide is available. A similar practice can be applied to derivation of mass limits for mixtures (e.g. specific isotope distributions for actinide elements, solutions, etc.) as well as to concentration and other limits.

At the moment there are too many issues that are still under discussion to motivate determination of final exception limits. The project has identified several new issues that have not been considered in existing transport regulations. During 2003 there will be discussions and meetings where most of these issues will be considered. This project as well as continued efforts in France, UK and Sweden will give important input to the discussions.

REFERENCE :	SEC/T/03.146	INDICE : A	PAGE :	29	/	40	


- 5% in Δk with a reflector different from the commonly used ones (water for water-moderated systems and steel for fast spectrum systems),
- 10% in Δk for diluted systems due to the added scatterers such as carbon powder in addition to water or void.

For reflector, different types of reflectors have already been checked (**appendix K**), and the critical value considered is obtained with the most penalizing reflector.

Therefore, the factor F1 mainly depends on the moderator effects. As a first step, it will be set to 0.8^{14} for thermal systems and to 1 for fast spectrum ones: for fast systems, the various moderators don't play any role.

4.1.2 Non uniform repartition of the fissile material (gradient of concentrations)

According to criticality general assessments, a critical fissile material with an optimum moderation ratio can become more reactive if a non uniform distribution of the fissile material and the moderator happen with an appropriate gradient of concentration: calculations demonstrated that for a critical mass, non uniform concentrations with different optimised H/X ratios could lead to an increase of reactivity. This phenomenon is mainly due to the reduction of leakages as the most part of fissile material is concentrated in the centre of the package:

4.1.3 Mixture of actinides nuclides

EMS [1] checked the effect of mixing two actinide nuclides in different ways. We wanted to see if the presence of two nuclides X and Y in a package could lead to increase the reactivity, as we put in the package a given ratio of the critical mass Mc(X) and Mc(Y) of each nuclide (indeed m(X)/Mc(X) + m(Y)/Mc(Y)=1). The equation given in the Introduction and used in the transport regulations is a typical application of the Rule of Fractions.

Homogeneous and heterogeneous configurations were studied with different ratios. MCNP with continuous energy cross-sections has been used rather than SCALE with multigroup cross-sections to reduce the potential for errors due to incorrect resonance treatment.

A useful study on the commonly used method to assume under-criticality by the Rule Of Fraction (ROF) when there are two or more nuclides per package has been done **[5]**. For a specific nuclide *i* with a mass m_i and a minimum critical mass M_i , the Fraction of Critical Mass *FCM_i* is defined as m_i/M_i . The Rule Of Fractions is based on the following assumption:

$$\Sigma_i FCM_i \leq 1.0$$

¹⁴ Actually, when they exist, the comparisons of the results of the calculations (keff) with various moderators or reflectors will be used to determine the value of F1.

REFERENCE :	SEC/T/03.146	INDICE : A	PAGE :	30	/	40	
-------------	--------------	------------	--------	----	---	----	--

If the mass M_i is not exactly critical, a corresponding value of k_{eff} can be calculated. The more general Rule Of Fractions will be:

 $\Sigma_i FRM_i \leq 1.0$

where FRM_i is a reference value. For a mixture of two nuclides the ROF means that the resulting k_{eff} for the mixture is equal to or lower than the interpolated value between the two reference values for the individual nuclides.

A reason for not using the exact critical mass FCM_i is that different cross sections will give variations of the critical mass. The general ROF will give the same information without the need for calculating exact minimum critical masses for each cross section set.

There are ways to conservatively cover cases where the ROF does not apply directly. One way is to shift the interpolated line so that all mixtures will give k_{eff} below the line. This requires studies of each potential mixture.

The studies showed that the ROF is not a conservative method both in homogeneous and heterogeneous cases. k effective of mixtures of actinide nuclides can be 10% in Δk higher than the k effective calculated with the ROF. As we define in § 4.3 a new CSI rule, we should consider the potential risk for the mixtures of actinide nuclides¹⁵.

4.2 SAFETY MARGINS DETERMINATION AND NEW RULE (CSI) DEFINITION

The different actinide nuclides have been defined as Fissile "S" (that can sustain a chain reaction with thermal neutrons – "S"low neutrons) or as "F" actinide nuclides (that can sustain a chain reaction only with hard spectrum – "F"ast neutrons). The list is given in **appendix H**. The actinide nuclides in pink are neither fissile nor fissible alone.

During the discussions above, it appeared that, the exception limit of mass per package should take into account:

- the effect of different types of reflectors, more penalizing than the ones required in the current IAEA regulations; actually the excepted packages will not be checked by the safety authorities, in terms of criticality; thus, most of the configurations must be taken into account; the effect of different types of moderators also has to be considered; the critical mass will be reduced with a safety factor F1,
- a safety margin of 5% on k effective, to take into account all un-known phenomenon (mixture, repartition of the fissile matter); the critical mass will be reduced with a safety factor F2,
- the knowledge on the cross-sections has to be taken into account (reduction of the critical mass by a factor F3),
- the number of packages that can lead to criticality in accidental condition must be greater than 10 (a human error leading to a 2x10 package array should be safe).

The consignment limit will be introduce and should be less than half of the critical mass.

The excepted mass per package could therefore be determined as follows:

¹⁵ Natural uranium is a good start for evaluation of mixing effects. Natural uranium is completely excepted from criticality control in the transport regulations. Consideration is of course required if it is credible in the contents of certified packages, but for excepted packages there is no such control. Natural uranium is fissionable material that is not fissible or fissile in water (it is fissile in mixtures with heavy water or graphite). It will significantly reduce the critical mass for many nuclides. EMS is studying this mixing configuration for all nuclides out of the scope of this project.

REFERENC								
	mist of water)	num of the critical mass and reflectors (water for ned with the different code	thermal energy spe	ectrum or st				
	possibility of ot only), heteroge as a first step,	moderator correction fa her reflectors (see apper neity of the moderator (for this factor has been set t or could be revised),	idix K), other moderation fissile actinide nuclid	ators (for fise es only) (see	sile act e § 4.2 .	tinide . 1 an	nuclide d 4.2.2);	
	has been deriv note here that t	prrection factor F2 , to take ed from calculations wher ne value obtained with this allowable masses (k _{eff} =0.9	n available, otherwise factor applied to the	it has been critical mass	set to	0.8	(we can	
	determined by	correction factor F3, du the discrepancies observe if no comparison exists the	d between the codes	used for the	e calcu	lation		
5-	determine safe	mass Msafe = F1.F2.F3.N	/Ic(min),					
	1/2 is the same	mass allowed per group e safety factor as in the 2 also justified in section 8 b	N array to be assess		ntal sit	tuatio	ns. This	
	this number of same safety m	hass allowed per packag 12 has been set to find a v pargins for the transport the current regulations. It	alue of 15 g per packa of fissile excepted ²	³⁵ U as thos	e deriv	/s to k /ed f	keep the rom the	
		Graph 5 § 3.3 , that for t lition (N ₂ (m*)) is less or e n*)).						
Th	en the Criticality	Safety Index for the packa						
		$CSI = 50 \sum_{X} \frac{m(\lambda)}{Mgrout}$	<mark>X)</mark> p(X) , with m(X)≤m*(X)				
Wr		the actual transported am () is half the Safe Mass of		per package	and			
10 n than	ng, they do not 10 mg of fissile	set considering that "if the need to be taken into acco isotopes cannot have a si K) obtained for any of the a	ount"; indeed the parti gnificant impact on th	cipants think	that a	mas	s of less	
Fina	lly the rule is the	e following:						
		If $\sum_{X_j} m(X_j) < 10$	0 mg then m(X _j)=0					
		And CSI = 50 $\sum_{X \neq X_j} \frac{I}{M}$	m(X) _{group} (X) , with m(X)≤m'	*(X)				
effe k-eff	ct of different re	ass allowed per package, flectors and moderators, th e safe mass. We also allo	ne libraries uncertainti	es and a sat	fety ma	argin (of 5% in	

REFERENCE :	SEC/T/03.146	INDICE : A	PAGE :	32	/	40	
-------------	--------------	------------	--------	----	---	----	--

The effect of mixing nuclides has not been evaluated properly. Without such evaluations it would be against criticality safety principles to neglect the issue. At least for nuclides and mixtures that are credible today or in the near future, some evaluation is required. Heterogeneous mixtures of fissile or fissible nuclides with natural uranium metal are such a case.

However, as the correction factors give very conservative mass limits (leading to safe masses far from the critical mass of each nuclide, both in normal and accidental cases), we didn't use a safety margin to take into account the effect of the mixtures of actinide nuclides (§ 4.2.3), even if the ROF is not acceptable, because those precautions seem sufficient, at a first stage, to prevent the criticality risk.

4.3 EXCEPTION MASS LIMITS

The table 5 gives the results obtained for the different actinide nuclides.

The values are not the definitive values as they still have to be crosschecked and internationally discussed (critical mass and, mainly, correction factors).

In appendix H, an additional value, in the last column is given as "ANS". This is the value of m^{*} (maximum mass per package) obtained with the method described above while considering that the safe mass is equal to the minimum of the critical mass obtained multiplied by the factor proposed by the ANS 8.15 group (noted F_{ANS}); then the maximum mass allowed per package m^{*}(X)_{ANS} is:

 $m^{*}(X)_{ANS} = \frac{M_{Crit}(X) \times FANS}{2 \times 12}$

33 / 40

		Factors t	o consider on N	lc	Safe Mc	Mass per	Mass per
Nuclide	Critical Mass Min	heterogeneity reflectors moderator	Margin of 5% in ∆k	Libraries	(g)	group of package (g)	package (g)
²²⁷ Ac							
²²⁸ Th							
²²⁹ Th	994	-	-	-	-	-	-
²³⁰ Th ²³² Th							
²³¹ Pa							
²³² U	1950	1	0.8	0.05	1404	702	FO
²³³ U	1850 425	1	0.8	0.95	1406 258	703 129	58 10
²³⁴ U	83000	0.8	0.8 0.8	0.95 0.95	63080	31540	2628
²³⁵ U	589	0.8	0.8	1	376	188	15
²³⁶ U		0.0	0.0	-			
²³⁸ U							
²³⁵ Np	6180	1	0.8	0.2	6208	3104	258
²³⁶ Np	63	0.8	0.8	0.2	8	4	0.3
²³⁷ Np	38600	1	0.75	0.7	20265	10132	844
²³⁶ Pu	970	1	0.8	0.9	2692	1346	112
²³⁷ Pu	110	0.8	0.8	0.2	14	7	0.5
²³⁸ Pu	4700	1	0.8	1	3760	1880	156
²³⁹ Pu	353	0.8	0.8	1	225	112	9.3
²⁴⁰ Pu	18300	1	0.8	0.85	13464	6732	561
²⁴¹ Pu	205	0.8	0.8	0.9	118	59	4.9
²⁴² Pu ²⁴⁴ Pu	36200	1	0.75 0.8	0.9	29862 21280	14931	1244 886
²⁴¹ Am	60300 33800	1	0.8	0.2	17745	10640 8872	739
^{242m} Am	17	0.8	0.7	0.85	9	4.5	0.37
²⁴³ Am	88600	1	0.0	0.95	88012	44006	3667
²⁴² Cm	7720	1	0.8	0.2	1956	978	81
²⁴³ Cm	106	0.8	0.8	0.5	33	16.5	1.37
²⁴⁴ Cm	13200	1	0.85	0.75	8415	4207	350
²⁴⁵ Cm	42	0.8	0.8	0.85	22	11	0.91
²⁴⁶ Cm	22000	1	0.8	0.2	3520	1760	146
²⁴⁷ Cm	796	0.8	0.8	0.2	183	91	7
²⁴⁸ Cm	21500	1	0.8	0.2	3440	1720	143
²⁵⁰ Cm	14700	1	0.8	0.2	2240	1120	93
²⁴⁷ Bk	35200	1	0.8	0.2	5568	2784	232
²⁴⁸ Bk ²⁴⁹ Bk	-	1	1	0.2	-	-	-
²⁴⁸ Cf	131000	1	0.8	0.2	20960	10480	873
²⁴⁹ Cf	- 51	1 0.8	0.8 0.8	0.2	- 6	- 3	- 0.25
²⁵⁰ Cf	3130	1	0.8	0.2	500	250	20
²⁵¹ Cf	20	0.8	0.8	0.2	2	1	0.083
²⁵² Cf	2910	1	0.8	0.2	465	232	19
²⁵⁴ Cf	2250	1	0.8	0.2	353	176	14
²⁵² Es	-	1	0.8	0.2	-	-	-
²⁵⁴ Es	32	1	0.8	0.2	5.1	2.5	0.20
²⁵⁷ Fm	-	1	0.8	0.2	-	-	-
^{258a} Md			0.8	0.2			

REFERENCE :	SEC/T/03.146	INDICE : A	PAGE :	34	/	40	
-------------	--------------	------------	--------	----	---	----	--

For those limits, it was checked, for U235, that a carbon moderator would not lead to a unacceptable situation. For that purpose, calculations where performed at IRSN with 15 g of ²³⁵U moderated with carbon (see § 3.1.1.3) in normal conditions (for accidental conditions, a water moderator is more penalizing). Results showed that, for normal conditions, carbon leads to a higher k_{eff} than water, but the safety factors proposed give a safety margin of 20% in Δk (**appendix I**). For the accidental conditions of transport, we checked that the minimal allowable/critical mass is always smaller with water. Even if k infinite is smaller with water, leakages are higher with carbon; then, in order to get the allowable/critical mass, the sphere of fissile material (²³⁵U) and moderator must be larger with carbon than with water. This leads to a higher mass of fissile material to obtain criticality with carbon. This consideration allows us to keep the safety rule set with water, for U235 (see § 4.3).

Moreover, for those limits for U235, the following results were obtained (with water moderator and water reflector only):

- 5N (N=12) un-damaged packages containing each 15 g of U235 gives a maximum keffective of keff + 3σ = 0.82235 (σ = 0.1%),
- 2N packages in spherical form (total of 360 g of U235), gives a maximum k effective of 0.827.

For those special calculations, the accidental case is slightly more conservative than the normal one and we can observe the margins in terms of reactivity when we apply a safety factor on the mass (a factor 50% on the critical mass of water-moderated systems gives for U235 a reduction of 20% in Δk).

REFERENCE :

40

1

5. <u>CONCLUSION</u>

The work planned for the Phase I, Phase II, Phase III and Phase IV of the DG TREN project consisted in:

- agreing the work plan between the participants (phase 1); the inception report related to this first phase was sent to the European commission the 11th of April 2002 (IRSN/DPEA/SEC/A/02.112),
- defining the broader list of radionuclides that should be include in the regulation, review the existing work and experiences (phase 2),
- performing calculations for, at least, the first 15 selected actinide nuclides defined in the inception report (phase 3),
- determining exception limits per package and per consignment (and possibly per conveyance) for all fissionable nuclides that we will propose for inclusion in the regulation. The main objective of this programme is to adapt the existing rule (derived from the woodcock & Paxton calculations) for the special actinide nuclides or to define a new methodology.

The bibliographic survey has been achieved; the result is given in the interim report [5]. For the minor actinides, it shows some great differences on the criticality values (k-infinite and critical masses) depending on the evaluation used for the cross sections and on the codes used.

To explain those discrepancies, some studies were realized based on a comparison of the different evaluations, especially on the NUBAR values. It pointed out some great differences on this parameter for ²³⁶Np and ²³²U depending on the evaluation used; however it also showed that the current libraries are satisfying for the "major actinides". For the minor actinides, the differences are somehow covered by the uncertainties on the cross-section evaluations themselves...

The second step involves definition of nuclides that can sustain a chain reaction. K-inf is the parameter that determines this possibility. Eta as a function of energy can be used to guess this property but is not sufficient in many cases. Eta can be used to include fissionable nuclides that are not fissile or fissible but has eta larger than 1.0 in some energy range. Such fissionable nuclides may increase the potential for criticality in mixtures with fissile or fissible nuclides.

The list of actinide nuclide able of sustaining a chain reaction is given in the next table.

Nuclide ²²⁷ Ac ²²⁸ Th ²³⁹ Th ²³⁰ Th ²³² Th ²³¹ Pa ²³² U ²³³ U ²³³ U ²³⁴ U ²³⁵ U ²³⁶ U ²³⁸ U	Spectrum NF NF? F NF NF NF? S S S F S	Density (g/cm ³) 10.043 11.524 11.575 11.626 11.727 15.336 18.681 18.762	T _{1/2} (y) 21.77 1.913 7900 (7340) 75400 1.4 x 10 ¹⁰ 32500 69.8
228 Th 230 Th 230 Th 231 Pa 232 U 233 U 233 U 234 U 235 U 236 U 238 U 235 Np	NF? F NF NF S S S F S	10.043 11.524 11.575 11.626 11.727 15.336 18.681 18.762	1.913 7900 (7340) 75400 1.4 x 10 ¹⁰ 32500 69.8
229 Th 230 Th 232 Th 231 Pa 232 U 233 U 233 U 233 U 235 U 236 U 238 U 235 Np	F NF NF? S S F S	11.575 11.626 11.727 15.336 18.681 18.762	7900 (7340) 75400 1.4 x 10 ¹⁰ 32500 69.8
230 Th 231 Pa 232 U 233 U 233 U 234 U 235 U 236 U 238 U 235 Np	NF NF? S S F S	11.626 11.727 15.336 18.681 18.762	75400 1.4 x 10 ¹⁰ 32500 69.8
232Th 231Pa 232U 233U 234U 235U 236U 238U 235Np	NF NF? S S F S	11.727 15.336 18.681 18.762	1.4 x 10 ¹⁰ 32500 69.8
231Pa 232U 233U 234U 235U 235U 236U 238U 235Np	NF? S S F S	15.336 18.681 18.762	32500 69.8
232U 233U 234U 235U 236U 238U 238Np	S S F S	18.681 18.762	69.8
233 234 235 235 236 238 238 238 235 Np	S F S	18.762	
234 235 236 236 238 U 238 V 235 Np	F S		
²³⁵ U ²³⁶ U ²³⁸ U ²³⁵ Np	S	10 0 10	1.59 x 10 ⁵
²³⁶ U ²³⁸ U ²³⁵ Np		18.842	2.45 x 10 ⁵
²³⁸ U ²³⁵ Np		18.923	7.04 x 10 ⁸
²³⁵ Np	NF	19.004	2.34 x 10 ⁷
²³⁵ Np	NF	19.165	4.46 x 10 ⁹
	F	20.303	1.058
²³⁶ Np	S	20.389	155000
²³⁷ Np	F	20.476	2.14 x 10 ⁶
²³⁶ Pu	S	19.601	2.87
²³⁷ Pu	S	19.685	45.7 d
²³⁸ Pu	F	19.768	87.74
			24110
			6537
			14.4
			3.76 x 10 ⁵
			8.2 x 10 ⁷
241Am			432.2
			141
²⁴³ Am			7370
²⁴³			162.8 d
²⁴⁴			28.5
²⁴⁵ 0			18,11
246 Que			8500
²⁴⁷ Out			4780
Cm			1.56 x 10 ⁷
			3.4 x 10 ⁵
247			9700 (8000)
			1400
			9
			320 d
			333.5 d 351
			13.1
	-		900
252 Cf			2.64
			60.5 d
			1.29
254 E S			276 d
		0.070	100.5 d
²⁵⁸ Md	S?		51.5 d
	239Pu 240Pu 241Pu 242Pu 244Pu 244Am 242mAm 242mAm 243Am 242Cm 243Cm 243Cm 243Cm 244Cm 243Cm 244Cm 245Cm 255Cf 2554Cf 2554Cf 2554Cf 2557Fm	239Pu S 240Pu F 241Pu S 242Pu F 244Pu F 244Am F 243Am F 244Cm F 243Cm S 244Cm F 245Cm S 246Cm F 247Cm S 248Cm F 247Bk S 248Bk S? 248Bk S? 248Bk S? 249Bk F 248Cf F 249Cf S 250Cf F 251Cf S 252Cf S 254Es S 254Es S	239 Pu S 19.851 240 Pu F 19.934 241 Pu S 20.017 242 Pu F 20.267 244 Pu F 20.267 244 Pu F 20.267 244 Pu F 13.66 242m Am S 13.717 243 Am F 13.774 244 Cm F 13.407 243 Cm S 13.474 244 Cm F 13.518 244 Cm F 13.518 244 Cm F 13.629 244 Cm F 13.629 244 Cm F 13.629 247 Cm S 13.685 248 Cm F 13.74 250 Cm F 13.851 247 Bk S 14.671 248 Bk S? 14.731 249 Bk F 14.79 248 Cf F 15.05 249 Cf S 15.2

REFERENCE : SEC/T/03.146 INDICE : A PAGE : 37 / 40	REFERENCE :	SEC/T/03.146	INDICE : A	PAGE :	37	/	40	
--	-------------	--------------	------------	--------	----	---	----	--

The third step consisted in calculations of the critical masses of the 15 first isotopes of the list with the different codes available among the participants (i) ENDF/B-5 (and other libraries) and MCNP for EMS (ii) JEF2.2 with APOLLO2 (172 groups) or TRIPOLI (continuous in energy).

In step 4, the participants performed calculations to determine the maximum number of packages for a given mass per package leading to an acceptable value of the k-effective; this was realized for arrays of packages in normal and accidental conditions.

Then the principle to define the exception criteria were the following:

- the accidental conditions must be more penalizing than the normal conditions; therefore the calculations of the mass limit per package for a given number of package will be derived from the calculations of the critical masses (for the accidental conditions, the fissile matter forms a sphere); for the maximum mass per package and associated maximum of packages, it will be checked that the accidental conditions are more penalizing than the normal ones,
- 2. the different parameters that may increase the reactivity must be considered,
- 3. the current limit of 15 g/package for U235 will be kept,
- 4. the minimum number of packages that should lead to a criticality hazard is greater than 10.

Finally the rule is the following:

$$\label{eq:main_state} \begin{split} & \text{If } \sum_{X_j} m(X_j) < 10 \text{ mg then } m(X_j) \text{=} 0 \\ & \text{And CSI} = 50 \sum_{X \neq X_j} \frac{m(X)}{M_{\text{group}}(X)} \text{ , with } m(X) \text{\le} m^*(X) \end{split}$$

With Mgroup(X) and $m^*(X)$, for each actinide nuclide X, given (as preliminary results) in the following chart:

This proposition is consistent with the UK proposition for change of the IAEA regulation number UK/02-07.

The values in the next table are proposed for discussion prior to their potential use by IAEA Member States to support their adoption in a future edition of the IAEA regulations.

REFERENCE :	SEC/T/03.146		INDICE : A	PAGE :	38	/	40
	Table 6	Calculation Exa	mple of Exception	Limits			
	Nuclide	Mass per group of package (g) M group	Mass per package (g) m*(X)				
	²²⁷ Ac						
	²²⁸ Th						
	²²⁹ Th	×	×				
	²³⁰ Th						
	²³² Th						
	²³¹ Pa						
	²³² U	703	58				
	²³³ U	129	10				
	²³⁴ U	31540	2628				
	²³⁵ U	188	15				
	²³⁶ U						
	²³⁸ U	404					
	²³⁵ Np	494	41				
	²³⁶ Np ²³⁷ Np	4	0.3				
	²³⁶ Pu	10132	844				
	²³⁷ Pu	349 7	29				
	²³⁸ Pu		0.5 156				
	²³⁹ Pu	1880 112	9.3				
	²⁴⁰ Pu	6222	518				
	²⁴¹ Pu	59	4.9				
	²⁴² Pu	12217	1018				
	²⁴⁴ Pu	4824	402				
	²⁴¹ Am	8872	739				
	^{242m} Am	4.5	0.37				
	²⁴³ Am	29459	2454				
	²⁴² Cm	617	51				
	²⁴³ Cm	16.5	1.37				
	²⁴⁴ Cm	4207	350				
	²⁴⁵ Cm	11	0.91				
	²⁴⁶ Cm	1760	146				
	²⁴⁷ Cm	50	4				
	²⁴⁸ Cm	1720	143				
	²⁵⁰ Cm	1176	98				
	²⁴⁷ Bk	2816	234				
	²⁴⁸ Bk	×	×				
	²⁴⁹ Bk	10480	873				
	²⁴⁸ Cf	×	×				
	²⁴⁹ Cf ²⁵⁰ Cf	3	0.25 20				
	²⁵¹ Cf	250 1	0.083				
	²⁵² Cf	232	19				
	²⁵⁴ Cf	180	15				
	²⁵² Es	180 ×	15 X				
	254Es	2.5	0.20				
	²⁵⁷ Fm	2.5 X	×				
	^{258a} Md						
	Md	×	×	J			

REFERENCE :	SEC/T/03.146	INDICE : A	PAGE :	39	/	40
Possible a	additional work					
	the work achieved many questions we ed. This is the case of:	ere raised and w	ill need add	ditional	worl	k to be
-	mixture of fissionable actinide nucli preliminary results on that subject; influence of the radioactive decay of package could increase during a certar nuclides. A preliminary study [8] has to actinide nuclides (232 U, 233 U, 234 U, 235 U fissionable) nuclide that have been select actinide nuclides are formed by α , β + of actinide nuclide or a "low reactive" actin This means that if a nuclide X decays of applied for X should at least partly be bar (the process can be complicated sind properties of other decay products, transport) ¹⁶ . For each isotope transport applied, according to the exception criter use and determination of the safety far	n the criticality rinin period with the period with the peen done with J_{1}^{240} Pu, 242 Pu) indicated. The goal of the period of the peed on the goal of the peed on the mass line of the net effect half-lives and need, the study gives ria (§ 4.4) set in approximation of the peed of the peed of the study gives ria (§ 4.4) set in approximation of the peed of the pe	isk. Actually radioactive e production cluding almo- nis study was as and try to ecay into a nuclide Y, f mit determin depends o naximum tin s which limit	y, the ro decay n/decay ost eve s to find see if "high ro the mas ned for n bran me co	eactiv of a chai cry fis d the a no eactiv ss lim the n ching nside	vity of a actinides ins of 6 ssile (or way the on-fissile ve" one. hit to be uclide Y gratios, ored for
	uestions will be debated during the IAEA 2003 on the subject of fissile excepted ac		ttee Meeting	g that w	/ill be	held in
existing	r, some additional work will need to be in the IAEA regulation [7] para 672; it co nents due to:					
-	para. 672 a) ii), a ratio of fissile nuclides para. 672 a) iii), a concentration limit of f					
	those exception rules need to consider a tal conditions (precipitation, etc.).	limit per "group of	[*] packages"	to take	into	account
Moreove this proj	er, the current paragraph 672 d) may nee ect.	ed to be revised du	e to the res	ults ob	taineo	d during
sat qu es of tim	rease of reactivity due to radioactive decay mus fety assessments for package designs requiring a ite short half-lives can clearly increase reactivit sentially all of it will decay into the fissile nuclide L the transport needs to be considered. If somewhe is considered, radioactive decay of nuclides s insidered. The combined effect of nuclides gaining r	authority approval. Fiss y if shipped not too J-233. For nuclides with ere up to between a or uch as Am-243 with v	sionable nuclid long after pro n longer half-liv ne year and a very long half-l	es such duction. res, the r hundred lives do	as Pa Withir naximi years not ne	-233 with n a year, um length period of eed to be

REFEREN	ICE: SEC/T/03.146	INDICE : A	PAGE :	40	1	40
	REFEI	RENCES				
[1]	EMS/NC/2002-01 - "Basic criticality data and Draft report, 31 July 2002, D.MENNERDAHL	-	r actinide nu	clides"		
[2]	R.M. WESTFALL densities of actinides Meta Obtained through the ANS 8.15 group	ls and Oxides Base	ed on Crysta	llograp	hic D	ata,
[3]	N.J. BARTON, C.K. WILSON, "Review of Fis pp. 9.15-9.22, ICNC '95, The Fifth Internation September 17-21, 1995, Albuquerque					
[4]	"The criticality aspects of transportation of fis by E.R. WOODCOCK and H.C. PAXTON Technology Engineering and Safety – volume		on Press 19	61		
[5]	Interim report - "Evaluation of nuclear criticali C4/TMR2001/200-1 - C. DEAN, D. MENNER			inides i	n trar	nsport"
[6]	"Determination of the number of allowable U235, U233, Pu239, Pu241, Am242m, Np2 conditions." Note SEC/T/03.144 5th May 2003 - F. JEAN					
[7]	IAEA SAFETY STANDARDS SERIES No. S Regulations for the Safe Transport of Radioa REQUIREMENTS		96 Edition			
[8]	"Identification of the production chains of criticality risk involved by radioactive decays Note SEC/T/03.143 - 5th May 2003 - F. JEAN	of high nucleon nui			consi	der the
[9]	IAEA SAFETY STANDARDS SERIES No. TS Advisory Material for the IAEA Regulations for		ort of Radioa	ctive N	lateria	al
[10	 Valeurs minimales critiques sphériques des réfléchies. Etude complémentaire et compara Note SEC/T/02.322 du 18 octobre 2002 – M. 	ative »		lution,	nues	ou

APPENDIX A

ruble 0. Capability to sustain a chain reaction	Table 6.	Capability to sustain a chain reaction
---	----------	--

Actinide	Slow (S) / Fast (F)	Library	Comments
²²⁷ Ac	Neither see comments	JENDL- 3.2=3.3	η >1.0 above the fission threshold but inelastic scattering is at least 10 times more likely than fission. It will scatter the neutrons below the fission threshold.
²²⁸ Th	F	JENDL- 3.2=3.3	JANIS graphs show this is highly likely but a K-infinity calculation is required to confirm this.
²²⁹ Th	F but see comment	JENDL- 3.2=3.3	Classified fissible at high energy but there is a significant region between 1 and 10eV where η >1.0.
²³⁰ Th	Neither see comments	JEF-2.2	η >1.0 above the fission threshold but inelastic scattering is much more likely than fission. It will scatter the neutrons below the fission threshold.
²³² Th	Neither see comments	JENDL-3.3 but 3.2 is adequate	η >1.0 above the fission threshold but inelastic scattering is much more likely than fission. It will scatter the neutrons below the fission threshold
²³¹ Pa	F	JENDL3.2	JANIS η graphs of JEF-2.2 =ENDF/B-V =ENDF/B-VI are very similar to JENDL-3.3=JENDL3.2. Yet Ganesan, in Physor2000, is quoting K-infinite=0.9727 (JENDL-3.2), and 0.9410 ENDF/B-VI.5. This difference is probably due to incorporation of anisotropic angular data into JENDL-3.2 from model codes.(ENDF/B-V assumes isotropic distributions)
²³² U	F + S	ENDF/B- Vlr8	The high NUBAR retained in ENDF/B-VIr8 is attributed to Howerton's review. However this only lists an experimental value by Jaffey and Lerner. Howerton contacted the experimentalists noting the discrepancy with his theory. This discrepancy had also been noted by the experimentalists who wanted to repeat the measurement but the experiment was terminated. R Q Wright should be contacted about this. In the mean time we must be pessimistic and take the evaluation giving the lowest critical mass. ENDF/B-VIr8 is suggested because it retains the high experimental nu plus the anisotropic inelastic scatter.
²³³ U	S + F	JEF-2.2, JENDL-3.2 ENDF/B-V and beyond.	
²³⁴ U	F	JENDL-3.3	The new JENDL file uses model codes to represent anisotropy in inelastic levels. For Pa231 this seemed to increase K-infinity significantly.
²³⁵ U	S + F	JEF-2.2, JENDL-3.2 ENDF/B-VI	Results will alter with versions of ENDF/B-VI. For soft spectra JEF benchmarking indicates the effect is not large.
²³⁶ U	F	JEF-2.2, JENDL-3.2 ENDF/B-VI	
²³⁸ U	Neither see comments.	JEF-2.2, JENDL-3.2 ENDF/B-VI	η >1.0 above the fission threshold but inelastic scattering will scatter the neutrons below the fission threshold.
²³⁵ Np	F	JENDL-3.3	New evaluation for JENDL-3.3. ENDL-84 also has data.
²³⁶ Np	S + F	ENDF/B- VIr8	JENDL-3.3 is a conversion of JENDL-3.2. ENDF/B-VI r8 retains an experimental nubar of 3.12 compared with JENDL-3.3's more likely value of 2.4 from systematics. However for this work it is important to use the higher value. As nubar is constant at energies important to solutions one could scale JENDL-3.2 results.
²³⁷ Np	F	JEF-2.2, JENDL-3.2 ENDF/B-VI	

F	REFERENCE	SEC/T/03.1	46	INDICE : A APPENDIX A : 2				
Actinide	Slow (S) / Fast (F)	Library		Com	ments			
²³⁶ Pu	S + F	JENDL-3.3 or ENDF/B- VIr7	data.η is 2.37 cd release of ENDF This is a signific needs review be	ENDF/B-VIr7 –1995 and JENDL3.3 use the same resonance data. η is 2.37 compared with 1.43 in earlier files. (including earlie release of ENDF/B-VI!) This is a significant data difference (noted in JEF/DOC-657) and needs review because JEFF3.0 has retained the earlier file.				
²³⁷ Pu	S + F	JENDL-3.3	New evaluation with 2.25 from e	for JENDL-3.3		rmal η 2.375 c	ompared	
²³⁸ Pu	Possible solution!	JEF-2.2, JENDL-3.2 ENDF/B-VI	η>1 above 175e Important to kn could they be c mass is molten	eV ow how Pu238 ut into fine parti	cles in a s	solution? Metall	ic critica	
²³⁹ Pu	S + F	JEF-2.2, JENDL-3.2 ENDF/B-VI					<u>, ortanty:</u>	
²⁴⁰ Pu	F	JEF-2.2, JENDL-3.2 ENDF/B-VI						
²⁴¹ Pu	S + F	JEF-2.2, JENDL-3.2 ENDF/B-VI						
²⁴² Pu	F	JEF-2.2, JENDL-3.2 ENDF/B-VI						
²⁴⁴ Pu	F	JEF-2.2 JENDL-3.3	JEFF retained J but the new JEN in inelastic level	IDL file uses mo	odel codes	to represent a		
²⁴¹ Am	F	JEF-2.2, JENDL-3.2 ENDF/B-VI						
^{242m} Am	S + F	JENDL-3.3	Thermal η signif JENDL-3.3 sign					
²⁴³ Am	F	JEF-2.2, JENDL-3.2 ENDF/B-VI						
²⁴² Cm	S ? + F	JENDL-3.2 or 3.3	The fission cro resonance struc possibility of a fi	ture not preser				
²⁴³ Cm	S + F	ENDF/B-VI post 1995 or JENDL- 3.3	Data are very si	milar – MAZLOV	/ adopted.			
²⁴⁴ Cm	F	ENDF/B-VI or JENDL- 3.3	New JENDL-3.3	evaluation has	updated ir	nelastic angular	data.	
²⁴⁵ Cm	S + F	ENDF/B- VIr7 or JENDL-3.3	Both ENDF and	JENDL have a	lopted MA	SLOV data		
²⁴⁶ Cm	S ? + F	ENDF/B- VIr7	η is above 1.0 fe -400eV in END to have the sam	F/B-VIr7 only. J	ENDL-3.3	and ENDF/B-V	Ir7 seem	
²⁴⁷ Cm	S + F	JENDL-3.3	η larger in JEND	DL-3.3.		•		
²⁴⁸ Cm	F	JEF-2.2 ENDF/B-VI, JENDL-3.2 or JENDL- 3.3	Fission increased significantly from JENDL-3.2 JEF-2.2 and ENDF/B-VI are the same; nubar is higher than JENDL-3.2. JENDL-3.2 has anisotropic inelastic secondary data which are improved in JENDL-3.3					
²⁵⁰ Cm	F	JENDL-3.3	Only in JEND JEFF3.0)	L and 3.3 m	odified (J	ENDL-3.2 ado	pted for	
²⁴⁷ Bk	S + F	JENDL-3.3	Only in JENDL-3 Completely theo					

I	REFERENCE	: SEC/T/03.1	46 INDICE : A APPENDIX A : 3 /					
Actinide	Slow (S) / Fast (F)	Library	Comments					
²⁴⁸ Bk	?		NO DATA in EXFOR or CINDA					
²⁴⁹ Bk	F	ENDF/B-VI or JENDL- 3.3	JEF adopted ENDF/B-VI conversion of late addition to ENDF/B-V. The files contain different anisotropic inelastic angular distributions.					
²⁴⁸ Cf	?		NO relevant DATA in EXFOR or CINDA Yet a K-infinity reported from Russia in TRANSSACIII					
²⁴⁹ Cf	S + F	ENDF/B-VI or JENDL- 3.3	ENDF/B-VI is a conversion of a late addition to ENDF/B-V η is similar.					
²⁵⁰ Cf	F	ENDF/B-VI or JENDL- 3.3	ENDF/B-VI adopted late ENDF/B-V evaluation as did JEF-2.2 = JEFF3.0. η is above 1.0 at lower energies in ENDF/B-VI (above ~37KeV) compared with 321KeV in JENDL-3.3 but angular distribution shapes may make significant effects.					
²⁵¹ Cf	S + F	ENDF/B-VI	ENDF/B-VI and JEF-2.2=JEFF3.0 adopted ENDF/B-V with η above JENDL-3.3=JENDL-3.2.					
²⁵² Cf	S + F	ENDF/B-VI	The ENDF/B-VI = ENDF/B-V =JEF-2.2=JEFF3 evaluation yields a higher η up to 52.1KeV. ie at energies important to solutions.					
²⁵⁴ Cf	S + F	JENDL-3.2	JENDL-3.3 and JEFF-3.0 have adopted JENDL-3.2. The file is VERY crude being 1/V fits to Mughabghab's thermal data joined to a model calculation above 120eV.					
²⁵² Es	?		NO DATA in EXFOR. CINDA contains fission data 2-4MeV only.					
²⁵⁴ Es	S + F	JENDL-3.2	JENDL-3.3 and JEFF-3.0 have adopted JENDL-3.2. The file is VERY crude being 1/V fits to Mughabghab's thermal data, then a shape adjustment to fit his resonance integral. The curve is joined to a model calculation above 5eV.					
²⁵⁷ Fm	S + F	No evaluation	There is some data in EXFOR that indicate probable critical mass in a solution. A crude evaluation could be constructed in a similar manner to Es-254.					
²⁵⁸ Md	?		No relevant DATA in EXFOR or CINDA.					

REFERENCE : SEC/T/03.146

INDICE : A

APPENDIX B - Values of k infinite

Actinide	Atomic density		k _{inf} SCALE						k _{inf} MCNP				
nuclide	(atoms/bcm)	ENDF/B V –	ENDF/B V -	ENDF/B IV -	ENDF/B	ENDF/B	ENDF/B	ENDL-92	ENDF/B	ENDF/B VI.8	JEF2.2 ENEA	JENDL 3.2	JENDL 3.3
		238	44	27	VI.260c	VI.261c	VI.249c		VI.5 KAERI	KAERI		JAERI	KAERI
²⁹ Th	0.03043	NA	NA	NA	NA	NA	NA	NA	NA		NA	1.3497	
³¹ Pa	0.03997	0.9466	0.9635	NA	0.9457	0.9421	NA	NA	0.9457	0.9416	NA	0.9727	
²³² U	0.04848	3.0797	3.0727	NA	3.0797	3.0783	3.0792	NA	3.0787	3.2542	NA	2.6504	
²³³ U	0.04848	2.5617	2.562	2.5061	2.5604	2.5599	2.5611	2.5249	2.5605	2.5595	NA	2.5517	2.5567
²³⁴ U	0.04848	1.5276	1.5983	1.6049	1.5229	1.5197	1.523	1.6486	1.5238	1.5189	1.524	1.7423	1.5708
²³⁵ U	0.04848	2.3093	2.3067	2.3198	2.2766	2.2757	2.277	2.2692	2.2771	2.276	2.2759	2.282	2.2725
²³⁶ U	0.04848	0.6509	0.7072	0.7049	0.7351	0.7305	0.7352	0.6264	0.7353		0.6538		
²³⁸ U	0.04848	0.3398	0.3484	0.3435	0.3443	0.3392	0.344	0.3544	0.3445		0.3438		
²³⁵ Np	0.05202	NA	NA	NA	NA	NA	NA	1.7549	NA		NA		2.6456
²³⁶ Np	0.05202	NA	NA	NA	NA	NA	NA	2.8874	NA	2.9745	NA	2.3732	
²³⁷ Np	0.05202	1.6148	1.6748	1.7836	1.7043	1.7	NA	1.8297	1.705	1.7003	1.6308	1.648	1.7035
²³⁶ Pu	0.05001	2.9465	2.9452	NA	2.9444	NA	NA	NA	2.8733	2.8735	NA	2.632	2.933
²³⁷ Pu	0.05001	3.0547	3.0534	NA	3.0511	NA	NA	2.997	3.0507	3.05	NA	NA	2.9826
³⁸ Pu	0.05001	2.7694	2.7661	2.9739	2.7618	2.7609	2.7614	2.8248	2.7612	2.7605	2.8682	2.8771	2.8131
²³⁹ Pu	0.05001	2.9673	2.9654	2.9485	2.9862	2.9856	2.9858	2.9548	2.9854	2.9853	2.9243	2.9573	2.9518
⁴⁰ Pu	0.05001	2.2214	2.3059	2.3831	2.2646	2.2618	2.2658	2.2069	2.2653	2.2612	2.1188	2.1931	2.2341
⁴¹ Pu	0.05001	2.8767	2.876	2.9015	2.9196	2.9182	2.9009	2.7853	2.8999	2.899	2.7371	2.9087	2.9067
⁴² Pu	0.05001	1.8655	2.0094	2.4708	1.8667	1.8612	1.8681	1.7829	1.8669	1.8606	1.9194	1.9151	1.9665
⁴⁴ Pu	0.05001	1.5769	1.7484	NA	1.5734	NA	NA	NA	1.5729	1.5745	NA	NA	1.7164
²⁴¹ Am	0.03413	1.6615	1.7201	1.5416	1.9959	1.9928	NA	1.947	1.998	1.994	1.9628	1.8646	Problem
^{42m} Am	0.03413	3.5522	3.5491	NA	NA	NA	NA	NA	3.5477	3.546	NA	3.2487	3.3033
⁴³ Am	0.03413	1.5703	1.6208	1.1496	1.5107	1.5084	NA	1.3895	1.6878	1.6825	1.5917	1.4496	1.5265
⁴² Cm	0.03335	1.5012	1.5522	NA	1.5012	1.5021	NA	2.2363	1.5019	1.5017	2.8766	3.1076	3.0979
⁴³ Cm	0.03335	3.5794	3.5823	NA	3.575	NA	NA	3.5448	3.5771	Problem	3.657	3,5505	3.49
²⁴⁴ Cm	0.03335	2.6411	2.721	3.2882	2.6428	NA	2.6422	2.2432	2.6412	2.6419	2.5117	2.6032	2.5787
²⁴⁵ Cm	0.03335	3.6704	3.6756	NA	3.6883	3.6875	NA	3.4736	3.688	Problem	3.9823	3.5509	3.514
²⁴⁶ Cm	0.03335	2.3921	2.6212	NA	2.395	NA	NA	2.0107	2.395	2.47	2.3942	2.3125	2.5038
²⁴⁷ Cm	0.03335	3.7672	3.7643	NA	3.7912	NA	NA	3.6831	3.7927	3.7911	3.791	3.9265	3.8496
⁴⁸ Cm	0.03335	2.5666 NA	2.7791 NA	NA NA	2.5601 NA	NA NA	NA NA	2.1628 NA	2.56 NA	2.5597	2.56 NA	2.3479	2.3036 2.5704
²⁵⁰ Cm													
⁴⁷ Bk	0.03576	NA	NA	NA	NA	NA	NA	NA	NA		NA		2.2763
⁴⁹ Bk	0.03576	1.2507	1.2742	NA	1.5446	NA	NA	1.2864	1.5441	1.5443	NA	1.5085	
250Bk	0.03576											3.8367	
²⁴⁹ Cf	0.03653	4.1653	4.1596	NA	3.6797	NA	NA	4.0423	Problem	Problem	NA	4.0375	3.9767
⁵⁰ Cf	0.03653	3.6431	3.6374	NA	3.665	NA	NA	3.6589	3.6666	3.6664	NA	3.1469	
⁵¹ Cf	0.03653	4.2928	4.2869	NA	4.32	NA	NA	4.0386	4.3204	4.3194	NA	4.4786	
⁵² Cf	0.03653	3.5838	3.6242	NA	3.6276	NA	NA	3.1842	3.6278	3.6263	NA	4.1717	
⁵⁴ Cf	0.03653	NA	NA	NA	NA	NA	NA	NA	NA		NA	4.2639	
⁵⁴ Es	0.02104	NA	NA	NA	NA	NA	NA	NA	NA		NA	4.2189	
255Fm	0.02104								1			4.8209	

REFERENCE : SEC/T/03.146	INDICE : A	APPENDIX B: 2	/ 2
--------------------------	------------	---------------	-----

Some calculations have been performed at SERCO showing some differences for the k infinite when using the same library but a different code. The results are given below:

	MCNP (E	EMS)	MONK DICI	E (SERCO)	MONK BINGO (SERCO)
Actinide	ENDF/B-VIr5	JEF2.2	ENDF/B-VIr4	JEF2.2	JEF2.2
²³⁰ Th	0.1497	1	0.1456	1	1
²³² Th	0.0798	0.0681	0.0736	0.0643	0.0682
²³⁶ U	0.7353	0.6538	0.6736	0.5928	0.6544
²³⁸ U	0.3445	0.3438	0.3389	0.3377	0.3433
²³⁷ Np	1.705	1.6308	1.6768	1.6064	1.6355
²³⁸ Pu	2.7612	2.8682	2.7457	2.8526	2.869
²⁴⁰ Pu	2.2653	2.1188	2.2187	2.097	2.1226
²⁴² Pu	1.8669	1.9194	1.8316	1.894	1.9229
²⁴¹ Am	1.998	1.9628	1.806	1.9457	1.9705
²⁴³ Am	1.6878	1.5917	1.4925	1.5723	1.5997
²⁴⁴ Cm	2.6412	2.5117	2.6158	2.4699	2.511

REFERENCE : SEC/T/03.146	INDICE : A	APPENDIX C: 1	/ 3
--------------------------	------------	---------------	-----

Appendix C - available evaluations for the actinide nuclides

Actinide	JEFF-3.0 Source	JEF/DOC-657	JENDL3.3	ENDF/B-VIrto8
²²⁷ Ac	Not in JEFF-3.0	Not reviewed	JENDL-3.2	Not in ENDF/B-VI
²²⁸ Th	JENDL-3.2	JENDL-3.2	JENDL-3.2	Not in ENDF/B-VI
²²⁹ Th	JENDL-3.2 Minor change to NUBAR representation.	JENDL-3.2	JENDL-3.2	Not in ENDF/B-VI
²³⁰ Th	JEF-2.2	JEF-2.2	JENDL-3.2	ENDF/B-V-mat 9034
²³² Th	JENDL-3.2	JENDL-3.2	New Evaluation	ENDF/B-V –mat 904
²³¹ Pa	JEF-2.2 + ENDFBVIr4 NUBAR	JENDL-3.2+delayed neutron data from ENDF/B-VI.	JENDL-3.2	ENDF/B-V-mat 9131
²³² U	JEF-2.2 with ENDF/BVIr4 NUBAR	JEF-2.2 delayed neutron data from ENDF/BVI.	JENDL-3.2	New evaluation r8 mat 9219 Mughabghab resonance, JENDL3.2 high E, New fission, ENDF/B V NU preserved
²³³ U	JENDL-3.2 with ENDFBVIr4 NUBAR	JENDL-3.2 with ENDF/B-VI delayed neutron spectrum.	New Evaluation	ENDF/B-V-mat 9222
²³⁴ U	JEF-2.2	JENDL-3.2	New Evaluation	ENDF/B-V-mat 9225
²³⁵ U	ENDF/BVIr 5	ENDF/B-VI release 4 or later plus updated unresolved resonance data.	New Evaluation but same resonance parameters as ENDF/B-VI r5.	New Evaluation r5 mat 9228
²³⁶ U	JENDL-3.2	JENDL-3.2	New Evaluation	New Evaluation in 1989 mat 9231
²³⁸ U	JEF-2.2 with revised inelastic, from JENDL-3.2. (n,xn) from ENDF/B-VIr7. Delayed neutron fraction and delayed fission spectrum from JEF/DOC-920. NUBAR was recalculated.	JEF-2.2 with revised inelastic, (n,3n) and fission spectrum from JENDL-3.2 or as advised by WPEC sub-group, possibly incorporating new IRMM Geel , Lowell and Obninsk measurements of inelastic	New Evaluation	ENDF/BVIr3 in 1997 mat 9237
²³⁵ Np	Not in JEFF-3.0	ENDL-84	New Evaluation	Not in ENDF/B-VI
²³⁶ Np	JENDL-3.2	JENDL-3.2	JENDL-3.2	New Evaluation R8 mat 9343. New resonance parameters NUBAR 3.12 from Mughabghab.

F	REFERENCE : SEC/T/	03.146	INDICE : A	APPENDIX C: 2 /
Actinide	JEFF-3.0 Source	JEF/DOC-657	JENDL3.3	ENDF/B-VIrto8
²³⁷ Np	ENDF/B-VIr4,(n,xn) data from JEF-2.2.	ENDF/B-VI with (n,2n) replaced by JEF-2.2 and unresolved parameters added from JENDL-3.2 but await results from integral studies before a final choice is made.	New Evaluatio	n ENDF/B-VIr1 –mat 9346
²³⁶ Pu	JEF-2.2	JEF-2.2	New Evaluatio	n New evaluation Sept 1995 mat 9428
²³⁷ Pu	JEF-2.2	JEF-2.2	New Evaluatio	
²³⁸ Pu	JENDL-3.2 with unresolved resonance parameters from BROND-2.2 and fission energy from ENDFB-VI.	JENDL-3.2 with continuum energy distribution and unresolved parameters but not infinite dilution cross section fromBROND2; but await results from integral studies before a final choice is made.	New Evaluatio but much the same as JEFF comments.	
²³⁹ Pu	New Evaluation	New Evaluation	New Evaluatio	n ENDF/B-Vir2 –1997 mat 9437
²⁴⁰ Pu	New Evaluation	New Evaluation	New Evaluatio comments simil to JEFF3.0	n ENDF/B-VI r2 mat
²⁴¹ Pu	New Evaluation	New Evaluation	New Evaluatio	n ENDF/B-VI r2 mat 9443
²⁴² Pu	New Evaluation	New Evaluation	New Evaluatio	n ENDF/B-V mat 9446
²⁴⁴ Pu	JEF-2.2	JEF-2.2	New Evaluatio	n ENDF/B-V mat 9452
²⁴¹ Am	JEF-2.2	New unresolved data from Frohner otherwise a strong hint to use ENDF/B-VI subject to effects from integral trends	New Evaluatio	n ENDF/B-VIr2 Aug 1994 mat 9543
^{242m} Am	JEF-2.2 + ENDFBVI NUBAR	JEF-2.2 with delayed neutron data from ENDF/B-VI	New Evaluatio	n ENDF/B-V mat 9547
²⁴³ Am	JEF-2.2.	Review ENDF/B-VI release 5 and integral results. ENDF/BVIr5, JENDL-3.2 and BROND all improve on JEF-2.2.	New Evaluatio	n ENDF/B-VIr1 mat 9549
²⁴² Cm	JENDL-3.2 data were adopted below 40 keV (limit of the unresolved resonance region) and JEF-2.2 adopted at higher energies.	ENEA to review; noting photon production and fission energy data in ENDF/B-VI.	New Evaluatio	n ENDF/B-V mat 9631

RE	FERENCE : SEC/T/	03.146	INDICE : A AF	PPENDIX C: 3
A . (1 . 1 . 1 .				
Actinide	JEFF-3.0 Source	JEF/DOC-657	JENDL3.3	ENDF/B-VIrto8
²⁴³ Cm	JENDL-3.2 data were adopted below 40 keV (limit of the unresolved resonance region) and JEF- 2.2 adopted at higher energies.	ENEA to review; noting delayed neutron data in JENDL-3.2 or BROND.	New Evaluation	ENDF/B-VI July 199 MAZLOV Mat 9634
²⁴⁴ Cm	JEF-2.2	ENEA to review	New Evaluation	ENDF/B-V mat 963
²⁴⁵ Cm	JENDL-3.2.	ENEA to review	New Evaluation - mainly Maslov	ENDF/B-VI says r2 but distributed in 2000! Mat 9640.
²⁴⁶ Cm	MASLOV – MINSK (DIST- FEB96)	BROND/MASLOV	New Evaluation – mainly Maslov	ENDF/B-VI says r2 but distributed in 2000! Mat 9643.
²⁴⁷ Cm	JENDL-3.2	JENDL-3.2	New Evaluation	ENDF/B-V mat 9646
²⁴⁸ Cm	JENDL-3.2	JENDL-3.2.	New evaluation but JENDL2 resolved parameters	ENDF/B-V mat 9649
²⁵⁰ Cm	JENDL-3.2	JENDL-3.2	New Evaluation	Not in ENDF/B-VI
²⁴⁷ Bk	Not in JEFF-3.0	Not reviewed	New Evaluation	Not in ENDF/B-VI
²⁴⁸ Bk	Not in JEFF-3.0	Not reviewed	Not in JENDL-3.3	Not in ENDF/B-VI
²⁴⁹ Bk	ENDF/B-VIr4	Adopt ENDF/B- VI/CENDL2	JENDL-3.2	ENDF/B-VIr1 Possibly very late addition to ENDF/B ^v then converted. mat 9752
²⁴⁸ Cf	Not in JEFF-3.0		Not in JENDL-3.3	Not in ENDF/B-VI
²⁴⁹ Cf	ENDF/B-VIr4	Adopt ENDF/BVI = CENDL data.	JENDL-3.3 with new evaluation of angular and energy data.	ENDF/B-VIr1 Possibly very late addition to ENDF/B then converted. ma 9852
²⁵⁰ Cf	JEF-2.2	JEF-2.2	JENDL-3.2	ENDF/B-V mat 985
²⁵¹ Cf	JEF-2.2 with ENDFBVIr4 NUBAR.	JEF-2.2 with delayed neutron data from ENDF/B-VI.	JENDL-3.2	ENDF/B-V mat 9858
²⁵² Cf	JEF-2.2.	JEF-2.2 with delayed neutron data from ENDF/B-VI.	JENDL-3.2	ENDF/B-V mat 986
²⁵⁴ Cf	JENDL-3.2	JENDL-3.2	JENDL-3.2	Not in ENDF/B-VI
²⁵² Es	Not in JEFF-3.0	Not reviewed	Not in JENDL-3.3	Not in ENDF/B-VI
²⁵⁴ Es	JENDL-3.2	JENDL-3.2	JENDL-3.2	Not in ENDF/B-VI
²⁵⁷ Fm	Not in JEFF-3.0	Not reviewed	Not in JENDL-3.3	Not in ENDF/B-VI
²⁵⁸ Md	Not in JEFF-3.0	Not reviewed	Not in JENDL-3.3	Not in ENDF/B-VI

А

8

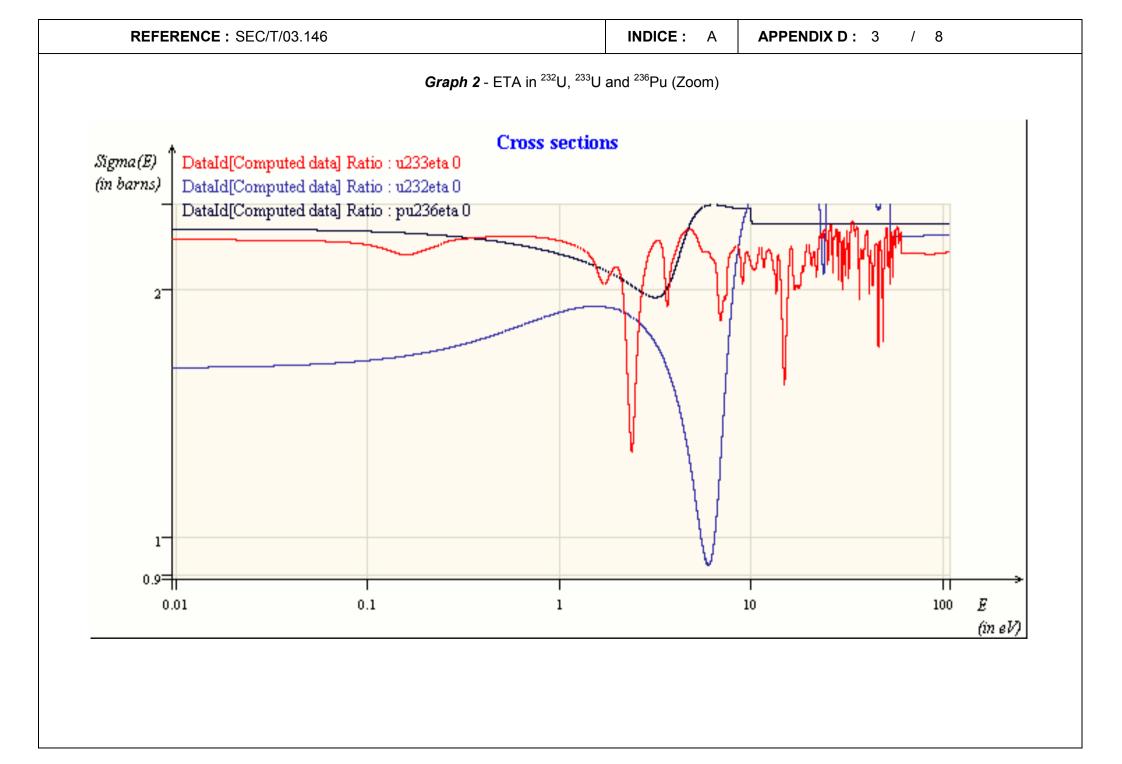
1

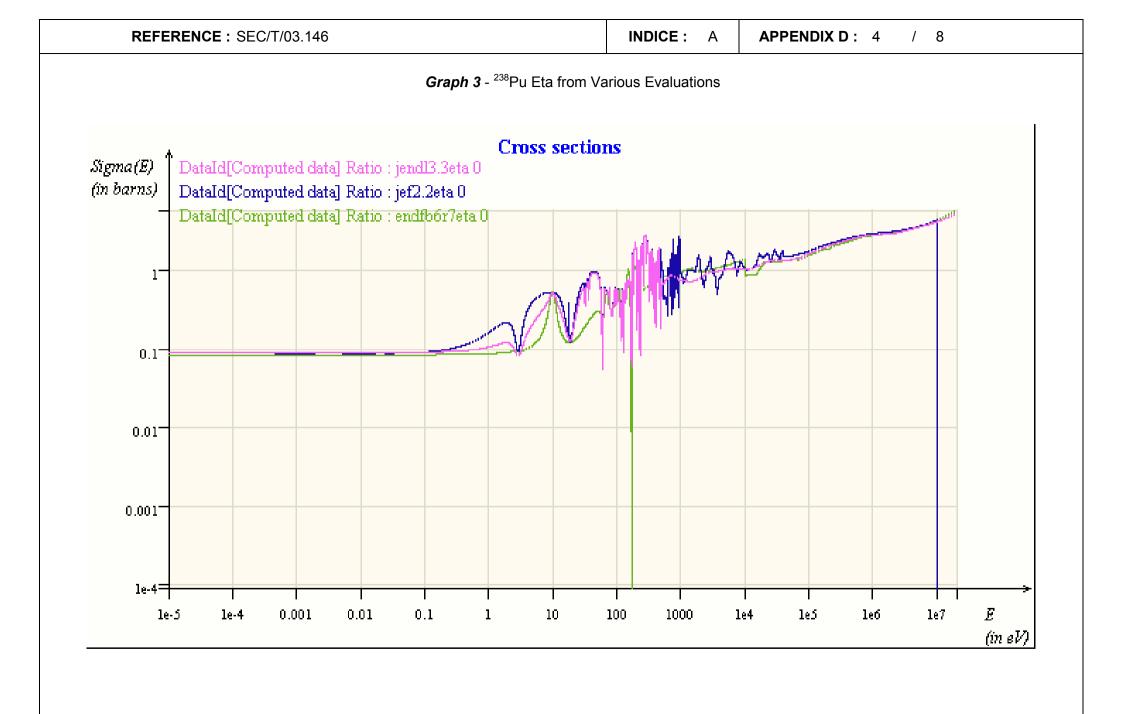
Appendix D - Graphs of ETA (η)

²³²U/²³⁶PU

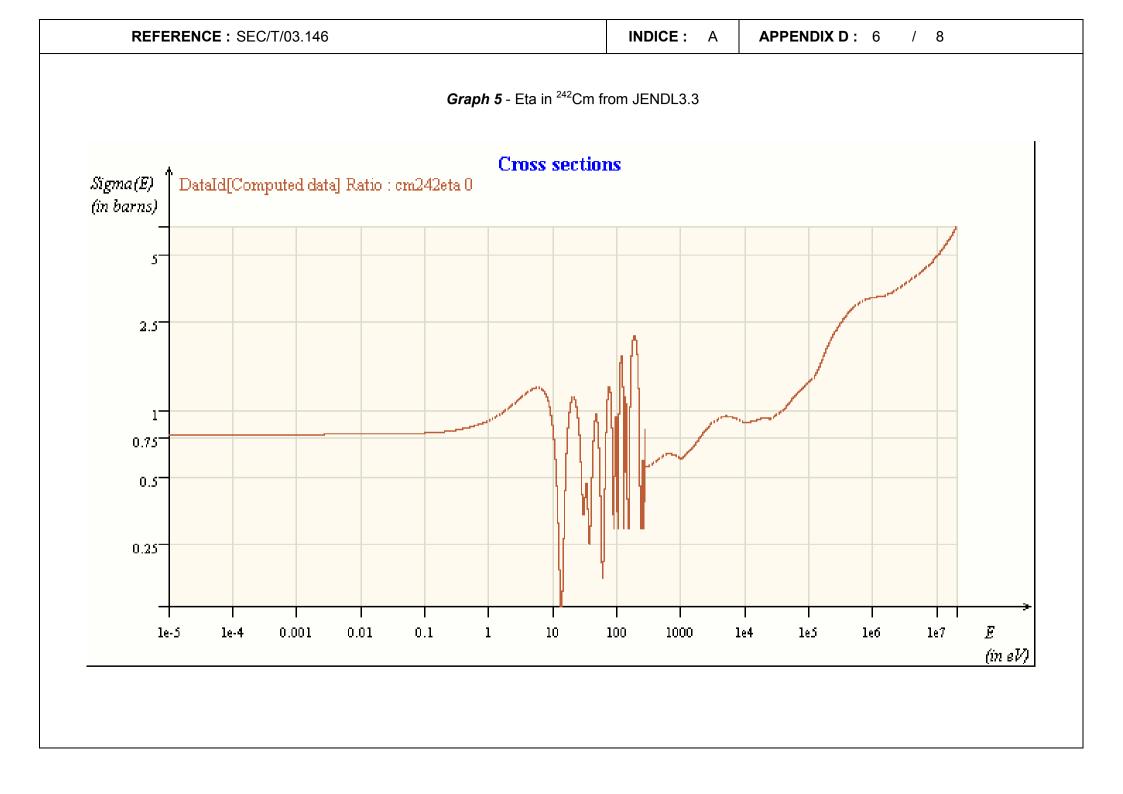
Reference **[5]** (appendix A) indicates a smaller critical mass in metal than in solution for ²³²U and ²³⁶Pu. *Graph 1* below shows ETA for both nuclides plus ²³³U where the critical mass in solution is much smaller than in metal. *Graph 2* covers a smaller energy range and significant dips in eta for ²³²U and ²³⁶Pu can be seen between 1 and 10 eV whereas the dip in ²³³U is much narrower. This may explain why a smaller mass is achieved in metal.

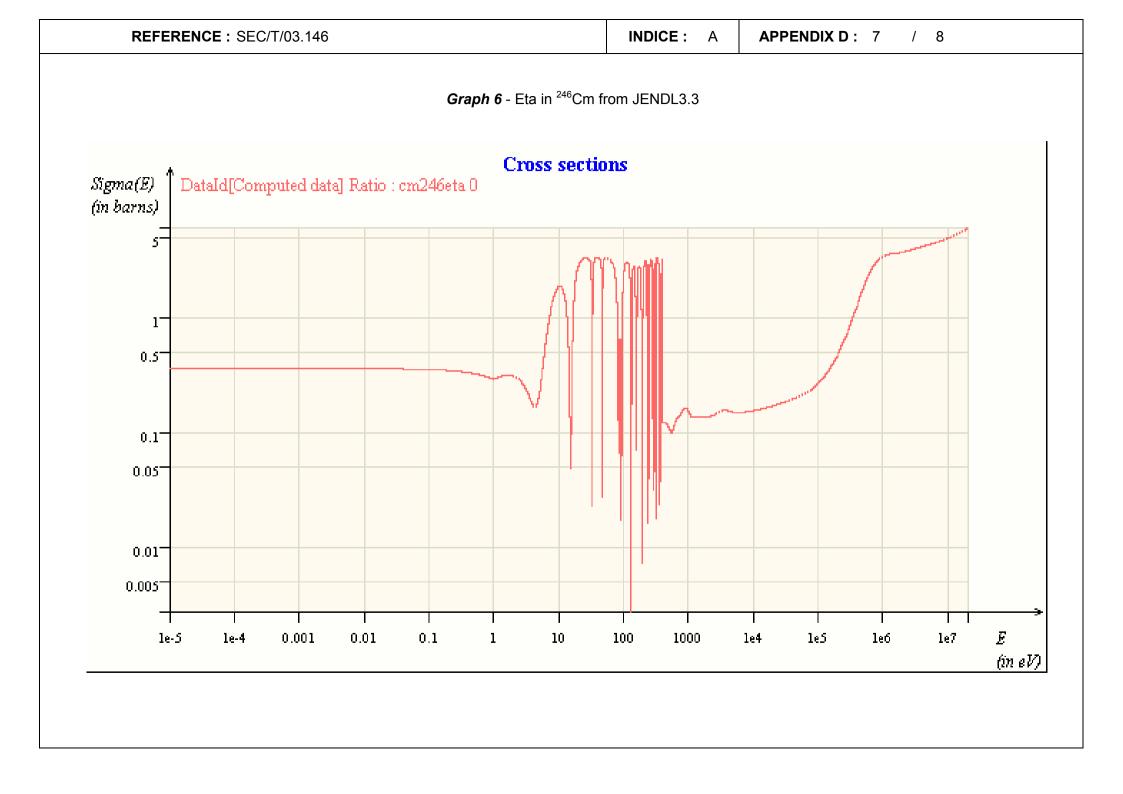
However, for ²³⁶Pu it appears that, with both ENDF/B-VI.8 and JENDL-3.3 cross sections, the moderated minimum critical mass is smaller than the metal case. The figures 1 and 2 clearly show that this is credible.


²³⁸PU


Table 3 indicates the possibility of criticality in solution yet all results in reference **[5]** are fast systems. **Appendix A** notes ETA is more than 1 above 175 eV. This is in JEF2.2 and JENDL3.3 but not in ENDF/B-VIr7. **Graphs 3** and **4** show this.

²⁴²CM, ²⁴⁶CM AND ²⁵⁴CF


Table 3 again indicates the possibility of criticality in solution yet all results in reference [5] are fast systems. **Appendix A** notes ETA is more than 1 in JENDL3.3 at various energies (all for 254 Cf). **Graphs 5, 6** and **7** show this.



REFERENCE : SI	EC/T/03.146
----------------	-------------

APPENDIX E : 1 / 1

APPENDIX E - Thermal NUBAR for the new evaluations

Actinide	JEFF-3.0 Source	JENDL3.3	ENDF/B-Virto8
²²⁷ Ac	Not in JEFF-3.0	1.8321	Not in ENDF/B-VI
²²⁸ Th	2.021	2.021	Not in ENDF/B-VI
²²⁹ Th	2.0872	2.0872	Not in ENDF/B-VI
²³⁰ Th	2.01	2.074	2.01
²³² Th	0.0 (threshold	0.0 (threshold	1.9487
	400KeV)	400KeV)	
²³¹ Pa	2.29	2.1816	2.29
²³² U	3.13	2.456	3.13
²³³ U	2.493	2.48771	2.4947
²³⁴ U	2.352	2.36447	2.352
²³⁵ U	2.4367	2.43663	2.4367
²³⁶ U	2.3829	2.3829	2.317
²³⁸ U	2.489	2.48754	2.492088
²³⁵ Np	Not in JEFF-3.0	2.66385	Not in ENDF/B-VI
²³⁶ Np	2.40705	2.40705	3.12
²³⁷ Np	2.63581	2.6014	2.63581
²³⁶ Pu	2.86	2.814	2.814
²³⁷ Pu	2.824	2.863	2.824
²³⁸ Pu	2.89471	2.8447	2.895
²³⁹ Pu	2.87777 but varying	2.88432 but varying	2.8789 but varying
²⁴⁰ Pu	2.78391	2.78391	2.803
²⁴¹ Pu	2.9313	2.9313	2.9453
²⁴² Pu	2.8595	2.8594	2.81
²⁴⁴ Pu	2.884	2.82	2.884
²⁴¹ Am	3.33	3.0599	3.238788
^{242m} Am	3.264	3.2705	3.264
²⁴³ Am	3.0616	3.2085	3.272833
²⁴² Cm	3.44	3.2509	3.44
²⁴³ Cm	3.43301	3.43201	3.43201
²⁴⁴ Cm	3.24	3.24435	3.46
²⁴⁵ Cm	3.5313	3.5964	3.5964
²⁴⁶ Cm	3.61416	3.61416	3.61416
²⁴⁷ Cm	3.8034	3.8034	3.58
²⁴⁸ Cm	3.1296	3.1296	3.49
²⁵⁰ Cm	3.39994	3.3999	Not in ENDF/B-VI
²⁴⁷ Bk	Not in JEFF-3.0	3.5067	Not in ENDF/B-VI
		0.0001	
²⁴⁸ Bk	Not in JEFF-3.0	Not in JENDL-3.3	Not in ENDF/B-VI
²⁴⁸ Bk ²⁴⁹ Bk			Not in ENDF/B-VI 3.3464
²⁴⁸ Bk ²⁴⁹ Bk ²⁴⁸ Cf	Not in JEFF-3.0	Not in JENDL-3.3	
²⁴⁸ Bk ²⁴⁹ Bk ²⁴⁸ Cf ²⁴⁹ Cf	Not in JEFF-3.0 3.3464	Not in JENDL-3.3 3.4189	3.3464
²⁴⁸ Bk ²⁴⁹ Bk ²⁴⁸ Cf ²⁴⁹ Cf ²⁵⁰ Cf	Not in JEFF-3.0 3.3464 Not in JEFF-3.0 3.8869 3.63	Not in JENDL-3.3 3.4189 Not in JENDL-3.3 4.0628 3.63406	3.3464 Not in ENDF/B-VI 3.8869 3.63
²⁴⁸ Bk ²⁴⁹ Bk ²⁴⁸ Cf ²⁴⁹ Cf ²⁵⁰ Cf ²⁵¹ Cf	Not in JEFF-3.0 3.3464 Not in JEFF-3.0 3.8869 3.63 4.14	Not in JENDL-3.3 3.4189 Not in JENDL-3.3 4.0628 3.63406 4.1059	3.3464 Not in ENDF/B-VI 3.8869 3.63 4.14
²⁴⁸ Bk ²⁴⁹ Bk ²⁴⁸ Cf ²⁴⁹ Cf ²⁵⁰ Cf ²⁵¹ Cf ²⁵² Cf	Not in JEFF-3.0 3.3464 Not in JEFF-3.0 3.8869 3.63 4.14 4.06	Not in JENDL-3.3 3.4189 Not in JENDL-3.3 4.0628 3.63406 4.1059 3.8923	3.3464 Not in ENDF/B-VI 3.8869 3.63 4.14 4.06
²⁴⁸ Bk ²⁴⁹ Bk ²⁴⁸ Cf ²⁴⁹ Cf ²⁵⁰ Cf ²⁵¹ Cf ²⁵² Cf ²⁵⁴ Cf	Not in JEFF-3.0 3.3464 Not in JEFF-3.0 3.8869 3.63 4.14 4.06 3.8508	Not in JENDL-3.3 3.4189 Not in JENDL-3.3 4.0628 3.63406 4.1059 3.8923 3.8508	3.3464 Not in ENDF/B-VI 3.8869 3.63 4.14
²⁴⁸ Bk ²⁴⁹ Bk ²⁴⁹ Cf ²⁵⁰ Cf ²⁵¹ Cf ²⁵² Cf ²⁵² Cf ²⁵² Es	Not in JEFF-3.0 3.3464 Not in JEFF-3.0 3.8869 3.63 4.14 4.06 3.8508 Not in JEFF-3.0	Not in JENDL-3.3 3.4189 Not in JENDL-3.3 4.0628 3.63406 4.1059 3.8923 3.8508 Not in JENDL-3.3	3.3464 Not in ENDF/B-VI 3.8869 3.63 4.14 4.06 Not in ENDF/B-VI Not in ENDF/B-VI
²⁴⁸ Bk ²⁴⁹ Bk ²⁴⁸ Cf ²⁴⁹ Cf ²⁵⁰ Cf ²⁵¹ Cf ²⁵² Cf ²⁵² Cf ²⁵⁴ Cf ²⁵² Es ²⁵⁴ Es	Not in JEFF-3.0 3.3464 Not in JEFF-3.0 3.8869 3.63 4.14 4.06 3.8508	Not in JENDL-3.3 3.4189 Not in JENDL-3.3 4.0628 3.63406 4.1059 3.8923 3.8508	3.3464 Not in ENDF/B-VI 3.8869 3.63 4.14 4.06 Not in ENDF/B-VI
²⁴⁸ Bk ²⁴⁹ Bk ²⁴⁸ Cf ²⁴⁹ Cf ²⁵⁰ Cf ²⁵¹ Cf ²⁵² Cf ²⁵² Cf ²⁵² Es	Not in JEFF-3.0 3.3464 Not in JEFF-3.0 3.8869 3.63 4.14 4.06 3.8508 Not in JEFF-3.0	Not in JENDL-3.3 3.4189 Not in JENDL-3.3 4.0628 3.63406 4.1059 3.8923 3.8508 Not in JENDL-3.3	3.3464 Not in ENDF/B-VI 3.8869 3.63 4.14 4.06 Not in ENDF/B-VI Not in ENDF/B-VI

Appendix F - Recapitulative table on the transport of actinide nuclides in normal and accidental conditions

Reflector	Actinides	Critical mass (k = 1)	Allowable mass (k = 0.95)	Mass per package	Steel thickness	Void thickness	5N1	N1	N2 (allowable)	N'2 (critical)	Ν
		g	g	g	mm	mm					
				15	-	-	165	33	20	26	20
	U 235	784.6	620.3	10	-	-	533	106	31	39	31
				5	-	-	4327	865	62	78	62
					0	-	115	23			
				15	2	-	9695	1939	15	18	15
					5	-	infinite	infinite			
	U 233	559.4	454		0	-	380	76			
				10	2	-	604500	120900	22	27	22
					5	-	infinite	infinite			
				1	-	-	366400	73280	227	279	227
					0	-	41	8			
	Pu 239	503		15	2	-	247	49	<mark>13</mark> 16	8	
WATER					5	-	2685	537			
(20 cm)			394.3		0	-	120	24			
		503	394.3	10	2	-	5365	1073	19	25	19
					5	-	infinite	infinite			
				5	-	-	965	193	39	50	39
				1	-	-	119270	23854	197	251	197
			216.9	F	0	-	295	59	04	200	21
	D., 044	268.9		5	5	-	infinite	infinite	21	26	21
	Pu 241			1	-	-	36640	7328	108	134	108
				0.5	-	-	289000	57800	216	268	216
					0	-	50	10	0	4.4	
	A 0 40	00	10.1	1	5	-	infinite	infinite	9	11	9
	Am 242m	23	19.1	0.5	-	-	395	79	19	23	19
				0.1	-	-	48130	9626	95	115	95
	Nix 007			10000	-	10.6	9	1	1	2	1
	Np 237	49961	37213		31.76	-	infinite	infinite	10	0.1	
	(crystal form)			1000	-	31.76	6720	1344	18	24	18
	0			10000	-	4.77	1	0	0	0	0
STEEL	Cm 244	16811	13336		29	-	infinite	infinite		_	
(30 cm)	(crystal form)			1000	-	29	546	109	6	8	6
(,				10	31.5	-	66	13			
	Pu 238			1000	-	31.5	72	14	1	2	1
	(crystal form)	4779	3930		35.325	-	915	183	1		
				500	-	35.325	512	103	3	4	3
						00.020	012	102			

TRIPOLI 4

Appendix G - Crosschecking calculations by SERCO with MONK

Case	Description	MONK9	- BINGO	CRISTAL	(M-C)/C	Δk
		k effective	SD (1σ)	$SD \leq 100 pcm$		(pcm)
9f8001	15g of U235, array 5x6x6 (180 packages), 700g Water, No wrapper	0.9541	±0.0005	0.96033	-0.65%	623
9f8002	As 9f8001 but 600g Water	0.9449	±0.0005	0.95137	-0.68%	647
9f8003	As 9f8001 but 800g Water	0.9517	±0.0005	0.95662	-0.51%	492
9f8004	15g of U233, array 5x5x5 (125 packages), 700g Water, No wrapper	0.9589	±0.0005	0.95971	-0.08%	81
9f8005	As 9f8004 but 600g Water	0.9447	±0.0005	0.94622	-0.16%	152
9f8006	As 9f8004 but 800g Water	0.957	±0.0005	0.95631	0.07%	-69
9f8007	15g of Pu239, array 3x4x4 (48 packages), 1000g Water, No wrapper	0.9656	±0.0005	0.97062	-0.52%	502
9f8008	As 9f8007 but 900g Water	0.9522	±0.0005	0.95795	-0.60%	575
9f8009	As 9f8007 but 1100g Water	0.9719	±0.0005	0.95317	1.97%	-1873
9f8010	1g of Pu241, array 35x35x35 (42875 packages), 100g Water, No wrapper	0.9694	±0.0005	0.97299	-0.37%	359
9f8011	As 9f8010 but 50g Water	0.8387	±0.0005	0.84297	-0.51%	427
9f8012	As 9f8010 but 75g Water	0.9391	±0.0005	0.94065	-0.16%	155
9f8013	As 9f8010 but 150g Water	0.9377	±0.0005	0.94107	-0.36%	337
9f8014	1000g of Np237, array 20x20x20 (8000 packages), 0g Water, Air wrapper 31.76mm thick	0.9664	±0.0005	0.97078	-0.45%	438
9f8015	1000g of Pu238, array 4x4x4 (64 packages), 0g Water, Steel wrapper	0.9418	±0.0005	0.98534 0.94099 (TRIPOLI 4)	-4.42% 0.09%	4354 -81
	A = 0f901E but 2x2x2 (27			0.86427	-3.99%	3447
9f8016	As 9f8015 but 3x3x3 (27 packages)	0.8298	±0.0005	0.83109 (TRIPOLI 4)	-0.16%	129
9f8017	As 9f8015 but 5x5x5 (125	1.039	±0.0005	1.0825 1.04073	-4.02% -0.17%	4350 173
310017	packages)	1.000	T0.0003	(TRIPOLI 4)	-U.1770	173
9f8018	As 9f8015 but actinide and steel smeared across 10x10x10cm cube	0.6442	±0.0005	undone	-	-
9f8019	As 9f8018 but 5x5x5 (125 packages)	0.7788	±0.0005	undone	-	-

REFERENCE :	SEC/T/03.146	INDICE : A	APPENDIX H :	1 /	2

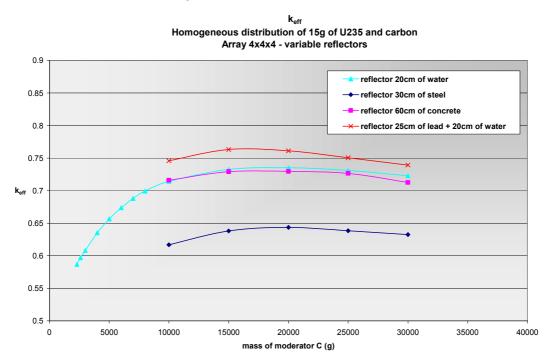
Appendix H – Exception criteria and limits of mass

			Cr	itical mas (k=1)	s (g)		Allowable mass (k=0.95)		Factors to consider on Mc				Safe Mc	Mass per group of	Mass per	From ANS
Nuclide	Spectrum	20 cm	water	30 cm st	teel/lead	Min	20 cm water	30 cm steel	heterogeneity reflectors	Margin of 5% in ∆k	Libraries F3	ANS 8.15	(g)	package (g)	package (g)	safe mas per packa
		EMS	IRSN	EMS	IRSN		(IRSN)	(IRSN)	moderator F1	F2						
²²⁷ Ac	NF															
²²⁸ Th	NF?															
²²⁹ Th	F	2262	×	994	x	994	×	×								
²³⁰ Th	NF															
²³² Th	NF															
²³¹ Pa	NF?															
²³² U	F	2130	2178	1850	1965	1850	×	1641	1	0.8	0.95	0.5	1406	703	58	38
²³³ U	5	568	560	425	×	425	454	×	0.8	0.8	0.95	0.7	258	129	10	12
²³⁴ U	F	134000	137350	-	85330	83000	×	63138	1	0.8	0.95	0.5	63080	31540	2628	1729
²³⁵ U	S	784	785	589	×	589	620	×	0.8	0.8	1	0.7	376	188	15	17
²³⁶ U	NF															0
²³⁸ U	NF	0.400							-					10.1		0
²³⁵ Np	F	9480	×	6180	×	6180	×	×	1	0.8	0.2		988	494	41	
²³⁶ Np ²³⁷ Np	S F	72	X	63	X	63	×	X	0.8	0.8	0.2	0.7	8	4	0.3	1125
²³⁶ Pu	F	57500 3310	75440 5040	38600 970	49960 4000	38600	×	37213 3287	1	0.75	0.7	0.7 0.5	20265 698	10132 349	844 29	20
²³⁷ Pu	г S	136	5040 X	110	4000 X	970 110	× ×		0.8	0.8	0.9	0.5	14	349 7	0.5	20
²³⁸ Pu	F	7350	7380	4700	× 4780	4700	×	× 3930	1	0.8	1	0,7	3760	, 1880	156	137
²³⁹ Pu	s '	494	503	353	x	353	^ 394	x	0.8	0.8	1	0.7	225	1000	9.3	10,2
²⁴⁰ Pu	F	32100	34950	18300	22580	18300	x	17790	1	0.8	0.85	0.7	12444	6222	518	10.2
²⁴¹ Pu	5	246	269	205	x	205	217	x	0.8	0.8	0.9	0.7	118	59	4.9	5.9
²⁴² Pu	F	78200	69350	36200	44240	36200	×	34127	1	0.75	0.9	0.7	24435	12217	1018	1055
²⁴⁴ Pu	F	222000	×	60300	x	60300	x	x	1	0.8	0.2		9648	4824	402	

REFERENCE : SEC/T/03.146

2	
/	
_	

			Cri	itical mas (k=1)	s (g)		Allowat (k=C	ole mass).95)	Fac	tors to consider	r on Mc		Safe Mc	Mass per group of	Mass per	From ANS
Nuclide	Spectrum		water	30 cm s	teel/lead	Min	20 cm water	30 cm steel	heterogeneity reflectors	Margin of 5% in ∆k	Libraries F3	ANS 8.15	(g)	package (g)	package (g)	safe mass per package
		EMS	IRSN	EMS	IRSN		(IRSN)	(IRSN)	moderator F1	F2						
²⁴¹ Am	F	52500	67770	33800	44000	33800	×	32207	1	0.7	0.75	0.7	17745	8872	739	985
^{242m} Am	5	20	23	17	×	17	19	×	0.8	0.8	0.85		9	4.5	0.37	
²⁴³ Am	F	195000	192800	88600	132350	88600	×	92506	1	0.7	0.95		58919	29459	2454	
²⁴² Cm	F	260000	17600	7720	12225	7720	×	9934	1	0.8	0.2		1235	617	51	
²⁴³ Cm	S	127	269	106	×	106	227	x	0.8	0.8	0.5	0.5	33	16.5	1.37	2.20
²⁴⁴ Cm	F	22100	27070	13200	16810	13200	×	13336	1	0.85	0.75	0.5	8415	4207	350	275
²⁴⁵ Cm	5	54	47	42	×	42	40	×	0.8	0.8	0.85	0.5	22	11	0.91	0.87
²⁴⁶ Cm	F	33600	×	22000	23200	22000	×	19239	1	0.8	0.2	0.5	3520	1760	146	458
²⁴⁷ Cm	5	2180	2200	796	×	796	1773	x	0.8	0.8	0.2	0.5	101	50	4	16
²⁴⁸ Cm	F	34700	x	21500	×	21500	×	x	1	0.8	0.2		3440	1720	143	
²⁵⁰ Cm	F	21400	×	14700	×	14700	×	×	1	0.8	0.2		2352	1176	98	
²⁴⁷ Bk	F	41200	×	35200	×	35200	×	x	1	0.8	0.2		5632	2816	234	
²⁴⁸ Bk	F	×	x	×	×	×	×	x	1	1	0.2		×	×	×	
²⁴⁹ Bk	F	179000	×	131000	×	131000	×	×	1	0.8	0.2		20960	10480	873	
²⁴⁸ Cf	F	×	×	×	×	×	×	x	1	0.8	0.2		×	×	×	
²⁴⁹ Cf	S	60	×	51	x	51	×	x	0.8	0.8	0.2	0.2	6	3	0.25	
²⁵⁰ Cf	F	5610	×	3130	x	3130	×	x	1	0.8	0.2	0.2	500	250	20	26
²⁵¹ Cf	5	25	x	20	×	20	×	x	0.8	0.8	0.2	0.2	2	1	0.083	0.167
²⁵² Cf	F	2910	×	2950	×	2910	×	×	1	0.8	0.2	0.2	465	232	19	24
²⁵⁴ Cf	F	2860	x	2250	×	2250	×	×	1	0.8	0.2	0.2	360	180	15	18
²⁵² Es	F	×	×	×	x	×	×	x	1	0.8	0.2		×	×		
²⁵⁴ Es	F	33	×	32	×	32	×	×	1	0.8	0.2	0.2	5.1	2.5	0.20	
²⁵⁷ Fm	F	×	×	×	×	×	×	×	1	0.8	0.2		×	×		
^{258a} Md	F	×	×	×	×	×	×	x	1	0.8	0.2		×	×		


A

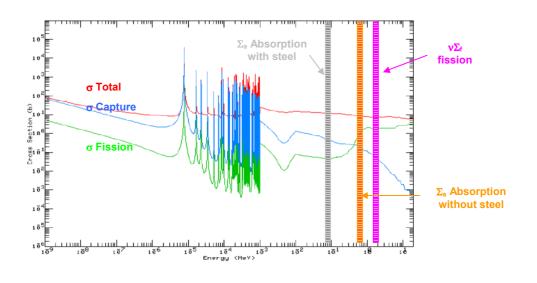
1

1

APPENDIX I – Effect of a Carbon moderator for U235

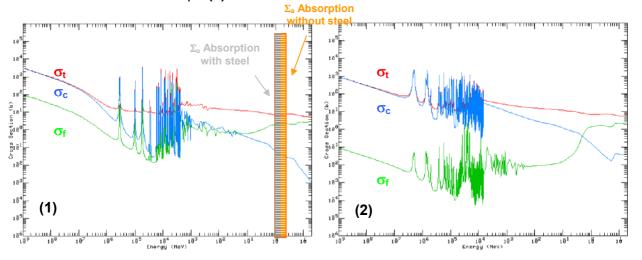
We tried to see if the safety factors used to define the exception criteria (see § 4.3 and **appendix H**) cover the cases of a carbon or a graphite moderator. For ²³⁵U, the maximum mass per package is 15 g and the maximum mass per group of packages has been set to 190 g(**appendix H** – considering the safety factor F1 and a safety margin of 5%): This means that we can only transport 12 packages if they contain 15 g of ²³⁵U. So, we have to check for the normal conditions of transport if 5x12 (60) packages are leading to a k_{eff} equal or higher to 0.95. Consequently, we performed calculations with an array of 4x4x4 (64) packages with taking into account different "standard" reflectors: 20 cm of water, 30 cm of steel, 60 cm of concrete and 25 cm of lead adding to 20 cm of water. Results are plotted in the graph below:

Graph 1. k_{eff} in normal conditions of transport (array) for the ²³⁵U moderated by natural carbon with taking into account the limitations of transportable mass.


We see from the graph that, even with the better reflector (lead with water), the maximum $k_{\rm eff}$ obtained is 0.763, which is inferior to 0.95 (-18,7% in Δk). We can consider that, even if carbon constitute a potential risk, the safety margins (appendix H) taken in the study are sufficient to prevent a criticality incident during a transport in normal conditions.

EMS indicates that mixtures such as carbon and water need to be evaluated when normal conditions are studied. Mixtures of wet carbon powder and fissile nuclides will give higher values of k_{eff} for 10x10x10 cm³ sized packages.

REFERENCE :	SEC/T/03.146	INDICE : A	APPENDIX J :	1	/	1
					-	


APPENDIX J – Most penalizing cases for arrays of packages containing 1 kg of Cm244 or 1 kg of Pu238

We can see that under 0.4 MeV, the fission cross section is lower than the capture cross-section; above 0.4 MeV, it is the opposite. As the average value of the absorption without a steel wrapper (void wrapper) is above 0.4 MeV (~ 0.5 MeV) and the average value of the absorption with a steel wrapper is under 0.4 MeV (~ 0.06 MeV) it can explain the shape of the curves. As we can see, steel scatters a little bit neutrons.

Graph 1. Microscopic cross section of ²⁴⁴Cm (JEF 2.2)

There is no such phenomenon with 238 Pu because the fission cross-section is above the capture cross section with and without a steel wrapper (see *Graph 2* (1)). We also performed a calculation with a steel wrapper for 237 Np and found the same effect as for 244 Cm because the microscopic cross sections have the same shape (2):

Graph 2. Microscopic cross section of ²³⁸Pu (1) and ²³⁷Np (2) (JEF 2.2)

А

APPENDIX K – Effect of reflectors on critical masses (EMS)

The values in Orange corresponds to best reflector and the values in purple corresponds to the lowest values (for the different libraries)

After completing the project for the European Commission, EMS is continuing the study on actinide nuclides and exception limits for the transport regulations. The following tables contain preliminary data from this continued study. In addition, results involving natural uranium will be made available for all nuclides. Validation by comparison with critical experiments is being carried out. Evaluated specifications and results from critical experiments are publicly available for ²³³U, ²³⁵U and ²³⁹Pu in almost pure forms. Concerning ²⁴¹Pu, ²³⁸Pu, ²⁴²Pu, ²⁴⁴Cm and ²³⁷Np, there are experiments giving reactivity influences. They are not reliable for determining the critical mass with each nuclide on its own. For other actinide nuclides, there is even less experimental support. Concerning reflectors, there are several experiments with water, steel, lead and other reflectors. There are also many experiments with natural uranium surrounding other fissionable materials. The preliminary JENDL-3.3 and ENDF/B-VI.8 libraries are giving quite good and consistent results so far. Exceptions are the nuclides for which problems are indicated for in the table of k_{inf}.

All results are preliminary. A safety factor of 10 or 20 may be motivated for nuclides without experimental support, unless other conservative measures have been applied. Even when experimental results are available from a single source, care must be taken since the specified data may be incorrect.

Actinide	Cross-section	Critical mass (kg)					
nuclide	library	Bare	H ₂ O	SS	Pb	1.5 cm H ₂ O	
	-		20 cm	30 cm	25 cm	+ 30 cm SS	
Th-229	JENDL-3.2	2839	2262	994	1082		
U-232	ENDF/B-V-238	3.57	2.13	1.85	2.11	1.66	
	ENDF/B-VI.8					2.92	
	JENDL-3.2					5.91	
	ENDF/B-VI.5					1.80	
U-233	ENDF/B-V-238	15.7 9	7.32	6.11	7.62	5.02	
	ENDF/B-VI.8					5.52	
	JENDL-3.3					5.45	
U-234	ENDF/B-V-238	145	134	83.0	79.6		
	ENDF/B-VI.8				86.0		
	JENDL-3.3			86.1	87.4		
	JEF-2.2			85.1	84.8		
U-235	ENDF/B-V-238	46.7	22.0	16.8	21.2	14.3	
	ENDF/B-VI.8					15.7	
	JENDL-3.3					15.4	
	JEF-2.2					15.2	
Np-235	ENDL-92	66.2	60.0	38.8	38.4		
	JENDL-3.3	12.0	9.48	6.18	6.93		
Np-236	ENDL-92	6.79	3.21	3.30	3.89	2.52	
	ENDF/B-VI.8	6.86	3.10	3.35	3.94	2.58	
	JENDL-3.2	15.8	8.31	7.18	8.67	6.22	
Np-237	ENDF/B-VI.2 DN	63.6	57.5	38.6	36.6		
	ENDF/B-VI.8			38.1	37.2		
	JENDL-3.3			37.9	39.8		
	JEF-2.2			47.6	47.3		

Metals at theoretical density

IN

INDICE : A

APPENDIX K:2/

Actinide	Cross-section	Critical mass (kg)							
nuclide	library	Bare	H ₂ O	SS	Pb	1.5 cm H ₂ O			
	,		20 cm	30 cm	25 cm	+ 30 cm SS			
Pu-236	ENDF/B-V-238	8.04	4.99	3.74	4.26	3.84			
	ENDF/B-VI.8	6.56	3.31	3.15	3.74	2.60			
	JENDL-3.3	7.40	3.58	3.52	4.31	2.81			
Pu-237	ENDF/B-VI.8	3.10	1.71	1.62	1.87	1.40			
	JENDL-3.3	3.58	1.99	1.91	2.23	1.64			
Pu-238	ENDF/B-V-238	9.49	7.35	4.70	5.25	5.11			
	ENDF/B-VI.8	0.10		5.15	0.20				
	JENDL-3.3			4.76					
	JEF-2.2			4.69					
Pu-239	ENDF/B-V-238	9.99	5.45	4.49	5.30	4.10			
1 4 200	ENDF/B-VI.8	0.00	0.10	11.10	0.00	4.33			
	JENDL-3.3					4.33			
	JEF-2.2					4.33			
Pu-240	ENDF/B-V-238	35.7	32.1	19.8	19.8	25.5 (1 cm			
1 4 240		00.7	02.1	10.0	10.0	H ₂ O)			
	ENDF/B-VI.8			20.9	21.06				
	JENDL-3.3			18.3	19.4				
	JEF-2.2			21.3	21.9				
Pu-241	ENDF/B-V-238	12.3	5.87	5.05	6.23	4.08			
10211	ENDF/B-VI.8	12.0	0.01	0.00	0.20	4.38			
	JENDL-3.3					4.16			
	JEF-2.2					4.46			
Pu-242	ENDF/B-V-238	85.6	78.2	48.1	45.8	1.10			
10212	ENDF/B-VI.8	00.0	10.2	50.7	49.2				
	JENDL-3.3			36.2	37.3				
	JEF-2.2			43.3	42.9				
Pu-244	ENDF/B-V-238	241	222	133	123				
1 u-2++	ENDF/B-VI.8	271		140	130				
	JENDL-3.3			60.3	61.0				
Am-241	ENDF/B-VI.2 DN	57.6	52.5	33.8	30.7				
7111-241	ENDF/B-VI.8	57.0	52.5	33.9	31.4				
	JENDL-3.2			42.5	43.7				
	JEF-2.2			40.5	37.6				
Am-242m	ENDF/B-V-238	8.83	3.21	3.00	3.87	2.15			
AIII-242III	ENDF/B-VI.8	0.05	3.21	3.00	3.07	2.37			
	JENDL-3.3					3.20			
Am-243	ENDF/B-VI.2 DN	209	195	138	121	5.20			
AIII-243	ENDF/B-VI.8	209	195	88.5	121				
	JENDL-3.3			133	133				
	JEF-2.2			133	133				
Cm 242	ENDF/B-V-238	274	260		107				
Cm-242	ENDF/B-VI.8	371	260	231	197				
	JENDL-3.3	15 4	11.0	239	205				
	JEF-2.2	15.4	11.2	7.72	8.52				
Cm 242	ENDF/B-V-238	0.25	2 0 2	11.6	12.7	2.10			
Cm-243	ENDF/B-VI.5	8.35	2.82	3.10	3.82	2.19			
	JENDL-3.3					2.21			
	JENDL-3.3					2.07			
0	ENDF/B-V-238	20.0	00.4	12.0	12.0	2.14			
Cm-244	ENDF/B-V-238 ENDF/B-VI.8	26.6	22.1	13.2	13.0				
	JENDL-3.3			13.9	13.8				
	JERDL-3.3 JEF-2.2			15.6	15.8				
	JEF-2.2			15.9	16.4				

4

INDICE : A

APPENDIX K: 3 /

4

Actinide	Cross-section	Critical mass (kg)						
nuclide	library	Bare	H ₂ O	SS	Pb	1.5 cm H ₂ O		
indende	inor car y	Daio	20 cm	30 cm	25 cm	+ 30 cm SS		
Cm-245	ENDF/B-V-238	9.11	3.08	3.46	4.31	2.15		
	ENDF/B-VI.5					2.36		
	JENDL-3.3					3.00 (SS?)		
	JEF-2.2					1.87		
Cm-246	ENDF/B-V-238	38.9	33.6	22.0	20.4			
	ENDF/B-VI.8			25.9	25.0			
	JENDL-3.3			23.1	24.5			
				(SS?)				
	JEF-2.2			22.0	21.1			
Cm-247	ENDF/B-V-238	6.94	3.52	2.84	3.37	2.73		
	ENDF/B-VI.8					2.80		
	JENDL-3.3					2.36		
	JEF-2.2					2.80		
Cm-248	ENDF/B-V-238	40.4	34.7	21.5	20.5			
	ENDF/B-VI.8			22.6	21.5			
	JENDL-3.3			33.1	34.6			
				(SS?)				
	JEF-2.2			22.1	21.5			
Cm-250	JENDL-3.3	23.5	21.4	14.7	15.2			
Bk-247	JENDL-3.3	75.7	41.2	35.2	42.6	30.4		
Bk-249	ENDF/B-VI.5	192	179	131	117			
	ENDF/B-VI.8			132	117			
	JENDL-3.2			150				
Bk-250	JENDL-3.2-J	6.17	2.83	2.76	3.36	2.44		
Cf-249	ENDF/B-V-238	5.91	2.28	2.39	2.95	1.65		
	ENDF/B-VI.8					2.09		
	JENDL-3.3					1.91		
Cf-250	ENDF/B-V-238	6.55	5.61	3.13	3.45			
	ENDF/B-VI.8			3.34				
	JENDL-3.2			5.19				
Cf-251	ENDF/B-V-238	5.46	2.45	2.27	2.77	1.85		
	ENDF/B-VI.8					1.90		
	JENDL-3.2					1.12		
Cf-252	ENDF/B-V-238	5.87	2.91	3.32	3.51	2.72		
	ENDF/B-VI.8					2.65		
	JENDL-3.2					1.94		
Cf-254	JENDL-3.2	4.27	2.86	2.25	2.56	2.43		
Es-254	JENDL-3.2	9.89	2.26	2.90	4.22	1.85		
Fm-255	JENDL-3.2	6.73	1.77	2.11	3.07	1.57		

Uniform homogeneous water-moderated critical masses

Actinide nuclide	Cross- section	Bare mass		Approximate minimum critical mass (g) with reflectors					
	library	H/X	Bare	H/X	H ₂ O	H/X	SS	Pb	1.5 cm H ₂ O
	-				20 cm		30 cm	25 cm	+ 30 cm SS
U-232	ENDF/B-V-238	67.5	9050	53.7	5000	29.2*	2910*	3260*	3250*
	ENDF/B-VI.8					29.2	3450		
	JENDL-3.2					29.2	12000		
	ENDF/B-VI.5					29.2	3070		
U-233	ENDF/B-V-238	550	1080	458	568	392*	424*	440*	420*
	ENDF/B-VI.8					392			432
	JENDL-3.3					392			432

REFERENCE : SEC/T/03.146

INDICE : A

APPENDIX K: 4 /

4

Actinide nuclide	Cross- section	Bare mass		Арр	proximate	minimum	n critical n	nass (g) v	vith reflectors
	library	H/X	Bare	H/X	H ₂ O 20 cm	H/X	SS 30 cm	Pb 25 cm	1.5 cm H ₂ O + 30 cm SS
U-235	ENDF/B-V-238	550	1420	458	784	458	589	595	588
	ENDF/B-VI.8					458			615
	JENDL-3.3					458			615
	JEF 2.2					458			609
Np-236	ENDL-92	3208	147	2138	72.0	2566	59.3	62.0	55.2
1	ENDF/B-VI.8					2566			34.1
	JENDL-3.2					2566			163
Pu-236	ENDF/B-V-238	132	16600	110	10800	110	6930	6920	7770
	ENDF/B-VI.2					110	11200		
	ENDF/B-VI.8					132			834
	JENDL-3.3					132			841
Pu-237	ENDF/B-VI.5	2220	257	1910	136	1910	110	111	105
	ENDF/B-VI.8					1910			105
	JENDL-3.3					1910			83.3
Pu-239	ENDF/B-V-238	988	877	889	494	889	353		
	ENDF/B-VI.8					889	372		
	JENDL-3.3					889	369		
	JEF 2.2					889	363		
Pu-241	ENDF/B-V-238	1212	511	784	246	784	205	219	204
	ENDF/B-VI.8	1212	011	101	210	889	200	210	208
	JENDL-3.3					889			209
	JEF 2.2					889			207
Am-242m	ENDF/B-V-238	10300	42	7820	20	7820	17	18	15.7
, wit 6 7 6 111	ENDF/B-VI.8	10000	12	1020	20	7820		10	16.5
	JENDL-3.3					7820			18.1
Cm-243	ENDF/B-V-238	1052	280	740	127	665*	105*	115*	97*
011-2-10	ENDF/B-VI.5	1002	200	740	121	665	100	110	103
	JENDL-3.3					665			153
	JEF 2.2					665			214
Cm-245	ENDF/B-V-238	3330	116	2220	54	2220	42	45	39
011-245	ENDF/B-VI.5	3330	110	2220	J 4	2220	42	40	44.2
	JENDL-3.3					2220			49.1
	JEF 2.2					2220			38.5
Cm-247	ENDF/B-V-238	141	4060	109	2180	109	1430	1580	1510
011-247	ENDF/B-VI.8	141	4000	109	2100	109	1430	1360	1560
	JENDL-3.3								
	JEF 2.2					141	796		760
DK 047	JEP 2.2 JENDL-3.3	110	12400	20.2	80000	109	1500	57500	1540
Bk-247		44.8	12400 0	29.3	89900	24800	52400	57500	59700
Bk-250	JENDL-3.2	1240	384	932	191	932	164	171	152
	ENDF/B-V-238		129			2280*	50*	54*	46*
Cf-249	ENDF/B-VI.2	3040	129	1830	60		50	54	
	JENDL-3.3					2280			54.2
Cf 254	ENDF/B-V-238	0210	40	7020	25	2280	20	21	49.4
Cf-251	ENDF/B-V-236	8310	48	7030	25	7030	20	21	19
	JENDL-3.2					7030			19.5
01 050	ENDF/B-V-238	E0 4	7000	047	2000	7030	2050	2040	26.1
Cf-252	ENDF/B-V-236 ENDF/B-VI.8	50.4	7930	34.7	3860	34.7	2950	3210	2840
	JENDL-3.2					34.7			2982
F 0 F (0470	70.0	0440	00.0	34.7	00.4	05.5	3020
Es-254 Fm-255	JENDL-3.2	3170	76.6	2110	33.3	2110	32.1	35.5	27.4
	JENDL-3.2	6340	39.4	3960	16.5	3960	16.8	18.1	13.3