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Executive Summary 

1. Introduction 

This report has been prepared towards fulfilment of a European Commission project, 

ENER/C1/427-2012 on ‘Carbon impacts of biomass consumed in the EU’. The principal 

objective of this project, as stated originally in the project tender specification, is to 

deliver a qualitative and quantitative assessment of the direct and indirect greenhouse 

gas (GHG) emissions  associated with different types of solid and gaseous biomass used 

in electricity and heating/cooling in the EU under a number of scenarios focussing on the 

period to 2030, in order to provide objective information on which to base further 

development of policy on the role of biomass as a source of energy with low associated 

GHG emissions. 

This report addresses Task 1 of the project, which is concerned with a review of scientific 

literature on the contributions of ‘biogenic carbon’ to GHG emissions due to the 

production and use of bioenergy, and how these contributions may be appropriately 

included in methodologies for calculating GHG emissions.  The review is concerned 

primarily with woody biomass harvested from forests for use as bioenergy, referred to in 

this report as ‘forest bioenergy’, because this reflects an important current focus of 

debate in the scientific literature. The report effectively constitutes the qualitative 

assessment required as part of the principal objective of this project, and is divided into 

five sections: 

1 Introduction 

2 Forests, forest management and wood utilisation 

3 Forest biogenic carbon and its management 

4 Life cycle assessment: essential concepts and key issues 

5 Assessment of literature on GHG emissions of GHG bioenergy. 

Detailed supporting information is provided in 11 appendices. This Executive Summary 

describes the essential content and key messages of the report. 

2. Forests, forest management and wood utilisation  

In order to set the context for the assessment of GHG emissions due to consumption of 

forest bioenergy in the EU, Section 2 of this report briefly considers the status of forests 

in the EU, and more widely, the extent of current and potential future use of forest 

bioenergy in the EU and the implications for harvesting and utilisation of wood from 

forests.  

Forest bioenergy is typically a co-product of wood material/fibre production 

Typically, forest bioenergy is produced as a complementary co-product of wood 

material/fibre products. It is unusual for forest bioenergy to be the sole product from 

harvested wood. 
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Forest bioenergy consumption in the EU has increased and is likely to increase 

significantly in the period to 2020 

The consumption of wood for energy in the EU has been increasing in recent times. The 

demand for wood in the EU is very likely to increase in the period to 2020 and potentially 

beyond, with most of this due to a significantly greater increase in the demand for wood 

for energy. 

Forest management will need to change to meet demands for forest bioenergy 

In order to fill a gap between future demands for wood and potential supply, it will be 

necessary to intensify management of EU forests in order to increase removals of 

primary wood and/or import more wood into the EU and/or mobilise the availability of 

sources of other woody biomass. This may be achieved through a number of changes to 

forest management and/or patterns of wood use, which may be more or less likely to 

actually occur. 

Certain harvested wood feedstocks and forest management practices are more 

likely than others to be involved in the supply of forest bioenergy 

In the period to 2020, demand for forest bioenergy seems likely to be met through 

increased extraction of harvest residues including poor-quality stemwood and trees, the 

use of sawmill co-products and recovered waste wood. Some small roundwood may be 

used as a source of bioenergy. It is less likely that forest bioenergy will involve 

consumption of wood suitable for high value applications, such as sawlogs typically used 

for the manufacture of sawn timber. 

In terms of changes to forest management, a rise in demand for forest bioenergy is 

already stimulating interest in the extraction of harvest residues and in the introduction 

of silvicultural thinnings in young stands. In some regions, it is possible that the 

additional revenue from forest bioenergy is giving incentives for harvesting operations in 

forests (thinning and/or felling) for co-production, where this would not otherwise occur. 

Demand for forest bioenergy would need to be very intense for harvesting to be 

introduced in otherwise unmanaged forest areas, or for forest management to be 

fundamentally restructured, solely to produce bioenergy. Activities such as enrichment of 

unproductive forest areas and creation of new forest areas would most likely require very 

intense demand for forest bioenergy or additional incentives. 

Competition for forest biomass for energy use or for paper and board may 

occur, but there are also existing market trends 

The use of sawmill co-products may be based on additional supply associated with 

increased production of sawn timber, or may involve the diversion of some of the existing 

supply from the manufacture of wood-based panels. Similarly, some small roundwood 

used for bioenergy may involve increased co-production with sawn timber, or diversion of 

supply from the wood-based panel and paper industries. It is difficult to assess the 

extent to which these activities may occur. Meeting demands for forest bioenergy may 

involve some direct competition with the wood-based panels and paper industries, or 
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may involve ‘picking up’ existing supply in situations where demand for wood-based 

panels and paper is already declining. 

Forests are managed for multiple objectives and increased demand for forest 

bioenergy is very unlikely to change this situation 

In the EU and elsewhere, generally forests are managed for many purposes, one of which 

is to supply forest bioenergy. Production of forest bioenergy is thus most likely to occur 

as an integrated part of forest management and wood use for a range of objectives. A 

requirement to produce forest bioenergy seems unlikely to become the principal driver of 

forest management unless demand for forest bioenergy becomes very intense. 

3. Forest biogenic carbon and its management 

Section 3 of this report presents an overview of the role of forest carbon stocks as 

biogenic carbon in contributing to the GHG emissions of forest bioenergy, in particular 

interactions with forest management and demands for increased bioenergy production.  

Sensitivity of GHG emissions due to biogenic carbon 

Biogenic carbon can make a very variable contribution to the GHG emissions associated 

with forest bioenergy. Consequent GHG emissions can vary from negligible levels to very 

significant levels (similar to or greater than GHG emissions of fossil energy sources). In 

some specific cases, forest bioenergy use may be associated with net carbon 

sequestration. Many factors influence GHG emissions of forest bioenergy due to biogenic 

carbon. These factors have been analysed and their influences are summarised in Figure 

ES1. GHG emissions are very sensitive to these factors but outcomes are predictable, at 

least in principle.  

Additionality of GHG emissions and reductions 

Although perhaps not explicitly stated, there is a general presumption in the discussion 

presented in this section of a focus on GHG emissions that would occur as a result of 

changes in the level of consumption of forest bioenergy. Any contribution of biogenic 

carbon to GHG emissions associated with existing consumption of forest bioenergy 

effectively forms a component of baseline levels of GHG emissions. The critical question 

is concerned with the effects that a change in the scale of consumption of forest 

bioenergy would have on baseline levels of GHG emissions, i.e. whether they would 

increase or decrease. This needs to be clearly understood and allowed for in assessments 

of contributions of biogenic carbon to GHG emissions of forest bioenergy.  

Baseline forest management  

As part of the assessment of the effects of changes in levels of consumption of forest 

bioenergy, it is necessary to include appropriate assumptions about the age distribution 

of existing forests, deforestation and afforestation into scenarios for future land use and 

forest management to meet demands for forest bioenergy. It is also necessary to 

characterise the existing management of relevant forest areas, and the effects of 
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management on the development of forest carbon stocks. Representation of these 

aspects of forests and their management is required for the construction of a baseline 

scenario, representing ‘business as usual’ development of the management of forests, 

against which any policy scenarios may be evaluated. Furthermore, it is necessary to 

consider the possible influences of changes in demands for forest bioenergy on the age 

distribution of forests and on future rates of deforestation and afforestation. 

Relevance of scale 

The concept of scale is relevant to the assessment of GHG emissions associated with the 

consumption of forest bioenergy in two senses.  

Firstly, forest bioenergy systems need to be assessed at an appropriate spatial and 

temporal scale. The spatial scale needs to reflect the complete terrestrial vegetation 

system involved in supplying bioenergy. Examples of relevant spatial scales, variously 

depending on context, include the complete areas of forests supplying a particular 

consumer with bioenergy, all of the forests situated within a country or group of 

countries, or all of the forests managed by a commercial company or land owner. The 

scale of an individual forest stand is generally of less relevance except for very specific, 

detailed purposes. The temporal scale needs to capture the variable effects of forest 

bioenergy on GHG emissions over time. GHG emissions calculation methodologies need 

to address sensitivities of results to interactions between human management of forests 

and natural processes and in particular the generally contrasting short-term and long-

term consequences of forest management interventions. 

Secondly, the contribution of biogenic carbon to GHG emissions of forest bioenergy is 

sensitive to the scale of consumption. For example, a modest increase in consumption 

might be achieved through marginal adjustments to existing management of forest 

areas, with limited effects on forest carbon stocks. However, a significant increase in 

consumption, for example as illustrated by the ‘high wood mobilisation’ scenarios 

considered in the EUwood study (Mantau et al., 2010) and EFSOS II study (UN-ECE, 

2011) would require changes to forest management such as illustrated by scenarios in 

Table 2.10, Section 2.7. The implications of significant increases in consumption of forest 

bioenergy in the EU on patterns of forest management and wood utilisation are also 

assessed in Appendix 11 and also considered in Table ES1. Many of the scenarios 

identified for changes in forest management would involve significant and variable 

influences on the development of forest carbon stocks. Consequently, the variable effects 

of scale of consumption need to be allowed for in assessments of the contribution of 

biogenic carbon to GHG emissions of forest bioenergy. 

Related to the issue of scale, it is important to recognise that transitions in the level of 

consumption of forest bioenergy, and consequent responses of forest carbon stocks, can 

involve long timescales. This is particularly true when considering significant increases in 

consumption of forest bioenergy, which would require major changes to the management 

of large forest areas over time.  
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Counterfactuals  

For assessments of GHG emissions of forest bioenergy involving changes to the 

management of forests and/or changes to patterns in the use of harvested wood, it is 

essential to characterise realistic and justifiable ‘counterfactuals’. Often it is relevant to 

study the change from ‘business as usual’ in patterns of land use, i.e. forest 

management, thus making the construction of a ‘business as usual’ scenario relevant as 

part of the definition of the counterfactual. For harvested wood products, counterfactuals 

involve the ‘business as usual’ patterns for wood use, and also a set of assumptions 

about what energy sources and materials might be used instead of forest bioenergy and 

harvested wood products. When defining such counterfactuals, it is important to 

recognise that the use of wood for material and fibre products, and as a feedstock for 

chemicals, may become more important than forest bioenergy in the future, as part of 

the development of a bioeconomy, or an otherwise decarbonised economy.  

LULUCF accounting rules 

Existing EU and international accounting systems for biogenic carbon in forests and 

harvested wood, supporting international efforts to limit GHG emissions, serve very 

specific purposes and are unsuitable for more general application as calculation methods 

for assessing the GHG emissions associated with forest bioenergy. 
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Figure ES1.  Illustration of how the GHG emissions associated with the harvesting and use of forest bioenergy may depend on 

a number of factors.
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Figure ES1 (continued).  Illustration of how the GHG emissions associated with the harvesting and use of forest bioenergy 

may depend on a number of factors. 
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4. Life cycle assessment: essential concepts and key issues  

Section 4 of this report discusses key concepts and issues concerning LCA methodology, 

with particular reference to inclusion of biogenic carbon in LCA calculations. Considerable 

care must be exercised when reviewing and evaluating existing LCA studies, because 

methodologies may be applied with more or less objective and transparent reasoning. 

LCA is the appropriate methodology for assessing GHG emissions of forest 

bioenergy 

LCA is the appropriate methodology for the assessment of GHG emissions associated with 

the consumption of forest bioenergy. There can be challenges in representing 

contributions to GHG emissions due to terrestrial vegetation and its management, but 

this is true regardless of the methodology employed. 

LCA methods and results depend on the goal and scope being addressed 

LCA studies can address quite wide ranging goals, scopes and research questions. The 

specific methodological approaches and detailed calculation methods depend strongly on 

the specific goal, scope and question being addressed. As a consequence, the results of 

different LCA studies can vary considerably. 

Consequential LCA is used for assessing GHG impacts of changes in bioenergy 

use 

An approach known as consequential LCA, as opposed to an alternative of attributional 

LCA, should be applied when assessing the impacts on GHG emissions due to increased 

or decreased forest bioenergy. The purposes, modelling principles and methods of 

consequential LCA and attributional LCA are fundamentally different and they can 

produce very different results for GHG emissions. These differences need to be clearly 

understood. 

Consequential LCA requires careful specification of scenarios 

The calculation of GHG emissions in consequential LCA typically involves the development 

of two scenarios, i.e. the scenario of interest (describing how the world may change, e.g. 

if bioenergy consumption is increased) and a baseline scenario (describing how the world 

will develop if the changes of interest do not occur). Currently there is some confusion 

and ongoing debate amongst researchers with regard to the application and definition of 

a baseline in attributional LCA studies but this debate is not relevant to consequential 

LCA methods. 

5. Assessment of literature on GHG emissions of bioenergy 

Section 5 of this report presents the main substance of the review of scientific literature 

concerned with the assessment of GHG emissions due to the consumption of forest 

bioenergy.  
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Careful examination of existing scientific literature suggests a consistent story 

To sum up the assessment presented in this section, a superficial consideration of the 

scientific literature on GHG emissions associated with forest bioenergy would most likely 

arrive at the impression that the outcomes and conclusions of different publications are 

highly variable and that the overall picture of forest bioenergy is confused and sometimes 

contradictory. However, on closer examination, it becomes evident that there is a certain 

level of fundamental agreement or at least consensus on some basic phenomena. 

Biogenic carbon needs to be included in strategic assessments of GHG 

emissions arising from consumption of forest bioenergy 

Fundamentally, it is undeniable that the status of forest bioenergy as an energy source 

with either low or high associated GHG emissions is inextricably linked to the property of 

wood as a reservoir of biogenic carbon and, crucially, how the source of that biogenic 

carbon, i.e. the carbon stocks in forests, is managed to produce bioenergy. 

It is particularly important to allow for biogenic carbon when making strategic 

assessments of GHG emissions due to policies, plans or decisions involving changes in 

activities that will lead to increased consumption of forest bioenergy. It is important to 

clarify that what needs to be demonstrated is the achievement of significant reductions in 

GHG emissions, as the ‘global consequence’ of any changes to the management of forest 

areas involved in the supply of forest bioenergy, implying the application of consequential 

LCA for the purposes of assessment. 

GHG emissions of forest bioenergy display systematic variation more than 

uncertainty 

An analysis of published case studies indicates that forest bioenergy sources may involve 

widely varying outcomes in terms of impacts on GHG emissions. However, it is very 

important to stress that this variability does not imply that outcomes are uncertain. 

Rather, much of the variation is systematic and can be related to clearly identifiable 

factors. 

Many factors can influence the GHG emissions of forest bioenergy 

The variability in reported results for GHG emissions of forest bioenergy reflects many 

factors related to the forest bioenergy systems being studied and the methodologies 

applied in calculations. However, a meta-analysis of published studies would appear to 

indicate that a major reason why different studies have arrived at different results and 

conclusions is simply down to the fact that they have looked at different types of forest 

bioenergy source. 

Forest bioenergy systems can vary considerably with respect to a number of factors 

including: 

 Geographical location and spatial scale. 

 Characteristics of pre-existing growing stock of forest areas. 

 Productive potential of forests. 
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 Types of forest management intervention involved in producing additional forest 

bioenergy, e.g. any or all of additional thinning, additional felling, increased extraction 

of harvest residues, enrichment of growing stock for increased production. 

 Whether additional harvesting in forest areas is for forest bioenergy as the sole 

product or as a co-product alongside material/fibre products. 

 The types of feedstocks used for forest bioenergy, e.g. any or all of harvest residues, 

poor quality trees, small roundwood, stemwood, sawlog co-products, recovered waste 

wood. 

 Energy conversion systems, e.g. small-scale heat, district heat or combined heat and 

power, power-only, co-firing with coal for power generation, and associated 

efficiencies of conversion systems. 

 Counterfactuals for forest bioenergy sources, e.g. fossil energy sources such as 

natural gas, oil or coal, and for any material/fibre co-products. 

 Counterfactuals for forest management, i.e. how forest areas would have been 

managed if bioenergy consumption had not been increased, and what this would mean 

for the development of forest carbon stocks.  

The impacts on GHG emissions due to the increased consumption of forest bioenergy 

depend very strongly on variations in these factors. It follows that forest bioenergy 

cannot be regarded as an energy source with ‘homogenous properties’ such as a 

characteristic value or range for a GHG emissions factor. Rather, such properties need to 

be assessed for specific types of forest bioenergy sources. 

Results for GHG emissions also depend on the methodology applied for 

assessment 

Results reported by published studies for GHG emissions of forest bioenergy also vary 

because different studies have used different methodologies, often because studies have 

different goals and address different research questions. For example, most studies apply 

methods consistent with consequential LCA, with the aim of assessing the impacts of 

decisions to increase consumption of certain types of forest bioenergy sources. However, 

a few studies apply attributional LCA as part of the ‘operational’ assessment of (typically 

absolute) GHG emissions of specific forest bioenergy sources. These two types of study 

will, inevitably, arrive at very different results for the GHG emissions of forest bioenergy 

sources. Clearly, only the former type of study is relevant to the assessment of the 

potential impacts of policies encouraging the consumption of forest bioenergy. At the 

same time, it should be stressed that such variations between studies are not necessarily 

shortcomings or substantive methodological conflicts. Rather, these variations reflect the 

large range of possible scenarios for forest bioenergy use that can be studied, and the 

diversity in the specific objectives and questions addressed by different studies. 

Increased harvesting typically involves reductions in forest carbon stocks 

There is widespread recognition in the research literature that increasing the levels of 

wood harvesting in existing forest areas will, in most cases, lead to reductions in the 
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overall levels of forest carbon stocks compared with the carbon stocks in the forests 

under previous levels of harvesting. Where the additional harvesting is used to supply 

bioenergy as the sole product, then such forest bioenergy will typically involve high 

associated GHG emissions (i.e. compared with fossil energy sources) for many decades. 

Increased biomass production sometimes involves increased forest carbon 

stocks 

There is also recognition that there exist some specific cases where forest management 

interventions to increase biomass production may involve increased forest carbon stocks. 

These include situations in which rotations applied to forest stands are extended as part 

of optimising biomass productivity, or the growing stock of existing degraded or relatively 

unproductive forests is enriched to enhance productive potential. It is also possible to 

create new forest areas with the specific purpose of managing them for wood production, 

provided that forest carbon stocks on the land are increased as part of the conversion of 

non-forest land to forest stands, and that there are no associated detrimental indirect 

land-use changes. 

GHG emissions of forest bioenergy are very sensitive to assumptions  

The outcomes of GHG assessment of forest bioenergy are very sensitive to the 

counterfactual scenario for land use.  The projected development of forest carbon stocks 

under the counterfactual scenario will depend on the assumed forest management, the 

potential of the growing stock forming forest areas (tree species, age distribution, 

climatic conditions, soil quality, nutrient regime etc.), and on the likelihood of natural 

disturbances.  

Similarly, outcomes are very sensitive to the counterfactual scenario for energy systems, 

which also involve assumptions which may be very uncertain, e.g. because of unforeseen 

market-mediated effects or future policy developments. 

Uncertainties in counterfactual scenarios are inherent due to the fact that the 

counterfactual scenario is, by definition, a path that charactreristically is not followed. It 

is thus never possible to verify what would have actually happened. Long time horizons 

related to forest carbon cycles and lifetimes of energy systems increase the inherent 

uncertainty. It follows that counterfactual scenarios need to be developed carefully and 

robustly, and assumptions must be transparent to ensure they are clearly understood 

when results are interpreted. 

GHG emissions of forest bioenergy sources vary over time 

The GHG emissions due to the use of forest bioenergy generally vary over time. As a 

consequence, different results are obtained for GHG emissions when calculated over 

different periods (or ‘time horizons’), e.g. 1 year, 10 years or 100 years. This complicates 

the characterisation of forest bioenergy sources, particularly with regard to their potential 

to contribute to reductions in GHG emissions. There are many examples involving an 

initial period of increased GHG emissions, compared to the alternative of using fossil 
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energy sources, followed eventually by reductions in GHG emissions. The initial period of 

increased GHG emissions can vary from less than one year to hundreds of years, 

depending on the type of forest bioenergy. 

There is no obvious scientific basis for selecting a standard time horizon – essentially this 

is a politically-related decision. The choice of time horizon is thus a critical issue in the 

assessment of GHG emissions associated with the use of forest bioenergy. In this report 

(Section 5.2), a target year of 2050 was identified as a policy-relevant time horizon 

(Allen et al., 2009; Meinshausen et al., 2009). 

Forest bioenergy sources likely to contribute to levels of consumption in 2030 

vary in risk 

A provisional qualitative assessment was made of the likelihood of particular forest 

bioenergy sources being involved in meeting levels of consumption in 2030. These 

various forest bioenergy sources varied from ‘low risk’ to ‘very high risk’, according to the 

likelihood of adverse impacts on GHG emissions reductions over the period to 2050, as 

illustrated in Table ES11. 

This implies that, potentially, increased consumption of forest bioenergy in the EU could 

make a highly significant contribution towards achieving reductions in GHG emissions, if 

‘low risk’ and ‘moderate risk’ sources are used. Conversely, if ‘high risk’ or ‘very high risk’ 

sources are used, increased consumption of forest bioenergy could make a negligible 

contribution or could seriously frustrate the achievement of GHG emissions reductions. 

As part of this qualitative assessment, it is difficult to clarify whether increased 

consumption of forest bioenergy in the EU is likely to be achieved through ‘low risk’ and 

‘moderate risk’ scenarios for forest management and bioenergy production, such as 

increased extraction of harvest residues, or whether a wider range of scenarios with 

varying risk may be involved. A full systematic analytical assessment is required to 

determine whether scenarios are more or less likely to actually be involved in meeting 

increased demands for bioenergy, which is a subject for further research. 

Low/high-risk cannot be determined simply in terms of feedstocks 

The analysis of scientific literature suggests it is possible to identify ‘low risk’ and ‘high 

risk’ sources of forest bioenergy. However, the same feedstocks can be involved in ‘low 

risk’ and ‘high risk’ scenarios. As a consequence, it is not possible to limit or remove risk 

of adverse GHG emissions due to consumption of forest bioenergy by favouring particular 

feedstocks and discouraging the use of others. 

In this context, it is also important to recognise that, as part of sustainable forest 

management and wood utilisation (Sections 2.3 and 2.5): 

                                       
1
 It is very important to understand how risk of adverse effects on GHG emissions has been 

defined. This has been discussed in detail in Section 5.2.1, where levels of risk are also defined in 
Table 5.2. 



Biogenic Carbon  

and Forest Bioenergy 

xvii    |    Final report on Task 1    |    Robert Matthews   |    15th May 2014 

 Different types and sizes of trees and quantities of wood are harvested at different 

points in the cycle of forest management. Trees harvested at different ages (and 

hence of particular dimensions and physical characteristics) will be suitable for 

different applications and end uses.   

 At any one time across a whole forest, a broad mix of trees will be harvested which 

will be variously suitable for a range of end uses, even though particular types of trees 

may be harvested from individual stands for specific uses, depending on their stage of 

development. Collectively, the broad mix of trees harvested from a forest meets a 

range of demands. 

 The wood processing sector is complex, with outputs from the forest providing 

feedstocks for the manufacture of structural sawn timber, plywood, pallets and fence 

posts, particleboard and fibreboard, paper and other products including bioenergy. 

 The complexity of the wood processing sector can present challenges when attempting 

to track flows of wood from the forest through to ultimate end use. 

For these reasons, there are likely to be very serious obstacles to regulating the 

consumption of forest bioenergy based on individual consignments of forest bioenergy or 

based on specific types of forest bioenergy feedstock. 

There is reasonable consistency in outcomes for particular bioenergy sources 

There is reasonable consistency in the research literature on outcomes for particular 

forest bioenergy sources with regard to impacts on GHG emissions. The meta-analyses of 

published studies by the JRC review, Lamers and Junginger (2013) and in this report, list 

a number of specific examples of forest bioenergy sources, which can be categorised in 

terms of associated impacts on GHG emissions, as summarised in Table ES1. 

Significant initiatives involving increased consumption of forest bioenergy could 

be subjected to strategic assessment for impacts on GHG emissions 

One possible step towards managing risk associated with increased consumption of forest 

bioenergy could involve commitments by proponents of significant new forest bioenergy 

projects in the EU to demonstrate that genuine and significant GHG emissions reductions 

should be achieved, when GHG emissions due to biogenic carbon are considered. This 

would require strategic assessment, as already identified earlier in this discussion as 

appropriate for assessment of GHG emissions due to policies, plans or decisions involving 

changes in activities that will lead to increased consumption of forest bioenergy. 

It must be stressed that such assessment of new activities involving consumption of 

forest bioenergy would be undertaken before a decision is taken to proceed with the 

activities. Such an approach is not suggested for ongoing monitoring of GHG emissions, 

for example at bioenergy installations to demonstrate compliance with regulations, such 

as targets for net GHG emissions savings. Further research is needed to assess the 
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implications of the findings of this report for the development of robust methodologies for 

monitoring of GHG emissions for such regulatory purposes. 

Increased use of forest bioenergy might be integrated with carbon stock 

management 

The possibilities could be considered for complementary approaches to support positive 

management of carbon stocks in forests, or more generally in terrestrial vegetation and 

soil. Such action would underpin a positive contribution by forest bioenergy to achieving 

reductions in GHG emissions but would not be explicitly linked to bioenergy consumption. 

In this context, it should be noted that an existing EU Decision on accounting for GHG 

emissions in the Land Use, Land-Use Change and Forestry sector effectively provides an 

appropriate accounting framework at national scale within the EU.  

Increased use of forest bioenergy might be integrated with wider measures to 

support forest carbon stock management 

The possibilities could be considered for complementary approaches (i.e. ‘flanking 

measures’) to support positive management of carbon stocks in forests, or more 

generally in terrestrial vegetation and soil. In principle, if the extraction of additional 

biomass in forest areas involves reductions in forest carbon stocks, this could be 

compensated for by enhancement of vegetation and soil carbon stocks in other parts of 

the landscape, with the aim of achieving an overall positive impact on carbon stocks at 

the landscape and/or regional scale. Such action would indirectly support a positive 

contribution by forest bioenergy to achieving reductions in GHG emissions but would not 

be explicitly linked to bioenergy consumption. In this context, it should be noted that 

existing EU Decisions and Regulations on monitoring and accounting for GHG emissions 

in the Land Use, Land-Use Change and Forestry sector (EU, 2013ab) effectively provide 

an appropriate accounting framework at national scale within the EU. 

The suitability of metrics for GHG emissions depends on the question 

Metrics used for assessing the potential of forest bioenergy need to be relevant to the 

goal, scope and policy or research question being addressed. For example, if there is 

interest in achieving a significant level of GHG emissions reductions, say 50% to 95%, by 

a target year such as 2020 or 2050, then results expressed as GHG emissions payback 

times may be useful for initially sifting out high risk scenarios for forest bioenergy 

consumption, but are not appropriate for assessing whether target levels of emissions 

reductions are likely to be met. In this context, a metric such as cumulative reduction in 

GHG emissions is more appropriate. Furthermore, if there is interest in understanding the 

effects of various scenarios for forest bioenergy consumption on cumulative radiative 

(climate) forcing, then a metric should be used which directly expresses such effects. 
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Table ES1 Classification of forest management/ 

bioenergy production scenarios in terms of risk 

Risk1 
Forest management/bioenergy production 

scenario2 
Comments 

Scenarios potentially relevant to 2020 targets for bioenergy consumption 

‘Very high’ 

and ‘high’ 

Co-production of solid wood products and 

bioenergy through additional thinning and/or 

felling in forest areas with low potential for 

displacement of GHG emissions associated with 

solid wood products3. 

Very sensitive to 

counterfactuals for 

forest bioenergy and 

material/fibre 

products3. 

Salvage logging and restoration of forests on 

rotational management for production of 

bioenergy only. 

 

Diversion of harvested wood from solid wood 

products to bioenergy, leaving harvesting 

intensity unchanged. 

Very sensitive to 

counterfactuals for 

forest bioenergy and 

solid wood products. 

‘Moderate’ 

Salvage logging for co-production of solid wood 

products and bioenergy followed by restoration of 

forest areas with moderate harvesting intensity, 

also for co-production. 

 

Extraction of harvest residues4. 

Sensitive to harvesting 

of stumps, and to fossil 

energy counterfactual. 

Extraction of pre-commercial thinnings. 
Sensitive to fossil 

energy counterfactual. 

‘Moderate’ 

to ‘low’ 

Co-production of solid wood products and 

bioenergy through additional thinning and/or 

felling in forest areas with high potential to 

displace GHG emissions associated with solid 

wood products5. 

Very sensitive to 

counterfactuals for 

forest bioenergy and 

material/fibre 

products5. 

Notes to Table ES1: 
1. It is very important to understand how risk of adverse effects on GHG emissions has been 

defined. This has been discussed in detail in Section 5.2.1 and levels of risk are defined in 
Table 5.2. 

2. Scenarios for forest management and bioenergy production have been classified using 

background shading in the table to indicate their potential relevance to increased consumption 
of bioenergy in the EU. See Appendix 11 for details. 

3. The risk is extremely sensitive to the types of material/fibre co-products associated with the 
bioenergy production and their counterfactuals. 

4. Moderate risk has been assigned on the assumption that harvesting of stumps would not 
increase significantly. A high risk would be assigned in the case of stump harvesting. 

5. The risk is extremely sensitive to the types of material/fibre co-products associated with the 

bioenergy production and their counterfactuals. 
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Table ES1 (continued) Classification of forest management/ 

bioenergy production scenarios in terms of risk 

Risk6 
Forest management/bioenergy production 

scenario7 
Comments 

Additional scenarios potentially relevant to bioenergy consumption above 2020 

targets 

‘Very high’ 

and ‘high’ 

Additional harvesting of stemwood and ‘residual 

wood’ for bioenergy only in forest stands for fire 

prevention. 

 

Additional harvesting of stemwood in forest areas 

already under management for production, for 

bioenergy only. 

Sensitive to fossil 

energy counterfactual. 

Scenarios unlikely to be involved in increased bioenergy consumption 

‘Very high’ 

and ‘high’ 

Harvesting of forest with high carbon stocks and 

replacement with rotational forest management 

for production of bioenergy only. 

 

Harvesting forests with high carbon stocks for 

bioenergy only, followed by restoration of forest 

areas with low productivity plantation for 

bioenergy only.  

 

‘Moderate’ 

Harvesting of forest with high carbon stocks and 

replacement with high-productivity short rotation 

plantations for production of bioenergy only. 

Sensitive to the 

assumption that short 

rotation plantations 

have much faster 

growth rates than 

previous forest 

‘Moderate’ 

to ‘low’ 

Diversion of harvested wood from solid wood 

products to bioenergy, combined with reduced 

harvesting intensity. 

Requires reduced 

harvesting intensity to 

fully compensate for 

possible impacts of 

diverting wood 

‘Low’ 

Enrichment of growing stock in existing forest 

areas as part of enhancement of bioenergy 

production. 

Important to avoid 

negative impacts on 

soil carbon stocks, 

where these could 

occur. 

Creation of new forests for bioenergy only on 

marginal agricultural land with low initial carbon 

stock8. 

Sensitive to risks of 

iLUC. 

Notes to Table ES1: 
6. It is very important to understand how risk of adverse effects on GHG emissions has been 

defined. This has been discussed in detail in Section 5.2.1 and levels of risk are defined in 
Table 5.2. 

7. Scenarios for forest management and bioenergy production have been classified using 

background shading in the table to indicate their potential relevance to increased consumption 
of bioenergy in the EU. See Appendix 11 for details. 

8. It must be stressed that these activities have been classified as low risk on the assumption that 
risks of iLUC would be mitigated, e.g. by restricting the activities to marginal/low productivity 
agricultural land. 
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1. Introduction 

This report has been prepared towards fulfilment of a European Commission project, 

ENER/C1/427-2012 on ‘Carbon impacts of biomass consumed in the EU’. The principal 

objective of this project, as stated originally in the project tender specification, is to 

deliver a qualitative and quantitative assessment of the direct and indirect greenhouse 

gas (GHG) emissions2  associated with different types of solid and gaseous biomass used 

in electricity and heating/cooling in the EU under a number of scenarios focussing on the 

period to 2030, in order to provide objective information on which to base further 

development of policy on the role of biomass as a source of energy with low associated 

GHG emissions. 

The project comprises five research and technical support tasks: 

Task 1: Literature review of biogenic carbon accounting of biomass 

Task 2: Scenarios for biomass use in EU 

Task 3: Biogenic carbon emissions of biomass used in EU 

Task 4: Assessment of indirect emissions from different various sources of solid biomass 

Task 5: Ad-hoc technical support. 

The effective assessment of the consequences for GHG emissions of bioenergy consumed 

in the EU also depends on the ability to integrate existing models and relevant modelling 

capabilities developed by the partners in the project consortium. Therefore, an additional 

cross-cutting task is explicitly concerned with integration of modelling and calculations. 

This report addresses Task 1 of the project. 

 

1.1. Scope of this report 

As required under Task 1, this report is concerned with a review of scientific literature on 

the contributions of ‘biogenic carbon’ to GHG emissions due to the production and use of 

bioenergy, and how these contributions may be appropriately included in methodologies 

for calculating GHG emissions. The report effectively constitutes the qualitative 

assessment required as part of the principal objective of this project. 

                                       
2
 The definition of the term ‘greenhouse gas emissions’ is fundamental to this report. Specific and 

narrow definitions are needed in some contexts, and these definitions are provided in the glossary 
to this report (see Appendix 1) and also discussed more fully in Sections 4.4 and 4.5. However, in 
some contexts, the term may be applied quite broadly, as is the case for much of the content of 
the early sections of this report. 
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The review is concerned primarily with woody biomass harvested from forests for use as 

bioenergy, referred to hereafter in this report as ‘forest bioenergy’3, because this reflects 

the current focus of debate in the scientific literature. The issues raised in the literature 

are in fact relevant for all forms of bioenergy, but are of particular importance for forest 

bioenergy due to its special characteristics, as described in Section 2 of this report. 

However, implications for bioenergy in a wider sense are briefly considered as part of the 

conclusions of this review, presented in Section 6 of this report. In particular, conclusions 

drawn on appropriate methodologies for including contributions to GHG emissions due to 

biogenic carbon should be generally applicable to all bioenergy sources. 

Before embarking on a full critical review of literature on forest biogenic carbon and its 

significance for the GHG emissions of forest bioenergy, an initial discussion of essential 

background scientific understanding on this subject is undertaken (Section 1.2). This 

aims to inform and set the objectives for the review and the approaches adopted in 

carrying it out. The objectives of the review and the structure for the rest of the report 

are presented in Section 1.3. 

1.2. Essential background 

The requirement for a literature review of biogenic carbon accounting of biomass needs 

to be understood in the context of the potential roles of forest biomass in climate change 

mitigation, and current scientific understanding of the consequences for GHG emissions 

of using such biomass as a source of bioenergy. As discussed in Sections 2 and 3, and 

throughout this report, the biogenic carbon constituted by forest carbon stocks can fulfil 

several contrasting functions in terms of climate change mitigation: 

The carbon stocks in forest biomass, litter and soil represent a natural reservoir of carbon 

sequestered from the atmosphere. 

Forest biomass can be harvested and used as a source of bioenergy which can be used in 

place of fossil energy sources and/or to make a range of solid wood products (e.g. sawn 

timber, wood-based panels, card and paper) which also represent a reservoir of 

sequestered carbon and can be used in place of non-wood materials. 

A central concern for this report is to understand how forest management and the use of 

harvested wood can influence these functions, in particular when synergies between 

these functions can occur or when risks of antagonism can arise (i.e. when enhancement 

of one function can be at the expense of the other). 

                                       
3
 For the purposes of this project, the term ‘forest bioenergy’ is defined to mean any biomass 

extracted from forests that is used to produce energy in the form of heat and power (i.e. not 
including liquid transport fuels). The biomass may be harvested directly from forests, or may be 
supplied as a by-product of the manufacture of solid wood products (e.g. offcuts from sawmilling) 
or may be derived from waste wood sources (e.g. solid wood products disposed of at end of life). 
This definition is repeated in the glossary in Appendix 1 of this report, along with definitions for 
many other terms, abbreviations and units. 
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Forest bioenergy is a potentially very important source of renewable energy (IPCC, 

2011). However, the scientific and research literature on the GHG emissions associated 

with use of forest bioenergy presents a diversity of views and, at times, polarised 

accounts of the benefits or otherwise of forest bioenergy use as an option for meeting 

GHG emissions targets. 

On one side of the debate, as several recent reports and papers have highlighted, 

consideration of the intrinsic properties of forest bioenergy would strongly suggest that 

its use is likely to involve high GHG emissions. This can be illustrated by making simple 

comparisons of basic physical and chemical properties of wood and fossil energy sources 

(see Table 1.1). The comparisons made here are based on calorific values4 and carbon 

contents reported by Matthews et al. (1994) and Matthews (1993). The example calorific 

values and carbon contents for coal shown in Table 1.1 are 25 MJ kg−1 and 0.66 kgC kg−1 

respectively, whereas example values for air-dry wood (30% moisture content, wet 

basis) are 12 MJ kg−1 and 0.38 kgC kg−1. The carbon content of wood is lower than that 

of coal, but the calorific value is also markedly lower. If all of the carbon in the wood 

were to be released to the atmosphere on combustion, burning air-dry wood to produce 1 

MJ of energy would release about 31 grams of carbon (equivalent to about 115 grams of 

CO2). This result can be compared with an estimate for coal of 26 grams of carbon 

(equivalent to about 95 grams of CO2). Example values for fuel oil and natural gas are 20 

grams of carbon (73 grams of CO2) and 14 grams of carbon (53 grams of CO2) 

respectively. 

It is clear from the results in Table 1.1, and from the preceding paragraph, that forest 

bioenergy would not be viewed as an energy source with low GHG emissions compared 

with fossil energy if this were to be assessed simply on the consideration of basic 

physical and chemical properties of wood. 

Superficially, the results in Table 1.1 should be simple and easy to understand. However, 

already it is essential to be clear about what these results actually represent. The results 

also raise many questions. It is important to understand that the results in Table 1.1 are 

based on very direct and simple interpretation of the calorific values and carbon contents 

of various energy sources. They do not represent the GHG emissions that would actually 

occur if each type of energy source were to be used, for example, to generate a unit of 

electrical power. Questions thus arise about the conversion technologies that would be 

deployed in conjunction with each energy source, and the efficiencies and energy inputs 

associated with the supply, conversion and delivery chains. Particular questions arise in 

the case of wood as a source of energy and the calculation of GHG emissions. For 

example, it is necessary to know how the wood was dried and the energy inputs 

involved. More fundamentally, as discussed in detail in Section 2 of this report, wood is 

not a homogenous energy feedstock. Rather, it may be produced from different parts of 

                                       
4
 Calorific value may be defined as the quantity of heat produced by the complete combustion of a 

given amount (i.e. mass) of a substance. Calorific values are typically expressed in units of joules 
per gram or megajoules per kilogram (MJ kg-1). 
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trees, which in turn may be harvested at different stages in the management of forest 

areas. Complexities arise from the requirement to represent land use and land 

management as an important aspect of bioenergy production and consumption, which is 

usually less important for other energy sources. For all energy sources and conversion 

technologies, clearly it is critical to establish a sound methodological basis for calculating 

associated GHG emissions. 

Table 1.1 Illustrative examples of calorific values and carbon contents 

for wood and fossil energy sources 

Energy source Net 

calorific 

value2 

(MJ kg-1) 

Carbon 

content4 

(kgC kg-1) 

Implied carbon dioxide 

emissions 

on combustion5,6 

(gC MJ-1) (gCO2 MJ-1) 

Wood (air dry)3 12 0.38 31 115 

Coal 25 0.66 26 95 

Fuel oil - - 20 73 

Natural gas - - 14 53 

Notes to Table 1.1: 

1 The values in this table have been reported in Matthews et al. (1994) and Matthews (1993). It 

must be stressed that these values are illustrative examples only and that the calorific values 

and carbon contents of these energy sources can vary. 

2 The net calorific value of an energy source is sometimes also referred to as the lower heating 

value. Net calorific value represents the quantity of heat produced by the complete combustion 

of a given amount of a substance, allowing for any moisture content, such as in the case of air-

dry wood.  

3 Air-dry wood is assumed to have moisture content of 30%, wet basis. The net calorific value 

and carbon content are expressed per air-dry kg. 

4 For air-dry wood, the carbon content is expressed in kgC per oven dry kg. 

5 Calculated by dividing carbon content by net calorific value and multiplying the result by 1000, 

assuming (theoretically) that all carbon is released on combustion. 
6 Calculated by multiplying the result expressed in units of gC MJ−1 by 44/12, assuming 

(theoretically) that all carbon is released as carbon dioxide on combustion. 

 

A recognition of the role of forests and their management in the supply of forest 

bioenergy leads naturally to consideration of the other side of the debate concerning the 

benefits or otherwise of forest bioenergy use as an option for meeting GHG emissions 

targets. Many papers in the scientific and research literature take a diametrically 

contrasting view of forest bioenergy, based on the fact that the carbon in wood is 

‘biogenic carbon’, rather than ‘fossil carbon’ (or ‘geological carbon’). The carbon in wood 

can be regarded as biogenic carbon because plants including trees capture CO2 from the 

atmosphere through photosynthesis, releasing oxygen, also releasing part of the CO2 

through respiration, and retaining (‘sequestering’) a reservoir of carbon in organic 

matter, notably as woody biomass in the case of trees. It is the carbon sequestered in 

this reservoir of organic matter that may be regarded as ‘biogenic’. 
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A widely circulated article produced by IEA Bioenergy Task 38 that typifies the 

presentation of a positive view of forest bioenergy (Matthews and Robertson, 2006) 

observed that there is a vital difference between energy production from fossil fuels and 

energy production from biomass. It is argued that burning biomass simply returns to the 

atmosphere CO2 that was absorbed as the plants grew. The processes of sequestration of 

CO2 and re-release to the atmosphere may take place at different times but, taken as a 

whole and looking at the net result over time, there should be no net release of CO2 if a 

cycle of growth, harvest and regrowth is maintained. This view is reinforced by the 

inclusion in the Task 38 leaflet of a much-repeated figure, also repeated in this report as 

Figure 1.1. 

 

 

 

Figure 1.1. The potential ‘recycling’ of carbon as biomass accumulates in energy crops 

and forests and is consumed in a power station. (Source: Matthews and Robertson, 

2006.) 

The discussion presented in Matthews and Robertson (2006) strongly implies that the use 

of bioenergy presents opportunities to produce energy with low or zero associated net 

GHG emissions and that there may even be opportunities to sequester additional carbon 

in the vegetation of crops and forests as part of promoting the production of bioenergy. 

However, in presenting a generally positive view of bioenergy (including forest 

bioenergy), it is doubtful that the various contributors to the IEA Bioenergy Task 38 
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article would have envisaged the unprecedented scale of interest in bioenergy that 

currently prevails globally and not least in the EU. As outlined in Section 2 of this report, 

projections of bioenergy consumption in the EU up to 2020 and beyond suggest that 

biomass production will need to increase significantly. The quantities involved are 

potentially very challenging and are likely to require significant changes to land 

management for bioenergy production, as well as large-scale importation of biomass. 

In response to the significant upsurge in interest in forest bioenergy as an option for 

meeting targets for both increased renewable energy generation and reduced levels of 

GHG emissions, a debate has escalated concerning the effectiveness of forest bioenergy 

as an energy source with low associated GHG emissions. A growing number of studies in 

the literature have employed a variety of methodologies for calculating GHG emissions of 

bioenergy which allow for contributions due to biogenic carbon, and have arrived at 

widely-varying conclusions. 

These developments have lead to an atmosphere of uncertainty and confusion concerning 

the potential role of forest bioenergy as a source of renewable energy and a means of 

global climate change mitigation. 

Whilst, at times, there may be a lack of clarity, in fact, some of the key factors 

determining GHG emissions of bioenergy have been understood for some time. For 

example, Figure 1.2 shows results of theoretical analyses based on forest carbon 

accounting models presented by Marland and Schlamadinger (1997). These results 

illustrate the dependency of outcomes in terms GHG emissions over a 100-year time 

horizon on two factors: 

 The rate at which the trees grow (in terms of biomass or carbon accumulation). 

 The amount of fossil energy or energy-intensive material that a tonne of biomass 

can replace (represented by Marland and Schlamadinger as a theoretical ‘multiplier 

for efficiencies’. (For example, a multiplier of efficiencies of 0.6 implies that the 

utilisation of 1 kgC of harvested wood can be used to avoid 0.6 kgC of emissions 

from burning of fossil fuels or consumption of non-wood materials.) 

In Figure 1.2, positive results for cumulative GHG emissions indicate a reduction in 

overall GHG emissions, as a result of harvesting forest biomass and using it in place of 

fossil energy sources or non-wood materials, also allowing for forest carbon stock 

changes. Negative results indicate an increase in overall GHG emissions. The three-

dimensional representation and two-dimensional contour map in Figure 1.2 display a 

wide range of outcomes, from very positive (significant reductions in overall GHG 

emissions), through negligible effects on overall GHG emissions, to very negative 

(significant increases in overall GHG emissions). Such results reinforce the view that 

there are critical thresholds in the GHG balances achieved by management of forests for 

protection of carbon stocks, or for maximum wood production, or for some balance 

between these extremes. 
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Figure 1.2. Theoretical illustration of the sensitivity of GHG emissions of forest 

bioenergy to forest growth rate and the ‘efficiency’ with which wood is utilised. After 

Marland and Schlamadinger (1997). 

Matthews et al. (2007) infer from these findings that the potential exists to evaluate 

options for different situations against such critical thresholds for GHG emissions. 

However, there is no established and widely-accepted methodology for making such an 

evaluation.  Furthermore, analyses involving many variables, such as the relatively 

simple example illustrated in Figure 1.2, can be difficult to present clearly and 

understandably, to enable appropriate insights to be drawn. 

Analyses such as illustrated in Figure 1.2 hold out the prospect that apparently 

contrasting conclusions about the GHG emissions associated with forest bioenergy may 

be ascribed to and explained in terms of a relatively small number of factors. However, 

as with the earlier interpretation of Table 1.1, Figure 1.2 raises many questions. For 

example: 

 It is not clear exactly what situation involving the harvesting of biomass from forests 

is being represented. More specifically, is biomass being harvested as part of ongoing 

management of forests, or is the biomass being produced through ‘additional’ 

harvesting as part of changes to the management of forest areas? 

 Is some sort of land use change involved, e.g. introduction of harvesting in previously 

unmanaged forests areas, or creation of new forest areas on land that was formerly 

cropland or grassland? 
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 In terms of the effectiveness of using forest biomass to reduce overall GHG emissions, 

the ‘multiplier for efficiencies’ is a theoretical parameter. What range might this 

parameter take in practice for real bioenergy systems (and the systems they replace), 

and what factors determine the specific value of the parameter? 

 The results in Figure 1.2 are expressed as cumulative values over a 100 year time 

horizon. How sensitive are the results to the selected time horizon, and to other 

choices made in defining the methodology for calculations. 

It is already evident, therefore, that the interpretation of estimates and analyses of GHG 

emissions associated with forest bioenergy must be undertaken with great care, with due 

consideration of the specifics of the forest bioenergy system being studied, and of the 

detailed approaches adopted in calculations. 

1.3. Objectives of Task 1 and report structure 

Three key questions arise from the background discussion in Section 1.2, which need to 

be addressed as part of Task 1 of this project: 

1 Is it possible to discern any patterns in the results presented in the existing scientific 

literature and, in the process, establish whether there are any critical factors 

determining sensitivity of GHG emissions associated with forest bioenergy? Can such 

understanding be used to identify lower-risk forest bioenergy pathways in terms of 

GHG emissions? 

2 To what extent are results for GHG emissions estimated for forest bioenergy sensitive 

to variations in calculation methodologies, and is it possible to understand variability 

in results in terms of differences in the detailed approaches to calculation adopted in 

different studies of forest bioenergy? 

3 Is it possible to draw insights from the existing scientific literature to identify elements 

of methodology that would be appropriate for application as part of the assessment to 

be carried out in this project, including approaches for the reporting and presentation 

of results? 

The approach to Task 1 emphasises systematic approaches to a literature review (i.e. 

‘summary sheets’ for scientific papers including an assessment of ‘strengths’ and 

‘weaknesses’ of individual studies, and also a formal evaluation against a fixed set of 

criteria). These approaches are important for this review as tools for understanding the 

diversity in the scientific literature. 

In order to explore and answer the above three research questions thoroughly, the 

results of the systematic assessment are complemented by (and ultimately synthesised 

through) critical discussion of the essential issues regarding forest bioenergy, associated 

GHG emissions, methods for their calculation, and the role of forest carbon stocks and 

forest management. 

Accordingly, in order to set the context for the assessment of GHG emissions due to 

consumption of forest bioenergy in the EU, Section 2 briefly considers the status of 
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forests in the EU, and more widely, the extent of current and potential future use of 

forest bioenergy in the EU and the implications for harvesting and utilisation of wood 

from forests. Section 3 presents an overview of the role of forest carbon stocks as 

biogenic carbon in contributing to the GHG emissions of forest bioenergy, in particular 

interactions with forest management and demands for increased bioenergy production. 

This is followed in Section 4 by a complementary discussion of key concepts and issues 

concerning LCA methodology, with particular reference to inclusion of biogenic carbon in 

LCA calculations. 

Recognising that this is not the first time that the subject of forest bioenergy and GHG 

emissions has been reviewed, Section 5 considers what insights may be gained from 

other recently published literature reviews and critical discussions, in particular whether 

common or disparate views can be discerned. Key examples of existing published studies 

of forest bioenergy and GHG emissions are then evaluated to establish patterns in the 

results of these studies. Consideration is also given to how these approaches have been 

applied as part of the assessment of published studies. Section 5, in conjunction with 

Appendix 3, also looks initially at existing published statements on methodologies, 

particularly with regard to metrics for reporting and interpreting GHG emissions due to 

the use of forest bioenergy. Finally, Section 5 presents a set of conclusions on forest 

bioenergy, the relevance of forest carbon stocks and forest management, associated 

GHG emissions, and their calculation and presentation. 

This report also includes, in Appendix 1, a substantial glossary of terms, abbreviations 

and units. It is recognised that the literature on forestry, forest products, bioenergy and 

GHG emissions employs a diverse set of terms and measures which can be highly 

technical. Often several terms are used to refer to the same phenomenon or quantity. 

Sometimes terms are ambiguous or confusing and occasionally they are politically 

charged. Strenuous efforts have been made throughout this project to employ terms, 

abbreviations and units of measurement clearly and consistently, and to provide 

definitions for these in the glossary of this report. 
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2. Background on forests, forest management and wood 
utilisation 

2.1. Purpose 

The GHG emissions associated with the production and consumption of forest bioenergy 

are intimately linked with the ways in which forests are managed, how harvested wood is 

used, and how these activities may change in the future. The purpose of this section is to 

explain how forests are managed and how wood, and in particular forest bioenergy, is 

produced from forests in the EU27 and around the world. The intention is to establish a 

common understanding of the subject and of relevant concepts underlying other sections 

in this report. Readers who are familiar with these topics may wish to skip this section 

and proceed to Section 3. 

A comprehensive description of the status of EU27 and global forests and associated 

wood supply chains is beyond the scope of this report, but this section explores the 

essential aspects of these subjects.  

The key purposes of the ensuing discussion are: 

 To review how forests are currently managed.  

 To review how forest bioenergy is conventionally produced as part of forest 

management.  

 To assess how changes might occur in forest management and patterns of wood use 

to meet significantly increased demand for forest bioenergy in the EU.  

 

2.2. Regions of the world 

The ensuing discussion reports a number of results related to forests, forest management 

and wood production for different regions of the world. Many of these results are derived 

from data reported as part of the 2010 Global Forest Resource Assessment produced by 

FAO (2010). In general, the countries comprising different regions have been based on 

the regions defined in FAO (2010) but with some modifications as indicated in Table 2.1. 

Some regions are more important for this report than others but all are covered for 

completeness. 

The EU27, Other Europe and North America are identified as currently the most 

important regions, in terms of existing and potential supply of forest bioenergy for 

consumption in the EU.  
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Table 2.1  Countries included in regions referred to in this report 

Region Description 

EU271 The Member States of the EU27. 

Other Europe1 

European countries not in the EU27, including ‘eastern European’ 

countries such as Belarus and Ukraine.  Also the Russian Federation, 

unless shown separately. 

North America2 
Essentially Canada and the USA. Sometimes Canada and the USA 

are shown separately. 

Africa 

Countries included in the region as defined in FAO (2010). 

Central America 

and Caribbean2 

South America2 

Asia 

Oceania 
Countries included in the region as defined in FAO (2010), but often 

essentially referring to Australia and New Zealand. 

Notes to Table 2.1: 

1 The EU27 and Other Europe may be grouped together as Europe and the Russian Federation.  

2 North America and Central America and Caribbean are sometimes grouped together as Central 

and North America. South America and Central America and Caribbean are sometimes grouped 

together as Central and South America. 

 

2.3. Forest management: key principles and practices 

Before considering the management of forests from the point of view of the production of 

forest bioenergy, it is appropriate to consider the concept of forest management more 

generally.  Indeed, the deceptively simple term ‘(forest) management’ is potentially 

highly ambiguous and consequently requires initial clarification. 

A forest area can be managed to achieve a number of objectives including: 

 Industrial wood production (through thinning and/or partial or complete felling). 

 Protection, conservation and/or enhancement of land-based carbon stocks. 

 Protection and/or conservation of soil and water resources, including protection 

against landslides. 

 Remediation and restoration of degraded land. 

 Protection and/or conservation of species, habitats and/or ecosystems. 

 Recreation and amenity. 

 Production of non-timber forest products (e.g. fruits, nuts, bark, rubber etc.). 

 Provision of food, feed, fuel and materials for local communities, possibly including 

shelter for livestock. 

It is very important to appreciate that it is common practice to manage forest areas to 

achieve several, and sometimes many, of these objectives at the same time.  This is 

consistent with the principle of ‘multipurpose forest management’, which has evolved into 
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a key principle of sustainable forest management, and has been a core tenet in the 

education and training of forest practitioners for some decades.  However, there are very 

limited and exceptional situations where management of forests is directed at achieving a 

single objective. 

A key foundation of sustainable forest management is the principle of ‘sustainable yield 

management’, which involves regulating the level of harvesting from forest areas to 

ensure that the productive capacity of the forest areas (i.e. their capacity for timber 

volume and biomass growth) is not exceeded.  Sustainable forest management, and in 

particular sustainable yield management, characteristically involves the cyclical 

management of individual forest stands as illustrated in Figure 2.1. 

 

Figure 2.1.  Illustration of possible stages in the cyclical management of an individual 

forest stand (see also Figure 2.2). 

Typically, an individual stand is managed through a series of stages involving a balance 

between tree establishment, growth and harvesting, which can be characterised as 

(Figure 2.2): 

 The ‘Tree establishment stage’ (Figure 2.2a), in which a new generation of young 

trees is planted or their natural regeneration is supported or encouraged. 

 The ‘Thicket stage’ (Figure 2.2b), in which a new generation of young trees has 

become established to form a densely covered area of interlocking tree crowns.  At 

this stage, some of the trees may be removed to give the remaining trees more room 

to develop (a process known as ‘respacing’).   
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 The ‘Pole stage’ (Figure 2.2c), in which the canopy of still relatively young trees has 

completely closed, branches and foliage lower down the trees have died, leading to 

the formation of distinct and relatively straight stemwood below the canopy of the 

trees.  At this stage and during subsequent growth, some of the trees (generally 

smaller and/or less well formed trees) may be felled to give the remaining trees more 

room to develop (a process known as ‘thinning’).   

 The ‘Full-vigour stage’ (Figure 2.2d), in which trees grow from youth to maturity.  

Generally, this is also the period in which the current annual growth rate of the stand 

of trees (also referred to as the current annual increment of stem volume, or CAI, see 

Appendix 2) is close to its maximum.  Further thinning operations may be carried out 

during this stage. 

 The ‘Mature stage’ (Figures 2.2e and 2.2f), in which trees have passed the period of 

maximum CAI and the dimensions of individual trees can be quite large (e.g. the 

heights of trees may be 20 m or more and diameters of individual trees may be 20 cm 

or considerably greater).  This is also the growth stage during which maximum mean 

annual (volume) increment (also known maximum MAI or MAImax
5) is reached (see 

Appendix 2).  From the mature stage, the management of a stand of trees may 

develop in one of several directions.  At one extreme, the stand may be clear felled 

(Figure 2.2e) whilst, at the other, it may be retained and protected, in some situations 

eventually becoming a biologically mature and effectively unmanaged forest.  Between 

these extremes, various patterns of partial felling or thinning may be applied, 

particularly with the aim of encouraging the regeneration of younger trees, perhaps as 

an understorey to the existing stand and with the ultimate aim of creating or 

maintaining a complex stand with trees of mixed age and/or species (Figure 2.2f).   

Figure 2.2 also illustrates how a stand of trees can produce a diverse range of types of 

harvested wood over a cycle of management, but with a strong tendency for specific 

types of wood to be produced at different points in the cycle, reflecting the stages in the 

development of the trees forming the stand. 

When considering such cyclical management of individual forest stands it is very 

important to recognise that: 

 Different types and sizes of trees and quantities of wood are harvested at different 

points in the cycle of management (Figure 2.2).  Trees harvested at different ages 

(and hence of particular dimensions and physical characteristics) will be suitable for 

different applications and end uses.   

 Typically, individual stands forming an entire forest will all be at different points in the 

cycle of management, leading to a diverse forest structure.  This also means that, at 

any one time across a whole forest, a broad mix of trees will be harvested which will 

be variously suitable for a range of end uses, even though particular types of trees 

                                       
5
 Mean annual volume increment (MAI) is the average rate of cumulative volume production up to 

a given year.  In even-aged stands, MAI is calculated by dividing cumulative volume production by 
age.  See also Appendix 2.   
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may be harvested from individual stands for specific uses, depending on their stage of 

development.  Collectively, the broad mix of trees harvested from a forest meets a 

range of demands. Wood fibre of various qualities, including forest bioenergy, is 

required by the wood processing sector and wider consumers. 

These points have critical significance when assessing any impacts due to the harvesting 

and use of wood for bioenergy.  As an important example, there may be situations where 

small trees are harvested from young stands (for example respacing in the thicket stage 

and thinning in the pole stage) and used entirely as a source of bioenergy.  However, 

these stands will produce wood primarily for other end uses later in their cycle of 

management.  It must be acknowledged that, if prices were sufficiently attractive, some 

trees of larger dimensions might be used entirely for bioenergy, thus competing with 

other industrial uses of the wood.  However, across an entire forest, it would be very 

unusual for all of the harvested wood to be used for bioenergy.  Consequently, when 

considering how wood is harvested to serve a range of end uses, it is necessary to 

consider appropriate spatial and temporal scales, which in general involves considering 

whole forests and looking across cycles in the management of stands.   

The cycle of forest management as discussed above and illustrated in Figures 2.1 and 2.2 

is an idealised representation of sustainable (yield) forest management.  That said, it is a 

quite accurate description of the management of significant areas of forest in the EU27 

and in other regions of the globe.  In other forest areas under sustainable management, 

the actual patterns of management may be described as variations on this theme. 

As a relatively extreme example, a stand of trees managed with a principal objective of 

raw wood fibre production might involve trees grown on a relatively short cycle (or 

rotation).  This might consist of an Establishment stage, based on planting and/or 

regeneration (Figure 2.2a), growing the stand through the Thicket stage (Figure 2.2b) 

without respacing the trees up to the Pole stage (Figure 2.2c), and then clear felling.  

Another example may occur in situations where permission is granted by a forest owner 

to a commercial company to harvest trees in existing forests.  In this case, management 

may involve the thinning, partial felling or clear felling of existing stands in their Mature 

stage of development (Figure 2.2e).  Following the felling of trees, an Establishment 

stage may take place through natural regeneration, or be actively supported.  The young 

trees are then allowed to grow through the Thicket, Pole and Full-vigour stages, possibly 

with little or no intervention, until the Mature stage is restored in the stand. 
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Figure 2.2a-f.  Illustration of typical management interventions during stages in the 

cyclical management of a forest stand.  Conifer trees are depicted but the stages also 

apply to broadleaves. 

 

 

Figure 2.2a.  Establishment stage.  Young trees are allowed to regenerate or are actively 

planted to form a new generation of trees.  This may occur on land that previously was not forest 

or on land where trees have previously been clear felled.  In some situations, young trees will 

sprout from the old stumps of previously felled trees (coppicing).  In forest stands with complex, 

mixed age and possibly mixed species composition, establishment may be carried out underneath a 

canopy of older trees.  In addition to possible planting, management interventions may include 

some form of ground preparation, weed control and protection of trees against grazing animals.  

During this stage the trees are too young for any wood to be produced.   

 

 

 

Figure 2.2b.  Thicket stage.  A new generation of young trees has become established to form a 

densely covered area of interlocking tree crowns.  At this stage, some of the trees may be removed 

to give the remaining trees more room to develop (a process known as ‘respacing’).  The trees that 

are removed may be left to decay in the forest or they may be harvested.  The harvested trees are 

so small they are of limited use and most likely be chipped and used for fuel. 
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Figure 2.2a-f (continued).  Illustration of typical management interventions during 

stages in the cyclical management of a forest stand.  Conifer trees are depicted but the 

stages also apply to broadleaves. 

 

 

Figure 2.2c.  Pole stage.  A canopy of still relatively young trees has completely closed, branches 

and foliage lower down the trees have died, leading to the formation of distinct and relatively 

straight stemwood below the canopy of the trees.  At this stage and during subsequent growth, 

some of the trees (generally smaller and/or less well formed trees) may be felled to give the 

remaining trees more room to develop (a process known as ‘thinning’).  The trees removed as 

thinnings will normally be harvested.  Small trees and trees with very poor stem form (e.g. heavily 

branched or with severe defects) will be used to supply wood chips for panels (e.g. particleboard) 

or for bioenergy.  Larger, well formed trees will be converted into bars and small roundwood to 

make fencing, pallets, panels and paper.  A fraction of these products may be used as a bioenergy 

feedstock.  Branch wood from the converted trees will most likely be left in the forest but could in 

theory be removed as harvesting residues.  (See also Section 2.5.) 

 

 

 

Figure 2.2d.  Full-vigour stage.  The trees grow from youth to maturity.  Generally, this is also 

the period in which the growth rate of the stand of trees is close to its maximum.  Further thinning 

operations may be carried out during this stage.  The trees removed as thinnings will normally be 

harvested.  Trees with very poor stem form (e.g. heavily branched or with severe defects) will be 

used to supply wood chips for panels (e.g. particleboard) or for bioenergy.  Well formed trees will 

be converted into sawlogs, bars and small roundwood to make sawn timber, fencing, pallets, 

panels and paper.  A fraction of these products may be used as a bioenergy feedstock.  Branch 

wood from the converted trees will most likely be left in the forest but could in theory be removed 

as harvesting residues.  (See also Section 2.5.) 
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Figure 2.2a-f (continued).  Illustration of typical management interventions during 

stages in the cyclical management of a forest stand.  Conifer trees are depicted but the 

stages also apply to broadleaves. 

 

 

Figure 2.2e.  Mature stage (clear felling).  Trees have passed the period of maximum growth 

rate and the dimensions of individual trees can be quite large.  From the mature stage, the 

management of a stand of trees may develop in one of several directions.  In this example, the 

stand is clear felled.  The felled trees will be harvested.  The trees will be converted into sawlogs, 

bars and small roundwood to make sawn timber, fencing, pallets, panels and paper.  A fraction of 

these products may be used as a bioenergy feedstock.  Branch wood from the converted trees will 

form part of ‘harvesting residues’, along with other pieces of wood such as stem tips and large but 

poor quality butt logs.  The harvesting residues may be left in the forest, may be burned on site (in 

preparation for establishing the next stand), or may be harvested and used for bioenergy.  (See 

also Section 2.5.) 

 

 

 

Figure 2.2f.  Mature stage (transformation to complex structure).  One alternative to clear 

felling (see Figure 2.2e) involves transforming a mature stand to create a complex structure in 

terms of tree ages and possibly species.  This is achieved through a combination of thinning, 

regeneration and planting as part of a continuous process.  A diverse mixture of trees will be 

harvested during thinnings and used for a range of products.  (See Figures 2.2b-e and also Section 

2.5).   
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2.4. Forest management around the world 

EU27 Member States produce forest biomass for energy production from their own 

forests, and also import it from various regions around the world.  For this reason, it is 

necessary to consider the distribution, rates of growth, ownership and management of 

forests at both global and European scales.  The demand for forest biomass for energy 

production has implications for the management of forests across the globe, as explored 

further in Sections 2.6 and 2.7.  

2.4.1. EU27 and world forest cover 

Forests6 cover just over 4 Gha, or 31% of the global land area (FAO, 2010; see also 

Table 2.2 below).  A further 8.8% of global land area (just over 1 Gha) is classified as 

other wooded land7.  This report focuses on forests, as opposed to other wooded land, as 

representing the resource of principal relevance to the discussion of forest bioenergy. 

With the exception of Oceania, forest area is distributed fairly evenly amongst the major 

regions of the globe (see Table 2.2). However, forests are distributed unevenly within 

each major region.  For example, in North America, forest areas tend to be concentrated 

at the margins of the continent (Figure 2.6).  In Europe, highest forest cover percentages 

are generally found in Northern (boreal) Europe (Finland, Sweden, Latvia, Estonia) and 

mountainous areas (Slovenia, Austria) (Table 2.3, Figure 2.4 and Figure 2.5). 

Table 2.2 Distribution of land and forest areas for regions of the globe  

Region / 

sub-region 

Land area Forest area 

 

million ha 
%  

of global 

land area 

 

million ha 
% 

land area 
% 

of global 

land area 

Africa 2974 22.9 674 22.7 5.18 

Asia 3091 23.8 593 19.2 4.55 

EU27 419 3.2 157 37.5 1.21 

Other Europe 1796 13.8 848 47.2 6.52 

Central and North 

America 

2135 16.4 705 33.0 5.42 

Oceania 849 6.5 191 22.5 1.47 

South America 1746 13.4 864 49.5 6.64 

      World 13011 100.0 4033 31.0 31.00 

 

                                       
6
 FAO (2010) defines forest as: ‘Land spanning more than 0.5 hectares with trees higher than 5 

metres and a canopy cover of more than 10 per cent, or trees able to reach these thresholds in 

situ.  It does not include land that is predominantly under agricultural or urban land use’. 
7
 FAO (2010) defines other wooded land as: ‘Land not classified as ‘Forest’, spanning more than 

0.5 hectares; with trees higher than 5 metres and a canopy cover of 5-10 per cent, or trees able to 
reach these thresholds in situ; or with a combined cover of shrubs, bushes and trees above 10 per 
cent.  It does not include land that is predominantly under agricultural or urban land use’. 
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Table 2.3 Distribution of land and forest areas amongst Member States in the 

EU27 (Source: FAO, 2010) 

EU27 

Member State 

Land area Forest area 

 

1000 ha 
%  

of EU27 

land area 

 

1000 ha 
% 

of land 

area 

% 

of EU27 

land area 

Austria 8245 2.0 3887 47.1 0.93 

Belgium  3028 0.7 678 22.4 0.16 

Bulgaria 10864 2.6 3927 36.1 0.94 

Cyprus 924 0.2 173 18.7 0.04 

Czech Republic 7726 1.8 2657 34.4 0.63 

Denmark 4243 1.0 544 12.8 0.13 

Estonia 4239 1.0 2217 52.3 0.53 

Finland 30409 7.3 22157 72.9 5.29 

France 55010 13.1 15954 29.0 3.81 

Germany 34877 8.3 11076 31.8 2.65 

Greece 12890 3.1 3903 30.3 0.93 

Hungary 8961 2.1 2029 22.6 0.48 

Ireland 6888 1.6 739 10.7 0.18 

Italy 29411 7.0 9149 31.1 2.19 

Latvia 6229 1.5 3354 53.8 0.80 

Lithuania 6268 1.5 2160 34.5 0.52 

Luxembourg 259 0.1 87 33.6 0.02 

Malta 32 0.0 <1 0.9 0.00 

Netherlands 3388 0.8 365 10.8 0.09 

Poland 30633 7.3 9337 30.5 2.23 

Portugal 9068 2.2 3456 38.1 0.83 

Romania 22998 5.5 6573 28.6 1.57 

Slovakia 4810 1.1 1933 40.2 0.46 

Slovenia 2014 0.5 1253 62.2 0.30 

Spain 49919 11.9 18173 36.4 4.34 

Sweden 41033 9.8 28203 68.7 6.74 

United Kingdom 24250 5.8 2881 11.9 0.69 

      All EU27 418616 100.0 156865 37.5 37.47 
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However, whilst Table 2.3 indicates where forest resources in the EU27 are mainly 

located, it does not follow that forests (and indeed forest industries) are of low 

importance for other Member States.  For example, percentage forest cover in the UK is 

about 15% (Forestry Commission, 2013) and the area of UK forests represents about 2% 

of the EU27 forest area, but even this relatively modest resource supports an important 

forestry sector and significant wood processing infrastructure.  It is also important to 

appreciate the heterogeneity of forests in different Member States, for example, although 

Finland and Spain have similar areas of forest, their characteristics are very contrasting 

(see for example Section 3.3). 

Forest areas in Europe and North America have a rather similar species composition, with 

the proportions of conifer and broadleaf forests at roughly 60% and 40% respectively.  

The distribution of conifer and broadleaf forests across Europe and North America 

exhibits a general trend towards conifer forest areas in the North and West and broadleaf 

forest areas in the South and East, but this is subject to considerable variability.  In Asia, 

Africa and South America, broadleaf forests are more dominant, although there are small 

but important areas of conifer forest, notably those created as industrial plantations. 

2.4.2. Growth rates of EU27 and world forests 

The rate of growth of forests is obviously a key factor in determining the quantities of 

wood (including forest biomass) that can be sustainably supplied from forests.   

The frequently used forestry term ‘yield’ refers generally to the level of timber or biomass 

harvested or produced from an individual stand of trees, or from an area of forest formed 

of many stands.  As briefly outlined in Section 2.3, the concept of ‘sustainable yield 

management’ underpins sustainable forest management, and involves regulating the 

level of harvesting from forest areas to ensure that the productive capacity of the forest 

areas (i.e. their capacity for timber volume and biomass growth) is not exceeded.  

Although systematic and comprehensive data on potential growth rates of forests for 

countries and regions are not generally available, Forest Research has collated and 

reviewed sources of information on the potential productivity of forests, focussing 

primarily on Europe, Russia and North America, but where possible more widely (see for 

example Christie and Lines, 1979).  Much of this information came from an examination 

of published regional and national yield tables, which give an indication of the expected 

base growth rates of the existing forest growing stock.  It should be noted that these 

yield tables generally do not take account of any increases in growth rates that might be 

achieved through the use of fertilisation, a better matching of tree species to site, a 

change of tree species, tree breeding, genetic modification, etc. 

The potential growth rate of a forest stand can be expressed as maximum mean annual 

increment (MAImax, see Appendix 2).  The ‘mean growth rate’ of forests (expressed as 

mean MAImax) is estimated at about 6, 4, and 6 m3 ha−1 yr−1 respectively for the major 

regions of the EU27, Other Europe and North America.  (Note that the estimate of mean 

growth rate for Other Europe excluding Russia is about 5 m3 ha−1 yr−1.)  Growth rates 
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observed in tropical regions of Africa, Asia, South and Central America and Oceania can 

be much higher, typically 14 to 20 m3 ha−1 yr−1 and 30 m3 ha−1 yr−1, or greater in the 

most favourable warm and moist areas (Evans and Turnbull, 2004).  For historical 

reasons, the mean growth rates observed in some parts of the world are lower than 

might potentially be achieved.  Forests in some regions are often located on less fertile 

land at the margins of agriculture, in the uplands, or on other land where climatic and 

edaphic factors may limit the rate of tree growth. 

Within the major regions of the EU27, Russia with other Europe and North America, 

growth rates of forests exhibit broad trends, tending to be higher towards the West, 

particularly near oceans, and lower further East and particularly further North.  To a large 

extent, these trends reflect the preference of trees for warm, moist growing conditions 

and also to some extent the distribution of conifer and broadleaf forests. In the EU27, the 

mean growth rates of forests in different Member States show such variations (Figure 

2.3).  The growth rates of individual stands of trees exhibit considerable variation around 

mean values, mostly depending on their stage of development (Figures 2.2a-f).  
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Figure 2.3.  Mean annual increment per country in Europe as simulated by the EFISCEN 

model for the period 2010-2015 (UN-ECE, 2011). 

In the major regions of the EU27, Other Europe and North America, in general (but with 

exceptions), conifer tree species have higher stem volume growth rates than broadleaf 

tree species.  In general, broadleaved trees have more mass per unit of volume and 

more branchwood per unit of stemwood compared with conifer trees. Therefore, if growth 

rate is expressed in terms of total tree biomass (oven-dry tonnes, odt) rather than stem 

volume, growth rates of conifers and broadleaves are more comparable.   

Simplistic calculations can be made based on total forest areas and estimated mean 

growth rates for individual countries to suggest very rough estimates for the theoretical 

maximum potential for biomass production from forests.  For example, an estimate of 

about 0.4 Godt yr−1 is obtained for the EU27, 0.05 Godt yr−1 for Other Europe (excluding 
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the Russian Federation), 1.6 Godt yr−1 for the Russian Federation and 1.8 Godt yr−1 for 

North America.  However, it must be stressed that for a range of reasons, such maximum 

potentials could never be realised or even approached in practice.  Such estimates 

nevertheless suggest extreme upper limits for forest biomass production which serve as 

a ‘reality check’ when constructing scenarios for biomass production and consumption, 

such as considered in Task 2 of this project. 

2.4.3. Ownership and management of EU27 and world forests 

The characterisation of the management of forests in different regions of the world is 

difficult because available data are not comprehensive and the categorisation of forests is 

subjective and often ambiguous. However, some insights about forest management may 

be drawn from statistics reported as part of FAO (2010). 

FAO (2010) reports information on ‘Forest Designation’, which indicates the primary 

function or management objective assigned to areas of forest, examples being 

‘Production’ and ‘Protection of soil and water’.  Unfortunately, this information is missing 

for many countries and areas.  Moreover, the primary function designated for a forest 

area may not be a sufficient indicator of forest management for reasons already 

explained in Section 2.3. For these reasons, it may be more appropriate to make 

inferences about the management of forest areas in different regions of the world based 

on their ownership and broad classification (i.e. into categories such as ‘primary forest’ 

and ‘planted forest’).  

Forest ownership can be an important factor in how forests are managed. A usual 

distinction is in public and private ownership. However, the terms public and private 

ownership have different interpretations in different regions of the globe.  Table 2.4 

summarises how these terms may be interpreted and, in particular, the implications for 

management of forests in different countries and regions.  It must be stressed that these 

descriptions are somewhat speculative and provide ‘caricatures’ of forest management in 

different regions.   

Globally, about 80% of forest area (3.2 Gha) is in public ownership8 with most of the rest 

in private ownership9 (about 18% or 0.7 Gha) (Table 2.5). Public ownership varies 

considerably between regions, ranging from about 40% in EU27 and USA to around 95% 

in Other Europe, Canada and Africa.  Also within regions there is considerable variation in 

ownership (Figures 2.4 to 2.6). 

 

                                       
8
 FAO (2010) defines ‘public ownership’ as referring to ‘forest owned by the State; or 

administrative units of the Public Administration or by institutions or corporations owned by the 

Public Administration’. 
9
 FAO (2010) defines ‘private ownership’ as referring to ‘forests owned by individuals, families, 

communities, private-operatives, corporations and other business entities, private religious and 
educational institutions, pension or investment funds, NGOs, nature conservation associations and 
other private institutions’. 
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Table 2.4 Summary description of forest management in public and private ownership in different regions  

of the globe 

Country/ 

region 
Forest areas in public ownership Forest areas in private ownership 

EU27 

Generally implies forest areas that are state-owned and 

managed by state-run management organisations.  As such, 

these forest areas may be subjected to a variety of forest 

management practices most likely consistent with multipurpose 

forestry and ‘management cycles’ as described in Section 2.3.  

Some areas will consist of natural reserves and national parks. 

Generally implies forest areas that are privately owned 

(and which may be quite small), owned by individuals and 

families, which might be managed by a local co-operative 

of owners or by a private management corporation, or may 

not be managed at all. 

Other 

Europe 

As EU27, but there are also areas in state-ownership where 

permissions may be granted for private forestry companies to 

carry out harvesting as thinning or partial/complete clear felling.  

Harvesting activities in such forests are regulated. 

As EU27.  Small contribution to global total. 

Russian 

Federation 
As Europe. No forest in private ownership in the Russian Federation. 

USA As Europe. 
Mainly like EU27, but also a significant minority of forests 

owned and managed by large private corporations. 

Canada As Europe. As USA.  Small contribution to global total. 

Oceania 

Primarily, implies areas in state-ownership where permissions 

may be granted for private forestry companies to carry out 

harvesting as thinning or partial/complete clear felling.  

Harvesting activities in such forests are regulated. 

Diverse (see Rest of Europe and Asia/South America). 

Asia and 

South 

America 

As Oceania but, in some regions, regulation may be challenging 

due to the extent of the resource needing to be regulated. 

Generally implies forest areas owned by multinationals (in 

particular forest areas formed of industrial plantations).  

Some areas owned by communities for local use, some 

areas owned by NGOs and conservation organisations 

primarily for conservation. 

Africa As Asia/South America.  Small contribution to global total. 
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Figure 2.4. Map showing the spatial distribution of forests in public ownership in Europe. (Source: Pulla et al., 2013.) 
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Figure 2.5. Map showing the spatial distribution of forests in private ownership in Europe. (Source: Pulla et al., 2013.) 
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Figure 2.6. Map showing spatial distribution of forests in the conterminous States of the USA. Ownership of forest areas is 

also indicated.  (Adapted from Nelson et al., 2011.) 
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Table 2.5 Ownership of forests in major regions of the globe  

(from FAO, 2010) 

Country/region 

Percentage forest area by 

ownership within country/region 

Public Private Other 

EU27 40.4 58.4 1.2 

Other Europe (including Russia) 98.6 1.4 0.0 

Canada 92.0 8.0 0.0 

USA 43.0 57.0 0.0 

Central America and Caribbean 58.8 39.7 1.5 

South America 75.1 21.5 3.4 

Asia 80.8 19.1 0.1 

Oceania 62.0 37.3 0.8 

Africa 94.7 3.7 1.5 

Total 80 18 2 

Note: percentages for a country may not sum to 100 due to rounding. 

 

FAO (2010) classifies forest areas using the categories of planted forest10, other naturally 

regenerated forest11 and primary forest12, as summarised in Table 2.6.  These are 

particularly subjective and ambiguous terms which, more generally, are not favoured for 

use in this report.  It is also important to note that reporting of data according to this 

classification is incomplete.  For example, FAO (2010) includes a note explaining that 

zero area of primary forest reported for a country may be due to a lack of information on 

the area of primary forest.  Hence, considerable caution is required when interpreting 

statistics referring to this classification, particularly if attempting to draw inferences 

about how forests are being managed.  On this basis, data reported by FAO (2010) 

suggest that at least 36% of the global forest area is within the category of primary 

forest.  Thus potentially, up to 64% (57% naturally regenerated forest plus 7% planted 

forest) of the global forest area may be under active forest management.  As already 

stressed, it is difficult to determine precisely what this means for the extent and types of 

forest management.  Thus, this is likely to be an upper limit for the area being managed 

globally for wood production. 

                                       
10

 FAO (2010) defines ‘planted forest’ as ‘forest predominantly composed of trees established 

through planting and/or deliberate seeding’. 
11

 FAO (2010) defines ‘other naturally regenerated forest’ as ‘naturally regenerated forest where 

there are clearly visible indications of human activities’. 
12

 FAO (2010) defines ‘primary forest’ as ‘naturally regenerated forest of native species, where 

there are no clearly visible indications of human activities and the ecological processes are not 
significantly disturbed’.   
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Table 2.6 Characterisation of forests in major regions of the globe 

Country/region 

Percentage forest area by 

characteristic within country/region 

Planted Regenerated Primary 

EU27 27.8 69.2 3.0 

Other Europe 3.2 66.5 30.4 

Canada 2.9 43.8 53.3 

USA 8.3 66.9 24.8 

Central America and Caribbean 4.9 51.4 43.7 

South America 1.7 22.0 76.3 

Asia 20.8 60.7 18.6 

Oceania 2.1 79.3 18.6 

Africa 3.1 87.4 9.6 

Note: percentages for a country may not sum to 100 due to rounding. 

 

Table 2.7 Estimated percentage area of forest within regions 

under management for wood production 

Region Percentage 

area 

Comments 

EU27 
60 Varies between 10 and 90 for individual Member 

States 

Other 

Europe 

35 Lower in the Russian Federation in percentage 

terms 

North 

America 

35 Higher in the USA than Canada in percentage 

terms 

Oceania 
Between 

2 and 20 

Higher in New Zealand than Australia in 

percentage terms 

 

Within any country or region, areas of planted forest will be amongst those most likely to 

be managed for wood production; this may also be the case for areas of other naturally 

regenerated forest, whilst being least likely for areas of primary forest.  Management for 

wood production is also likely to be associated with forest areas that have relatively high 

growth rates, since these areas will be more favourable in economic terms.  As a 

consequence, forest areas in the far north of Canada, Fennoscandia and the Russian 

Federation are particularly unlikely to be managed for industrial wood production.  Table 

2.7 gives the estimated percentages of forest area under management for wood 

production in four regions. 

The relatively high percentage of planted forests in the EU27 may be noted, which most 

likely reflects significant afforestation activities in several Member States during the 
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previous century (see Section 3.3).  The high percentage of planted forests in Asia is 

largely due to China, where there has been a recent programme of afforestation.  The 

limitations in the reporting of primary forest area have already been stressed above.  

However, it may be noted that the percentage area of primary forest in the EU27 is very 

small, in contrast to other regions and countries notably South America, Canada, Asia 

and Other Europe.  It is very important to recognise that primary forest (e.g. as defined 

in FAO, 2010) should not be assumed to always be in an undisturbed state with high 

associated growing stock.  For example, the FAO definition of primary forest suggests 

forest areas apparently unaffected by human activities and with ‘ecological processes not 

significantly disturbed’ (FAO, 2010), but these ecological processes may include 

significant natural disturbance processes such as storms, fires and attacks by insects or 

diseases.  It follows that the growing stock of primary forest areas can be very variable 

between and within regions, depending on the interplay between tree growth and natural 

disturbance processes.   

Beyond the preceding qualitative discussion, it is difficult to make definitive statements 

about forest management practices in different regions of the world, and generally there 

is a lack of systematic data on this subject.  Areas of forest likely to be involved in 

management for wood production will include the vast majority of plantations and a 

variable proportion of natural/semi-natural forest areas. Various factors will determine 

whether forests are managed for production including wood properties of trees, growth 

rate, accessibility and proximity to processing facilities or centres of population, and most 

obviously the level of demand for wood. 

In the EU27, forest management involving wood production should adhere closely to the 

broad principles described in Section 2.3. This is also true for forest management in other 

regions of the world, but some important distinctions should be noted. Notably, in Other 

Europe, the Russian Federation and North America, there can be greater emphasis on 

more extensive management practices involving harvesting. These practices include, for 

example, periodic harvests in natural and semi-natural forests involving complete clear 

felling or the removal of a significant proportion of the trees forming a forest area, in 

some cases concentrating on removal of the highest quality trees. After harvesting, 

forest areas are allowed to regenerate. The process of regeneration may be unassisted, 

or may be supported by the retention of seed trees as part of harvesting operations, or 

possibly planting of new trees. The ‘rotation’ in such forest areas is effectively 

determined by the time taken for trees to regenerate following harvesting, to the point 

where further harvesting becomes economically attractive.  

2.5. How wood is produced and used 

As outlined in Section 2.3, at any one time across a whole forest, a broad mix of trees 

will be harvested which will be variously suitable for a range of end uses (although it is 

extremely uncommon for whole stands of trees to be felled and all of the harvested wood 

to be used for bioenergy).  Generally, whole trees are used for bioenergy only when they 
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are very small and otherwise would be ‘felled to waste’; when they are of small diameter, 

or when they are of large diameter and also of poor stem form (and so unsuitable for 

producing high grade sawn timber).  However, potential for competition for ‘lower-grade’ 

wood material between the bioenergy sector and the particleboard and pallet sectors 

needs to be recognised. 

The wood processing sector is complex, with outputs from the forest providing feedstocks 

for the manufacture of structural sawn timber, plywood, pallets and fence posts, 

particleboard and fibreboard, paper and other products including bioenergy.  Whilst it is 

common for bioenergy feedstocks to be derived from co-production of higher value 

timber products, it is very unlikely that wood will be diverted from the manufacture of 

high value wood products to supply forest bioenergy.  Nevertheless, there are risks that 

co-products could be diverted from the manufacture of particleboard, fibreboard and 

paper to meet growing demand for bioenergy feedstocks.  These subjects will be 

addressed within the current sub-section. 

The main factors determining the suitability of raw harvested wood for specific uses are 

size (i.e. diameter and length of stemwood or branches) and straightness.  Figure 2.7 

illustrates examples of raw harvested wood and describes how these typically would be 

processed for specific end uses.   

A glossary of technical terms is included in Appendix 1 of this report, but certain terms 

are so essential to understanding the ensuing analysis and discussion, that it is necessary 

to direct the reader to these at the outset.  These essential terms are listed in Box 2.1, 

below, and full definitions are presented in Appendix 1. 

Figure 2.7 illustrates the potential complexity of the wood processing sector, notably how 

raw wood products such as sawlogs and small roundwood are prioritised for manufacture 

of certain finished products (such as sawn timber products, pallets and paper).  The 

figure also shows how raw products can form feedstocks for one or more co-products, 

often involving exchanges in woody material amongst different sub-sectors of the wood 

processing industries.  As a key example, typically sawlogs are processed in a sawmill to 

manufacture a principal product of sawn timber, in the process generating co-products of 

sawlog offcuts and sawdust.  These co-products may be used as feedstocks in a boardmill 

for the manufacture of wood-based panels, or may be processed at the sawmill, 

boardmill or elsewhere to supply as wood chips or wood pellets for burning as bioenergy.  

Some of the material may be utilised as animal bedding.  Wood processing mills may also 

use some harvested wood as bioenergy to provide heat and possibly power for the mill 

itself, e.g. for processing stages or for offices.   
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Box 2.1 Essential terms used to refer to types of felled and/or harvested wood 

 

 

It should be evident from the illustration in Figure 2.7 that the wood from harvested 

trees is rarely used to make a single product, such as solely to manufacture wood based 

panels, paper or wood pellets for bioenergy.  However, as explained in Section 2.3, there 

may be exceptions, such as small trees or trees with very deformed stems which may be 

used entirely for products such as wood based panels or possibly bioenergy.  Different 

elements from the harvested trees typically comprise a diverse assortment in terms of 

sizes and properties (such as stem form), which are suitable for different end uses.  As 

discussed in Section 2.7, this is reflected in the prices attracted by different types of tree 

(e.g. broadleaf or conifer) and tree components (i.e. sawlogs, small roundwood and 

branchwood). 

Bioenergy is typically produced from low value feedstocks including (see Figures 2.2 and 

2.7): 

 small and poorly formed trees  

 harvesting residues  

 some co-products of sawmills and boardmills and  

 secondary wood from products disposed of at end of life.   

As discussed briefly in Section 2.7, currently, forest bioenergy does not appear to be 

price-competitive with the feedstock markets for finished solid wood products such as 

sawn timber, wood based panels or paper products.  However, it is more difficult to 

determine whether forest bioenergy is in competition for sources of wood conventionally 

used as feedstock for the wood-based panel industries. 

The following technical terms are essential to understanding the analysis and 

discussion in the remainder of the report.  The reader is referred to the 

definitions, which are presented in the glossary (Appendix 1). 

Harvesting residues (or felling or forest residues) 

Industrial roundwood 

Primary wood 

Recycled wood 

Removals 

Roundwood 

Sawlogs 

Secondary wood 

Small roundwood 

Stemwood or ‘main stem’ 

Waste wood 

Woodfuel (as a commodity) 

Woodfuel (as a reported statistic) 
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The complexity of the wood processing sector can present challenges when attempting to 

track flows of wood from the forest through to ultimate end use. This may be important, 

for example, if there is a requirement to characterise in detail the types of feedstock 

contributing towards supplies of forest bioenergy. Furthermore, changes in demands for 

different types of wood product, such as a marked increase in demand for forest 

bioenergy, may influence flows of wood through the forest and wood processing sectors. 

The task of determining such potential changes must be undertaken carefully, taking into 

account possible interactions between demands for different types of wood.  However, it 

remains the case that certain raw wood products and co-products have properties that 

are optimal for the manufacture of certain specific finished wood products.  These 

properties are likely to remain critical in determining how raw wood is prioritised for 

consumption within the forest and wood processing sectors. 

A further layer of complexity is added when considering trade in raw wood, semi-finished 

and finished wood products between Member States of the EU27, and between the EU27 

and other regions of the world.  Despite the potential complexity of the task, in principle 

it is possible to characterise flows of wood in and out of the EU27 and between EU27 

Member States, as was presented in the EUwood report of Mantau et al. (2010).  The 

study of Mantau et al. (2010) was referred to and extended in the European Forest 

Sector Outlook Study II (EFSOS II), 2010-2030 (UN-ECE, 2011).  In practice, such 

exercises have rarely been undertaken and examples of how such an analysis might be 

undertaken and reported at Member State level are shown in Figures 2.8 and 2.9.  The 

main flows of imported and home-grown (including exported) wood and various co-

products within the forest and wood processing sectors of Great Britain are illustrated in 

Figure 2.9.  The patterns of wood utilisation depicted in the figure are in broad 

agreement with the idealised patterns portrayed in Figure 2.7.  The significant 

contribution made by imported wood (in the case of Great Britain) is also evident in 

Figure 2.9.  Such analyses are very useful for identifying the original sources and types 

of wood feedstocks involved in the supply of different categories of wood product 

(including bioenergy), but it is perhaps pertinent that this particular example is based on 

a study dating from the mid 1990s, which has not been updated more recently. 
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Figure 2.7.  Simplified illustration of how different types of raw wood products are processed into finished wood products and 

potentially recycled at ‘end of life’. 
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Figure 2.8 summarises the results of an analysis of the countries of origin for a range of 

solid wood products imported into the UK in 2010. The country/region of origin of wood 

material is influenced by the type of wood product, for example (and most obviously) 

whether the country produces the particular product. The source of wood material will 

also vary annually due to changes in the markets, and relative and absolute values for 

each wood product type. Figure 2.8 shows the percentage of types of wood product 

imported in 2010 by the country of origin. For example, in 2010, more than 60% of the 

total softwood sawnwood imported into the UK came from just three countries, which 

happen to be EU27 Member States, i.e. Sweden (43%), Latvia (14%) and Finland (12%).  

Imports of softwood sawnwood, particleboard, fibreboard, paper and paperboard in 2010 

came mainly from within the EU27. Imports of sawn hardwood, plywood and wood pulp 

in 2010 came mainly from outside the EU27. 
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Figure 2.8.  Bar chart showing the country of origin, by percentage of total imports, of 

types of wood product into the UK in 2010. Based on Forestry Commission (2011). 
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Figure 2.9. Illustration of the principal flows of wood in the British/UK forest and wood 

processing sectors for the year 1997. (Source: FICGB, 1998.) 
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Whilst statistics such as presented in Figures 2.8 and 2.9 serve as an illustration of wood 

flows within an EU27 Member State, including the contributions due to home-grown and 

imported wood, the patterns for other Member States will be very variable. 

Unfortunately, data on wood consumption are not available for all Member States or the 

EU27 as a whole at the level of detail in Figures 2.8 and 2.9. It is also notable that 

information on sources of forest bioenergy is missing from the results in Figures 2.8 and 

2.9. This subject is considered further in Sections 2.6 and 2.7. 

The potential complexity of flows of wood may complicate the LCA calculations needed 

for the assessment of GHG emissions associated with forest bioenergy. This point is 

explored further in Section 4 of this report. 

2.6. Current and potential future production and consumption of forest 

bioenergy  

So far, the discussion in this section has discussed aspects of forests, forest management 

and wood utilisation and, where appropriate, noted relevance to the assessment of GHG 

emissions due to the production and use of forest bioenergy.  It is now appropriate to 

address directly the subject of forest bioenergy production and consumption.  There are 

no comprehensive data sources on which to base such a discussion, but several reports 

and data sets are available which help to gain a picture of the existing and potential 

future use of bioenergy, globally and in the EU27.  The main relevant sources are: 

 An analysis undertaken by the GB Forestry Commission of FAO statistics on ‘wood 

removals’ (i.e. wood harvesting) for regions of the world over the period from 1990 to 

2010 (Forestry Commission, 2012). 

 A synthesis of data from National Renewable Energy Action Plans (NREAPs) published 

by EU27 Member States in response to the EU Renewable Energy Directive (Beurskens 

et al., 2011). 

 The final report of the EC EUwood Project (Mantau et al., 2010). 

 Information on import and export prices of wood products collected and reported by 

the UN-ECE (www.unece.org/forests/output/prices.html). 

 The UN-ECE European Forest Sector Outlook Study II (EFSOS II) 2010-2030 (UN-ECE, 

2011). 

 Statistics on woodfuel trade in the UK collected and reported by UK HM Revenue and 

Customs, accessed through the UKTradeInfo website (www.uktradeinfo.com). 

 Statistics on woodfuel consumption in the UK in 2011 reported by Ofgem (2012). 

 An EU/global-scale economic analysis of the potential contribution of forest biomass to 

the EU target for utilisation of renewable energy sources and its implications for the 

EU forest industries (Moiseyev et al., 2011). 

 The Joint Wood Energy Enquiry by the UN-ECE 

(http://www.unece.org/forests/jwee.html). 

Forest bioenergy is commonly referred to as ‘woodfuel’ in these reports and data sets, 

and a number of categories of woodfuel can be identified, as described in Box 2.2.  

http://www.unece.org/forests/output/prices.html
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Box 2.2  Major categories of woodfuel and their uses 

 

 

Based on an analysis of statistics compiled by the FAO, a report produced by the GB 

Forestry Commission has summarised ‘wood removals’ from forests for regions of the 

world over the period 1990 to 2010, to meet demands for industrial roundwood and 

woodfuel (Forestry Commission, 2012).  Total removals for the EU27 and for the globe 

are shown in Table 2.8. At the global scale, removals to meet demands for woodfuel 

slightly exceed those for industrial roundwood, accounting for around 53% of total 

removals. It is difficult to discern a trend in removals for industrial roundwood when 

compared with fluctuations in values for different years. However, there is a suggestion 

that removals for woodfuel have been rising gradually since 1995. The Forestry 

Commission report notes that ‘around three quarters of woodfuel removals took place in 

Asia and Africa’, and that, ‘globally, removals of woodfuel increased by 1% between 2009 

and 2010’. This small percentage rise very approximately represents an increase in 

annual removals of around of 11 million cubic metres over bark. It should also be noted 

that the high proportion of woodfuel removals in Asia and Africa is generally associated 

with local domestic use for heating and cooking. 

 

Logs: Almost unprocessed raw harvested wood, possibly small stemwood, 

parts of large stemwood, often parts of branches, with or without bark.  Most 

frequently used for domestic heating, some for food smoking. 

 

Briquettes: Wood chips, sawdust, and waste and scrap wood, possibly bark, 

compressed at high temperature to form a homogenised mass of wood with 

uniform dimensions.  Most frequently used for domestic heating, some for 

food smoking. 

 

Chips: Solid wood, with or without bark, comminuted to make small to 

moderate size pieces of wood.  Often wood chips are made to specified 

dimensions.  Used for a range of applications including (relatively) small-scale 

power generation, domestic and small-scale commercial heating, food 

smoking.  Wood chips may also be used for non-fuel uses, notably animal 

bedding. 

 

Pellets: Wood which has been ground to sawdust and then compressed to 

form pellets of a size, shape and consistency.  Used in large quantities for 

large-scale power generation, including co-firing with coal, also used for 

domestic and commercial heating systems, particularly automated systems. 
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Table 2.8 also shows wood removals in the EU27 for woodfuel and industrial roundwood 

for the period 1990 to 2010, based on the report by the GB Forestry Commission (2012).  

Compared with the global scale, removals for woodfuel represent a smaller share of total 

removals (17% to 20% over the period). However, removals for woodfuel appear to have 

risen noticeably since 1995, amounting to about 75 million cubic metres in 1995 and 96 

million cubic metres in 2010.  A similar trend cannot be discerned for the share of 

removals of woodfuel in the EU27 compared with total removals. This share seems to 

remain stable over the period 1990 to 2005, taking a value of 17% or 18%, but then 

rises to 20% in 2010.  It may be relevant to note that small-scale harvesting of wood to 

provide supplies of woodfuel for local domestic consumption may be poorly represented 

in statistics for wood removals in some regions, not least the EU27.  In some situations, 

this could involve quite significant quantities of wood and associated forest harvesting 

activities.  It is unclear whether the apparent rise in removals for woodfuel in the EU27 is 

real or reflects improved monitoring and reporting. 

Subject to the qualifying remarks in the preceding discussion, the results in Table 2.8 

provides some very tentative evidence that consumption of wood for fuel appears to have 

increased in recent times but, although consumption of woodfuel takes place mainly in 

Asia and Africa, consumption within the EU27 appears to be growing, and also to be 

contributing to a small extent to recent increases at the global scale. 

It is important to note that a simplistic interpretation of the share of removals for 

woodfuel in the EU27, compared with total removals (up to 20%), might lead to the 

conclusion that use of wood for energy in the EU27 remains minor compared to the use 

of wood to make materials for construction, paper and packaging (i.e. industrial 

roundwood).  However, as Mantau et al. (2010) have stressed, it is important to 

appreciate the complex patterns in the utilisation of wood, involving the supply of 

feedstock from a range of sources and the re-use of wood materials at end of life (see 

Sections 2.3 and 2.5 of this report). 

Mantau et al. (2010) identify two major categories of wood supply, ‘forest woody 

biomass’ and ‘other woody biomass’: 

1 Forest woody biomass essentially consists of primary wood from forests, i.e. wood 

derived directly from forest harvesting which has not already been used previously, 

plus woody biomass from harvest residues and stump removal. 

2 Other woody biomass represents wood from a range of sources, including secondary 

wood (i.e. recycled wood and waste wood) and ‘arboricultural arisings’ (i.e. wood 

derived from non-forest trees such as on farmland, in parkland, as part of hedges and 

in urban areas). 

The results in Table 2.8 reflect the harvesting of primary wood to meet demands for 

materials and energy, but both primary wood and other woody biomass sources are 

utilised to meet these demands.  Generally speaking, in the context of the EU27, the 
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tendency has been for most primary wood to be used for materials and woodfuel 

demands to be met largely by sources of other woody biomass.  Consequently, the 

results for woodfuel in Table 2.8 (which only reflect consumption of primary wood) 

significantly underestimate total consumption of wood for energy.  A further complication 

arises because primary wood used for materials can re-enter the wood supply at the end 

of the life of the primary product.  For example, primary wood may be used initially to 

make sawn timber for construction; when this reaches the end of its service life the 

waste wood may be used to manufacture particleboard, or may be used for fuel, 

alternatively when the particleboard product reaches the end of its service life, the wood 

may then be used for fuel.  This means that sources of other wood include a significant 

component of recycled primary wood, effectively but legitimately double-counting some 

of the original supply of primary wood.  These points need to be appreciated when 

interpreting information on potential wood supply and demands. 

Table 2.8  Wood removals1 in the EU27 and globally over the period 1990 to 2010 

Region 

Wood removals 

(million m3 over bark) Woodfuel 

share Year Industrial 

roundwood 

Woodfuel Total 

primary 

wood 

EU27 

1990 357 76 433 17% 

1995 330 75 405 18% 

2000 383 78 461 17% 

2005 416 85 501 17% 

2010 380 96 476 20% 

Global 

1990 1 775 2 050 3 825 54% 

1995 1 709 2 025 3 734 54% 

2000 1 832 2 040 3 871 53% 

2005 1 954 2 081 4 035 52% 

2010 1 737 2 111 3 848 55% 

Notes to Table 2.8: 

1 Wood removals are to meet demands for woodfuel and industrial roundwood. These results 

have been adjusted from underbark values reported in Forestry Commission (2012), for 

application in subsequent analysis. 

 

As already noted, the results in Table 2.8 reflect the harvesting of primary wood to meet 

demands for materials and energy.  Mantau et al. (2010) have estimated the potential 

supply from sources of other woody biomass for the year 2010, and have also made 

projections of the potential supply from this source in 2020 and 2030.  In Figure 2.10, 

the reported removals of primary wood in the EU27 for the period 1990 to 2010 (already 

presented in Table 2.8) are shown in combination with the estimates from Mantau et al. 

(2010) of potential supply from other woody biomass sources for 2010 and 2020. 
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Mantau et al. (2010) also made projections of potential for supply of primary wood from 

EU27 forests in 2020 and 2030.  In their report, Mantau et al. (2010) considered both 

wood from forests and wood from trees outside the forest as being important sources of 

primary woody biomass within the EU 27.  However, for the purposes of the current 

study, primary wood is assumed to equate to removals from forests as shown in Table 

2.8 and Figure 2.10.  In addition in Figure 2.10, removals for the years from 2010 to 

2020 have been extrapolated by assuming the same level as reported for the year 2010.  

This assumption is reasonably consistent with the pattern of removals observed between 

1990 and 2010, although there is a slight increase over this period.  The assumption is 

supported by simulations made with the CARBINE model of future potential for wood 

production from EU27 forests under a ‘business as usual’ scenario, i.e. a scenario in 

which forest management is assumed to continue as currently practised across the EU, 

which suggest that levels of production should remain fairly stable in coming decades 

unless the management applied to forest areas is changed. The results in Figure 2.10 are 

expressed in millions of cubic metres under bark.  

Combining the result in Figure 2.10 for reported total removals of primary wood in 2010 

with potential supply of other woody biomass gives a total potential wood supply from all 

EU27 sources of nearly 800 million cubic metres, rising to just over 845 million cubic 

metres in 2020. 

The estimates of demand for wood materials in 2010 and 2020 were taken directly from 

Mantau et al. (2010).  The report of Mantau et al. also gives an estimate of the demand 

for woodfuel (energy), however the authors note that their estimates (particularly of 

future demands) could be confirmed in the future through consideration of information 

reported in National Renewable Energy Action Plans (NREAPs) published by EU Member 

States in response to the EU Renewable Energy Directive. 

In order to estimate the trend in potential future demands for woodfuel in the EU27, an 

analysis was carried out on NREAP data reported by Beurskens et al. (2011), specifically 

on energy derived from solid biomass reported in Tables 120 and 134.  The results of this 

analysis were then reconciled with the estimate for woodfuel demand for 2010 as 

reported by Mantau et al. (2010) by making a simple percentage adjustment to arrive at 

the estimates for woodfuel demand shown in Figure 2.10.  It is important to stress that 

these results are based on a series of speculative assumptions and that they must 

therefore be regarded as strictly preliminary, however, the levels suggested in 2020 turn 

out to be consistent with those estimated independently by Mantau et al. (2010) and the 

figures published in the  EFSOS II report (UN-ECE, 2011).  The estimated total demand 

for woody biomass (for materials and for energy) is shown in Figure 2.10. 
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Figure 2.10.  Recent and projected removals of primary wood from EU27 forests in 

comparison with demand.  

 

A number of important observations can be drawn from the results in Figure 2.10: 

1 If the estimate of Mantau et al. (2010) for the demand for woodfuel in 2010 is 

accurate, then it is significantly greater than the level of removals of primary wood 

from EU27 forests being used directly for woodfuel, suggesting that the bulk of the 

existing demand is met from sources of other woody biomass. 

2 As a corollary, the bulk of removals of primary wood from EU27 forests appears to be 

meeting demands for wood materials (i.e. construction wood, paper and packaging), 

although some of this demand is met from sources of other woody biomass. 

3 The demand for wood materials is projected to rise from about 460 million cubic 

metres in 2010 to 530 million cubic metres in 2020 (an increase of 1.5% per year). 

4 In 2010 the demand for woodfuel (about 345 million cubic metres) amounted to about 

three quarters of the demand for wood materials, however, this demand is projected 

to rise significantly over the period to 2020 (5.7% per year) such that the demand for 

woodfuel exceeds that for materials by about 2020.  (Mantau et al. report a similar 

result but with woodfuel exceeding materials by 2017.) 
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5 The total demand for wood (for both materials and energy) matches the total supply 

due to removals of primary wood from EU27 forests and other woody biomass sources 

in 2010 but is projected to outstrip supply in the period 2010 to 2020 (assuming 

forests are managed according to a ‘business as usual’ scenario). 

Three clear conclusions can be drawn from these observations and from the results 

presented in Figure 2.10 and Table 2.8: 

1 The consumption of wood for energy in the EU27 has been increasing in recent times. 

2 The demand for wood in the EU27 is very likely to increase in the period to 2020, with 

most of this due to a significantly greater increase in the demand for wood for energy. 

3 In order to fill a gap between future demands for wood and potential supply, it will be 

necessary to intensify management of EU27 forests in order to increase removals of 

primary wood and/or import more wood into the EU27 and/or mobilise the availability 

of sources of other woody biomass. (This is the essential conclusion of the report of 

Mantau et al., published in 2010, and reinforced in Section 5.4 of the EFSOS II report, 

UN-ECE, 2011.) 

In fact, significant quantities of woodfuel are already being traded in the EU27, including 

significant imports from non-EU countries in some cases. Systematic information on 

trade in woodfuel is not easily available, because many consignments of wood are below 

the monetary threshold for full or even partial reporting. An internal study by Forest 

Research for the GB Forestry Commission has analysed available data on imports of 

woodfuel to the UK, including an indication of the main countries of origin, as shown in 

Table 2.9. It should be noted that Table 2.9 does not include importation of pulpwood 

(small roundwood), some of which is used as fuel (in solid or chipped form), or is chipped 

to make animal bedding.  Imports of wood pellets and coniferous wood chips make up 

the vast bulk of imports, with the remainder (less than 1%) appearing to be for specialist 

applications, and for ‘topping up’ domestic woodfuel supplies. 

Whilst the quantities of imported woodfuel shown in Table 2.9 are certainly significant, it 

is important to place them in perspective.  The estimates shown are for the UK and a 

rather different picture would be observed for the EU (i.e. a much greater proportion of 

domestic woodfuel consumption rather than reliance on imports). It should also be noted 

that wood consumption for fibre/materials in the UK amounts to approximately 50 million 

cubic metres per year (see Figure 2.9), which very approximately equates to 20 million 

oven dry tonnes. This should be compared to the estimate for imported woodfuel in Table 

2.9 of approximately 1.6 million tonnes, the bulk of which will be oven dry. 
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Table 2.9 Estimates of woodfuel imported into the UK for the year 2012 

(Main source: HMRC, 2012, following analysis and interpretation by Hogan, 2013) 

Woodfuel product 

category1 
Main uses1 

Quantity2 (kilotonnes) 

Main sources EU 

origin 

Non-EU 

origin 
Total 

Wood pellets 

Power generation 

 

Domestic heating (very small 

compared with power generation) 

123 1 364 1 487 

Non-EU: Canada (57%), USA 

(32%) and South Africa (2%) 

 

EU: Latvia (7%), Portugal 

(1%), Germany (< 1%) 

Coniferous wood 

chips 
Power generation 91 0.07 91 

Republic of Ireland (75%), 

most likely imported to 

Northern Ireland; The 

Netherlands3 

Non-coniferous 

wood chips 
Domestic cooking and food smoking 1.3 0.08 1.3 Mainly EU 

Kiln dried wood logs 
Domestic heating and to a lesser 

extent cooking 
6.8 1.6 8.4 Latvia; The Netherlands3 

Sawdust 
Wood briquettes (also animal bedding 

and litter as non woodfuel uses) 
0.88 0.55 1.4 

Mainly EU 
Waste and scrap 

wood 
As for sawdust, also food smoking 6.7 0.79 7.5 

Notes to Table 2.9: 

1 See Box 2.2. 

2 Quantities expressed in kilotonnes mass including any moisture content. 

3 The Netherlands is likely to be an intermediary rather than the original source, possibly for all material. 
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As clearly shown in Table 2.9, in 2012 in the UK, wood pellets for power generation 

accounted for nearly 93% of imported woodfuel by mass (probably more if all quantities 

of woodfuel were expressed in oven dry tonnes), with nearly 90% originating from 

Canada and the USA, and more than half the total supply coming from Canada.  Most of 

the remainder of imported woodfuel appears to consist of relatively local trade in 

coniferous wood chips between the Republic of Ireland and Northern Ireland, also mainly 

for power generation. 

Systematic data on increased consumption of forest bioenergy at EU scale are not easily 

available. However, reference may be made to the findings of the EUwood study (Mantau 

et al., 2010) and the EFSOS II study (UN-ECE, 2011), which both conclude that very high 

efforts would be required to mobilise wood resources in the EU in order to meet 2020 

targets for bioenergy consumption and projected levels of consumption in 2030, if all the 

additional wood supply were to be met from within the EU forest sector. The EFSOS II 

study also indicated that increased demand for bioenergy in the EU would involve a rise 

in imported wood and increased prices for wood raw materials, suggesting some pressure 

on potential for wood supply.  

2.7. Potential impact of increased consumption of forest bioenergy 

It is very difficult to assess the implications of a significant increase in demand for forest 

bioenergy in the EU on forest management and wood feedstock consumption for energy, 

within the EU and based on imports. Global and regional economic models may give an 

indication of gross flows of wood between Member States and from outside the EU. 

However, these types of model are less suited to assessing effects on forest 

management, because operational constraints and wider silvicultural objectives will play 

a very important role in determining the response of the forest sector, alongside gross 

requirements for forest bioenergy. Generally there will be trade-offs between different 

forest management objectives, not all of which can be adequately represented by costs 

and revenues.  

Additional wood resource can be ‘mobilised’ by increasing the intensity of harvesting or 

increasing forest biomass extraction in forests by one means or another. In some 

situations, introducing such management in forest areas would aim to meet a range of 

objectives (improved forest quality, habitat creation, wood production, rural development 

and economic diversification). It is also important to recognise that there is a range of 

forest management activities that can be classed as ‘intensification’ of management or 

harvesting including:  

 Increased biomass (more trees) removed during thinning. 

 Adjustment of rotations applied to the felling of trees or stands closer to a 

productive optimum. 

 Introduction of harvesting in forest areas previously not under management for 

production. 
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 Increased extraction of biomass in harvesting operations (e.g. harvesting of so-

called ‘harvest residues’ when previously this was not carried out). 

 Increased density of tree planting/regeneration following harvesting, to enhance 

early productive potential. 

 Fertilization of poor sites, or drainage of wet sites stimulating the increment. 

 Restocking forest areas with better growing/more productive trees. 

 Forest area expansion, allowing increased harvesting in the existing forest or new 

forest areas. 

 Enrichment of areas of forest ‘scrub’ to ‘high forest’ with greater productive 

potential.  

These forest management activities have variable impacts on forest carbon stocks; 

generally involving reductions but also, in the case of the last four or five examples, 

potentially involving increases. Each of the above examples can also be characterised in 

terms of more detailed cases. For example, the introduction of harvesting in forest areas 

not previously subjected to forest management can involve harvesting of ‘biologically 

mature’ and previously undisturbed forest, which may or may not have high carbon 

stocks, depending on the type of forest ecosystem. It may also involve the introduction 

of management in forest areas that were created in recent decades with the original 

intention of increasing wood production, but which subsequently fell into neglect due to 

lack of market or policy incentives. (This is a situation that may be relevant for some EU 

Member States that have carried out afforestation in recent decades.)   

The range of possible management activities listed above, all of which could be 

associated with the expression, ‘intensification of forest management’, illustrates how 

confusion might arise in debates about the influence of forest management for bioenergy 

production on forest carbon stocks and resultant GHG emissions. This emphasises the 

importance of clear use of terms and wordings in any discussions of such issues. 

Alongside changes to forest management in the EU and other regions, the supply of 

forest bioenergy may be increased by utilising recovered waste wood and by diverting 

harvested wood and recycled wood from use/reuse for the manufacture of wood fibre 

products. It follows that there are many ways in which increased demand for forest 

bioenergy might be met through changes to forest management and changes in patterns 

of wood feedstock consumption. A systematic analysis of scenarios for meeting increased 

demands for forest bioenergy is beyond the scope of this report but is explored further in 

Task 2 of this project. A provisional qualitative assessment of possible changes to forest 

management and patterns of wood use is shown in Table 2.10. The various activities are 

listed in the table according to a subjective descending order, in terms of the likelihood of 

their occurrence, depending on the level of demand for forest bioenergy. An indication is 

also given of what would happen, in terms of forest management or use of wood 

feedstock, if the change in activity did not take place (i.e. activity not required to meet 

increased demand for forest bioenergy). 
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According to the provisional qualitative assessment in Table 2.10, certain changes to 

forest management or uses of wood feedstock would occur, depending on the level of 

demand for forest bioenergy. Certain activities are already occurring (e.g. local 

harvesting of wood to provide small-scale domestic heat and internal consumption of 

sawmill co-products for heat and power generation in sawmills and boardmills). A rise in 

demand for forest bioenergy is already stimulating interest in the extraction of harvest 

residues and in the introduction of silvicultural thinnings in young stands. In some 

regions, it is possible that the additional revenue from forest bioenergy, adding value to 

the revenue derived from material/fibre products, is giving incentives for harvesting 

operations in forests (thinning and/or felling), where this would not otherwise occur. 

However, there is a lack of systematic information about any such developments in the 

forest sector. Demand for forest bioenergy would need to be very intense for harvesting 

to be introduced in otherwise unmanaged forest areas, or for forest management to be 

fundamentally restructured (e.g. significant shortening of rotations), solely to produce 

bioenergy. Activities such as enrichment of unproductive forest areas and creation of new 

forest areas would most likely require very intense demand for forest bioenergy or 

additional incentives. 

A number of the activities included in Table 2.10 involve the possible diversion of existing 

wood feedstock, currently supplying requirements for material/fibre products, for use as 

bioenergy instead. The possibility that such shifts in patterns of wood use could occur is 

undeniable but is difficult to assess. Major changes to existing patterns of wood use 

would most likely require intense demand for forest bioenergy with the consequence that 

forest bioenergy becomes price-competitive with wood material/fibre products. 

In the UK, the internal study by Forest Research on imports of woodfuel notes that 

importation of wood pellets by the UK is expected to increase in the coming years, rising 

to about 10 million tonnes per year by 2015 and, more speculatively, to between 15 and 

20 million tonnes by 2020.  Currently, supplies of small roundwood and wood chips 

(usually coniferous) for the manufacture of wood-based panels in the UK come primarily 

from UK forests.  (It should be noted that wood processing is a global industry – the 

boardmills in the UK exist because suitable forest resources are there and are able to 

supply the feedstock.) The UK power sector’s reliance on imported sources of woodfuel 

would appear to limit risks of competition for wood resources with the UK wood-based 

panel sector.  However, it is unclear how this situation will be affected by the sharp rise 

in demand for woodfuel for power generation that is projected for the coming years. 

The extent to which the preceding analysis for the UK translates to other EU27 Member 

States is unclear. At EU/global scale, Moiseyev et al. (2011) carried out an economic 

analysis of the potential contribution of forest bioenergy to the EU target for utilisation of 

renewable energy sources. The study concluded that, as woodfuel prices increase, 

woodfuel imports would also increase, but there would also be some ‘redirection’ of wood 

from competing industrial users, such as manufacturers of wood-based panels and the 

pulp and paper industry. 
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Table 2.10  Possible changes to forest management and  

wood use to meet increased demand for bioenergy 

Activity (change) 
What would happen 

otherwise 
Comments 

Small roundwood of early 

thinnings and some 

branchwood (mainly 

hardwoods), poor quality 

sawlogs. 

This is business as usual, 

already happening. 

Local, small-scale 

domestic heating. 

Sawmill co-products. 
This is business as usual, 

already happening. 

Particularly for internal 

heat and power 

generation in sawmills 

and boardmills. 

Extraction of harvest residues  

(previously not harvested). 

The harvest residues would 

be left on site, or burnt on 

site as part of site 

management (for new tree 

establishment). 

For heat and power 

production. 

Additional recovery of waste 

wood. 

The waste wood would not be 

recovered. 
 

Introduction of thinning of 

small-diameter trees, 

generally in young stands, 

that were previously 

uneconomic to harvest. 

The thinning operations 

would not be carried out at 

all, generally with detrimental 

consequences for subsequent 

stand development (e.g. high 

tree density, small tree sizes, 

suppressed understorey 

vegetation). 

 

Introduction of harvesting 

(thinning and felling) in forest 

areas previously not 

managed for production (e.g. 

because this was 

uneconomic). Early, small-

diameter thinnings, 

branchwood, some small 

roundwood and sawlog 

offcuts used for bioenergy. 

Sawlogs and some small 

roundwood used for 

manufacture of material 

products. 

The thinnings and fellings 

would not be carried out at 

all. Consequences would be 

site-specific (e.g. depending 

on the details of how the 

harvesting is carried out, tree 

species involved, whether 

stands are plantations or 

semi-natural). In some 

situations, a private 

landowner may decide to 

convert the land to another 

productive use (potentially 

involving deforestation). 

This would be additional 

harvesting for co-

production of materials 

and bioenergy, which 

would occur because the 

additional revenue from 

the bioenergy ‘tops up’ 

the total revenue and 

makes the harvesting 

operations economic. 
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Table 2.10 (continued)  Possible changes to forest management and  

wood use to meet increased demand for bioenergy 

Activity (change) 
What would happen 

otherwise 
Comments 

Diversion of recovered waste 

wood from use as feedstock 

for manufacture of certain 

wood-based panels (e.g. 

particleboard), for use as 

bioenergy instead. 

Depends on future demand 

for wood-based panels. Is 

demand decreasing anyway? 

Alternatively is there 

increasing demand or are 

there policy aims/incentives 

to increase use of wood-

material products? In 

scenarios of increasing 

demand or incentives, 

diversion of recovered waste 

wood is less likely. 

 

Diversion of sawmill co-

products from use as 

feedstock for manufacture of 

paper, card and wood-based 

panels (e.g. particleboard, 

fibreboard), for use as 

bioenergy instead. 

Depends on future demand 

for paper, card and wood-

based panels. Is demand 

decreasing anyway? 

Alternatively is there 

increasing demand or are 

there policy aims/incentives 

to increase use of wood-

material products? In 

scenarios of increasing 

demand or incentives, 

diversion of sawmill co-

products is less likely. 

 

Diversion of harvested small 

roundwood from use as 

feedstock for manufacture of 

paper, card and wood-based 

panels (e.g. particleboard, 

fibreboard), for use as 

bioenergy instead. 

Depends on future demand 

for paper, card and wood-

based panels. Is demand 

decreasing anyway? 

Alternatively is there 

increasing demand or are 

there policy aims/incentives 

to increase use of wood-

material products? In 

scenarios of increasing 

demand or incentives, 

diversion of small roundwood 

is less likely. 
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Table 2.10 (continued)  Possible changes to forest management and 

 wood use to meet increased demand for bioenergy 

Activity (change) 
What would happen 

otherwise 
Comments 

Enrichment of areas of ‘scrub’ 

and degraded forest to create 

productive ‘high’ forest, 

managed for production. 

Early, small-diameter 

thinnings, branchwood, some 

small roundwood and sawlog 

offcuts used for bioenergy. 

Sawlogs and some small 

roundwood used for 

manufacture of material 

products. 

Most likely the land areas 

would remain as ‘scrub’ and 

degraded forest. In some 

situations, a private 

landowner may decide to 

convert the land to another 

productive use (potentially 

involving deforestation). 

The enrichment of forest 

areas would be to 

achieve additional 

harvesting for co-

production of materials 

and bioenergy, which 

would occur because the 

additional revenue from 

the bioenergy ‘tops up’ 

the total revenue and 

makes the harvesting 

operations economic. 

However, still unlikely to 

occur in the absence of 

specific incentives (i.e. 

for forest restoration). 

Shortening of rotations in 

forest areas already under 

management involving 

harvesting, to optimise for 

total biomass production 

rather than sawlog 

production (e.g. adjustment 

of rotations towards time of 

maximum MAI, see Appendix 

2). 

Rotations would remain 

longer than time of maximum 

MAI, to optimise for sawlog 

production. 

Likely to be an extreme 

scenario, because of the 

loss of revenue 

associated with reduced 

sawlog production. 

Diversion of harvested 

sawlogs from use as 

feedstock for manufacture of 

sawn timber, for use as 

bioenergy instead. 

Depends on future demand 

for sawn timber. Is demand 

decreasing anyway? 

Alternatively is there 

increasing demand or are 

there policy aims/incentives 

to increase use of wood-

material products? In 

scenarios of increasing 

demand or incentives, 

diversion of sawlogs is less 

likely. 

Likely to be an extreme 

scenario, because of the 

loss of revenue 

associated with reduced 

sawn timber production. 
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Table 2.10 (continued) Possible changes to forest management and 

 wood use to meet increased demand for bioenergy 

Activity (change) 
What would happen 

otherwise 
Comments 

Conversion of forest areas 

already under management 

involving harvesting, to ‘short 

rotation biomass forests’ for 

bioenergy as a sole product. 

Land would remain as forest 

with long rotations (e.g. close 

to or greater than time of 

maximum MAI, see Appendix 

2). 

A very extreme scenario. 

Overall, short rotation 

bioenergy forests are 

significantly less 

productive (and 

therefore of much less 

economic value) than 

forest stands on the 

same sites that are 

managed on rotations 

closer to the time of 

maximum MAI (see 

Appendix 2). 

Introduction of harvesting 

(thinning and/or felling) in 

forest areas previously not 

managed for production (e.g. 

because this was 

uneconomic). All harvested 

wood used for bioenergy as 

the sole product. 

The thinnings and fellings 

would not be carried out at 

all. Consequences would be 

site-specific (e.g. depending 

on the details of how the 

harvesting is carried out, tree 

species involved, whether 

stands are plantations or 

semi-natural). In some 

situations, a private 

landowner may decide to 

convert the land to another 

productive use (potentially 

involving deforestation). 

A very extreme scenario. 

Conversion of cropland or 

grassland areas to ‘short 

rotation biomass forests’ for 

bioenergy as a sole product. 

Land would remain as 

cropland or grassland. 

Effectively a form of 

afforestation. An 

extreme scenario, unless 

there are specific 

incentives for such land-

uses. 

Conversion of cropland or 

grassland areas to forest 

stands managed for 

production. Early, small-

diameter thinnings, 

branchwood, some small 

roundwood and sawlog 

offcuts used for bioenergy. 

Sawlogs and some small 

roundwood used for 

manufacture of material 

products. 

Land would remain as 

cropland or grassland. 

Afforestation. A very 

extreme scenario, unless 

there are specific 

incentives for 

afforestation. 
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There are some limited formal data to support the view that the price of woodfuel has 

been increasing relative to the prices of other wood products. Data on prices of various 

wood feedstocks and products over the period 1952 to 2011 have been reported by the 

UN-ECE (2012).  This includes fairly complete data information for five EU27 Member 

States for the period 1998 to 2011 (Austria, Denmark, Finland, Germany and Italy).  The 

data are strictly for imports and exports of wood into and out of countries, rather than 

representing internal trade in wood; patterns in prices for imports and exports appear to 

be similar for the five EU27 Member States considered here.  Figure 2.11 shows 

trajectories of prices for types of wood product over the period 1998 to 2011.  The 

trajectories represent the mean price for wood imported into the five EU27 Member 

States indicated earlier, expressed per cubic metre of solid wood.  The prices are 

expressed in this form to enable direct comparison, but this has required some 

assumptions to be made about the wood content of certain product categories (e.g. pulp 

and wood-based panels), which may introduce some uncertainty into the results. 
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Figure 2.11.  Recent trends in estimated mean prices per tonne of solid wood imported 

by five EU27 Member States. 

 

Figure 2.11 suggests a clear ranking in the prices of wood product categories, in 

descending order: 

 Non-coniferous sawnwood. 

 Panels (all wood-based panels, including particleboard but also high value products 

such as veneer and plywood). 
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 Coniferous sawnwood. 

 Particleboard including oriented strand board (included in panels but also shown 

separately in Figure 2.11). 

 Industrial roundwood (coniferous and non-coniferous) and pulp. 

 Woodfuel, wood chips and particles. 

It is notable that, over the entire period, woodfuel and woodchips are the lowest-price 

products, with wood chips (also a potential feedstock for particleboard) fairly consistently 

at about 70% of the price of woodfuel.  Coniferous industrial roundwood, an important 

feedstock for particleboard, currently has a price about 2.5 times that of woodfuel.  The 

prices of all wood products have increased over the period 1998 to 2011 (note that no 

adjustments have been made for inflation).  However, if prices relative to 1998 are 

considered, as in Figure 2.12, sharp differences are observed in the rate of increase for 

different products.  In particular, solid wood products have increased in price over the 

period 1998 to 2011 by between 15% and 60% (typically 50%), whereas woodfuel and 

wood chips have increased in price by more than 150%.  Figure 2.13 shows the 

consequences of these price changes over time for the prices of solid wood products 

relative to the price of woodfuel, for the period 1998 to 2011. 
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Figure 2.12.  Recent trends in estimated mean prices per tonne of solid wood imported 

by five EU27 Member States. 
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Clearly, the price differentials between solid wood products and woodfuel are currently 

significant, but it is also clear from Figure 2.13 that such price differentials have been 

decreasing markedly over the last 25 years.  There must come a point where, as 

concluded by Moiseyev et al. (2011), increases in woodfuel prices lead not only to 

increased woodfuel imports but also to some ‘redirection’ of wood from competing 

industrial users.  As noted in Sections 2.3 and 2.5, it remains the case that certain raw 

wood products and co-products have properties that are optimal for the manufacture of 

certain specific finished wood products.  These properties are likely to remain critical in 

determining how raw wood is prioritised for consumption within the forest and wood 

processing sectors.  In addition, some parts of the wood processing sector may be 

‘buffered’ against competition for wood feedstocks from demands for woodfuel, 

specifically in situations involving co-production.  For example, sawmills produce large 

quantities of offcuts in the form of sawdust and chunks of wood, which could be 

processed into woodfuel (e.g. wood pellets) and sold on to the energy sector. 
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Figure 2.13.  Recent trends in estimated mean prices per tonne of solid wood imported 

by five EU27 Member States.  

 

Further in-depth consideration of price dynamics of woodfuel and other wood products, 

and of the implications for patterns of wood use, is well beyond the scope of this current 

report.  Nevertheless, such interactions between prices of various wood products, and 

their consequences for the consumption of wood for different applications, need to be 

represented as part of scenarios for bioenergy consumption and supply, as developed in 
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Task 2 of this project.  These scenarios also need to encompass the other main 

possibilities for meeting future demands for forest bioenergy as identified above, i.e. 

through increased levels of harvesting in forest areas within and outside the EU27, either 

specifically to produce more bioenergy, or as part of a wider mobilisation of wood 

resources to provide a range of solid wood products and energy services.  The 

implications of increased harvesting in forests for carbon stocks and GHG emissions are 

discussed further in Section 3 of this report, in particular in Sections 3.5 and 3.6. 

2.8. Conclusions on forests, forest management and wood utilisation 

This section of the report has been concerned with presenting a general discussion of 

forests, forest management and wood utilisation, in order to establish an essential 

context for a technical discussion of forest bioenergy and associated GHG emissions.  As 

such, the key technical discussion of this report is presented in subsequent sections.  

Nevertheless, it is appropriate to identify specific insights relevant to the Task objectives 

(see Section 1.3) that arise from points made in this section. 

Considering first factors that may lead to sensitivity in the GHG emissions associated with 

forest bioenergy (objective 1 of this Task), it may be inferred that: 

 Forests are not managed just for wood production, but generally for multiple 

objectives (Sections 2.3 and 2.4). 

 Trees are felled as part of a cyclic process in which trees are also planted or 

regenerated, and growing trees are managed over their lives to ensure good quality 

trees are retained to develop to maturity (Section 2.3 and Figure 2.2). 

 Generally speaking, sustainable forest management conforms to variations on this 

general theme (Sections 2.3 and 2.4).  However, regional and local variations in forest 

management (see Table 2.4) are likely to be an important factor in determining GHG 

emissions associated with production of forest bioenergy. 

 The species composition and potential growth rates of forest areas are variable 

(Section 2.4).  The GHG emissions of bioenergy produced from forests are likely to be 

sensitive to such variability. 

 It is extremely uncommon for whole stands of trees to be felled and all of the 

harvested wood to be used for bioenergy.  Generally, whole trees are used for 

bioenergy when they are very small and otherwise would be ‘felled to waste’, when 

they are small diameter, or when they are of large diameter and also of poor stem 

form (and so unsuitable for producing high grade sawn timber).  However, potential 

for competition for ‘lower-grade’ wood material between the bioenergy sector and the 

particleboard and pallet sectors, needs to be acknowledged (Sections 2.6 and 2.7 and 

Figure 2.7). 

 The wood processing sector is complex, with a web of wood flows providing feedstocks 

for the manufacture of structural sawn timber, plywood, pallets and fence posts, 

particleboard and fibreboard, paper and other products including bioenergy. It is 

common for bioenergy feedstocks to be derived from co-production of higher value 

timber products. It is very unlikely that wood will be diverted from the manufacture of 
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high value wood products to supply forest bioenergy, however, there are risks that co-

products could be diverted from the manufacture of particleboard, fibreboard and 

paper to meet growing demand for bioenergy feedstocks. 

 Generally, there are certain key scenarios by which the forest sector and wood 

processing sector might respond to the increased demand for bioenergy – production 

from forests already under management could be increased (intensified), forests not 

currently managed for production could be ‘mobilised’ (to produce more wood 

products as well as bioenergy), certain wood feedstocks could get diverted from other 

uses (see earlier), or there could be more efficient exploitation of harvesting residues 

and waste wood.  These scenarios will have different consequences for GHG 

emissions, as explored further in Section 3 of this report. 

 The GHG emissions of forest bioenergy are likely to be sensitive to the types of wood 

feedstock used to produce the bioenergy and the origins of these feedstocks in the 

forest and wood processing sectors (Sections 2.3 and 2.4, see in particular Figures 2.2 

and 2.7). 

These points are explored further in Sections 3 and 5 of this report. 

Given the purpose of this section in providing context for the main technical discussion in 

the rest of this report, relatively few specific and substantive conclusions can be drawn 

concerning the sensitivity of GHG emissions of forest bioenergy to calculation 

methodologies (objective 2 of this Task).  However, it is apparent from the discussion in 

this section that studies of forest bioenergy may obtain different results, depending on 

the accuracy and level of detail with which key aspects of the forest bioenergy production 

system are represented in calculations (see preceding bullet list).  This issue is central to 

the discussion in the ensuing sections of this report, particularly Sections 4 and 5. 

The discussion in this section offers a number of insights concerning methodology for 

calculation of GHG emissions associated with the use of forest bioenergy (objective 3 of 

this Task).  In particular, it may be concluded that: 

 Regional, local and case-specific details of forests and their management need to be 

fully represented in any assessment of GHG emissions associated with the production 

of forest bioenergy (Section 2.4). 

 The complexity of the wood processing sector needs to be represented accurately 

(Section 2.5).  Flows of wood from the forest through to ultimate end use need to be 

tracked in order to characterise in detail the types of feedstock contributing towards 

supplies of forest bioenergy.  The potential complexity of flows of wood may 

complicate the LCA calculations needed for the assessment of GHG emissions 

associated with forest bioenergy, suggesting that this area of methodology requires 

particularly careful development and specification. 

 Interactions between demands for various wood products, and their consequences for 

the consumption of wood for different applications, need to be represented as part of 

scenarios for bioenergy consumption and supply (Sections 2.6 and 2.7).  These 

scenarios also need to encompass the other main possibilities for meeting future 
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demands for forest bioenergy as identified above, i.e. through increased levels of 

harvesting in forest areas within and outside the EU27, either specifically to produce 

more bioenergy, or as part of a wider mobilisation of wood resources to provide a 

range of solid wood products and energy services. 

Points concerning the potential sensitivity of results for GHG emissions to variations in 

forest management and bioenergy production systems, and to methods of calculation, 

are explored in detail in Sections 3 and 4 of this report.  In addition, many of these 

points require further consideration as part of the construction of scenarios for bioenergy 

consumption in Task 2 of this project. 

2.8.1. Key messages concerning forests, forest management and wood 

utilisation 

Forest bioenergy is typically a co-product of wood material/fibre production 

Typically, forest bioenergy is produced as a complementary co-product of wood 

material/fibre products. It is unusual for forest bioenergy to be the sole product from 

harvested wood. 

Forest bioenergy consumption in the EU has increased and is likely to increase 

significantly in the period to 2020 

The consumption of wood for energy in the EU has been increasing in recent times. The 

demand for wood in the EU is very likely to increase in the period to 2020 and potentially 

beyond, with most of this due to a significantly greater increase in the demand for wood 

for energy. 

Forest management will need to change to meet demands for forest bioenergy 

In order to fill a gap between future demands for wood and potential supply, it will be 

necessary to intensify management of EU forests in order to increase removals of 

primary wood and/or import more wood into the EU and/or mobilise the availability of 

sources of other woody biomass. This may be achieved through a number of changes to 

forest management and/or patterns of wood use, which may be more or less likely to 

actually occur. 

Certain harvested wood feedstocks and forest management practices are more 

likely than others to be involved in the supply of forest bioenergy 

In the period to 2020, demand for forest bioenergy seems likely to be met through 

increased extraction of harvest residues including poor-quality stemwood and trees, the 

use of sawmill co-products and recovered waste wood. Some small roundwood may be 

used as a source of bioenergy. It is less likely that forest bioenergy will involve 

consumption of wood suitable for high value applications, such as sawlogs typically used 

for the manufacture of sawn timber. 

In terms of changes to forest management, a rise in demand for forest bioenergy is 

already stimulating interest in the extraction of harvest residues and in the introduction 
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of silvicultural thinnings in young stands. In some regions, it is possible that the 

additional revenue from forest bioenergy is giving incentives for harvesting operations in 

forests (thinning and/or felling) for co-production, where this would not otherwise occur. 

Demand for forest bioenergy would need to be very intense for harvesting to be 

introduced in otherwise unmanaged forest areas, or for forest management to be 

fundamentally restructured, solely to produce bioenergy. Activities such as enrichment of 

unproductive forest areas and creation of new forest areas would most likely require very 

intense demand for forest bioenergy or additional incentives. 

Competition for forest biomass for energy use or for paper and board may 

occur, but there are also existing market trends 

The use of sawmill co-products may be based on additional supply associated with 

increased production of sawn timber, or may involve the diversion of some of the existing 

supply from the manufacture of wood-based panels. Similarly, some small roundwood 

used for bioenergy may involve increased co-production with sawn timber, or diversion of 

supply from the wood-based panel and paper industries. It is difficult to assess the 

extent to which these activities may occur. Meeting demands for forest bioenergy may 

involve some direct competition with the wood-based panels and paper industries, or 

may involve ‘picking up’ existing supply in situations where demand for wood-based 

panels and paper is already declining. 

Forests are managed for multiple objectives and increased demand for forest 

bioenergy is very unlikely to change this situation 

In the EU and elsewhere, generally forests are managed for many purposes, one of which 

is to supply forest bioenergy. Production of forest bioenergy is thus most likely to occur 

as an integrated part of forest management and wood use for a range of objectives. A 

requirement to produce forest bioenergy seems unlikely to become the principal driver of 

forest management unless demand for forest bioenergy becomes very intense.  
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3. Overview of forest biogenic carbon and its management 

3.1. Purpose 

The key purposes of the ensuing discussion are: 

 To review current understanding of the dynamics of forest carbon stocks. 

 To consider the relative importance of forests as reservoirs of carbon and producers of 

wood.  

 To consider the relative importance of harvested wood as a source of energy and of 

materials and fibre, for potentially achieving GHG emissions.  

 To assess how forest carbon stocks and wider GHG dynamics of wood production 

systems may respond to management interventions aimed at increasing production of 

forest bioenergy, and the implications for GHG emissions.  

 To distinguish as clearly as possible the factors associated with forest management 

and wood use that determine biogenic carbon dynamics associated with forest 

bioenergy, e.g. effectively as ‘low risk’, ‘limited potential’ or ‘high risk’. 

As highlighted in Section 1.2 of this report, forest biomass has a somewhat lower carbon 

content compared with fossil fuels but a significantly lower calorific value. The 

consequence is that burning wood to generate a quantity of energy can release more 

carbon to the atmosphere than would be the case for natural gas or fuel oil (for example) 

and a similar amount of carbon compared to burning coal. The potential for forest 

biomass as a source of bioenergy involving low, zero or negative emissions thus depends 

crucially on the capacity for carbon sequestration in forest vegetation to balance or 

exceed the loss of carbon to the atmosphere when harvested wood is burned. 

It follows that, when considering the full life cycle GHG emissions13 of different forestry 

and wood use options, it is important to understand the influence of carbon stock 

changes in forests on GHG emissions, as this represents a crucial contribution to the 

ultimate result. As outlined in Section 1.2, and explored more thoroughly in Section 5 of 

this report, there is a considerable body of scientific research on the GHG emissions of 

forest bioenergy. This research suggests very variable results for GHG emissions 

compared with fossil fuels and often arrives at seemingly contradictory conclusions. 

Whilst this research and associated literature has revealed many useful insights, it has 

also led to some confusion concerning the consequences of harvesting and utilising wood 

for GHG emissions, and has also caused the general perception that the GHG emissions 

associated with forest bioenergy utilisation (also wider timber and wood fibre utilisation) 

are complex and uncertain. 

 

                                       
13

 As already noted in Section 1, the definition of the term ‘greenhouse gas emissions’ is 

fundamental to this report. Specific and narrow definitions are needed in some contexts, and these 
definitions are provided in the glossary to this report (see Appendix 1) and also discussed more 
fully in Sections 4.4 and 4.5. However, in some contexts, the term may be applied quite broadly, 
as is the case for much of the content of the early sections of this report. 
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As explained in Section 1.2 of this report, there is, in fact, broad agreement (or at least 

consensus) about levels of GHG emissions associated with the use of forest bioenergy in 

certain specific situations; there is less clarity over how GHG emissions may vary for the 

multitude of ways in which forests may be managed and forest biomass can be utilised to 

provide a source of bioenergy. As a first step towards building a picture of how the GHG 

emissions of forest bioenergy relate to specific circumstances, such as the approach to 

forest management and the type of forest biomass used, this section presents an 

introductory discussion of the role of forest carbon stocks as biogenic carbon in 

contributing to the GHG emissions of forest bioenergy. Particular consideration is given to 

interactions with forest management, the different ways of using wood, and the 

implications of demands for increased bioenergy production and increased wood supply in 

general. However, the discussion in this section is not intended to be an exhaustive 

treatment of the subject. For descriptions of some of the more basic and fundamental 

aspects of forest carbon and GHG dynamics, reference should be made to existing 

examples in the literature, such as Morison et al. (2012) and Section 3 of Matthews et al. 

(2014). 

 

3.2. Forest carbon pools and GHG dynamics 

As illustrated in Figure 3.1, the complete carbon balance of a forest covers the carbon 

pools of living biomass (above and below ground), dead organic matter (dead wood and 

litter) and organic soil carbon. It is important to stress that both emissions and 

sequestration of carbon may occur in forests. Estimating the balance of emissions and 

sequestration requires an understanding of how natural processes affecting greenhouse 

gas dynamics interact in response to the interventions of humans. 

The main GHG concerned in forest GHG balances is carbon dioxide (CO2) associated with 

carbon stock changes. Other GHGs include nitrous oxide (N2O) from, for example, 

nitrogen inputs (when fertilising forest land), and methane (CH4) which is involved in the 

GHG balances of forests growing on highly organic soils such as peatlands. 
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Figure 3.1.  Illustration of the carbon pools and naturally occurring GHG dynamics 

associated with the forests. After Morison et al. (2012). 

 

3.3. Forest carbon stocks and flows in EU27 and the world 

FAO (2010) has reported statistics on carbon stocks in the biomass of standing (i.e. 

living) trees forming forest areas in various countries and regions, and key results are 

summarised in Figure 3.2. In 2010, tree carbon stocks in global forests were estimated 

at nearly 300 GtC. As noted in Section 2.4.1, forest area is distributed fairly evenly 

amongst the major regions of the globe. However, contributions to global tree carbon 

stocks are somewhat more variable. Carbon stocks in trees in EU27 forests represent 

approximately 3.5% of the global carbon stocks (somewhat under 10 GtC, see Figure 

3.2). A similar estimate is observed for forests in Oceania. Tree carbon stocks as a 

percentage of the global total vary between about 20% for Africa, about 12% for Other 

Europe, Asia and Central and North America, and about 35% for South America.  

The estimates of forest carbon stocks in the previous paragraph do not include carbon in 

forest soils, deadwood and litter. Pan et al. (2011) have estimated that total global forest 

carbon stocks around the year 2010 amounted to 861 GtC. This estimate is made up of 

contributions due to live trees, deadwood, litter and soil of 363 GtC, 73 GtC, 43 GtC and 

383 GtC respectively. Pan et al. also report that, considered geographically, tropical 

forests contribute 471 GtC, boreal forests contribute 272 GtC, whilst temperate forests 
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contribute 119 GtC. Expressed on a per-hectare basis, carbon stocks in tropical and 

boreal forests are estimated at about 240 tC ha−1, whereas the equivalent estimate for 

temperate forests is 155 tC ha−1. Pan et al. note that, although tropical and boreal 

forests make the biggest contributions to global carbon stocks (in terms of both total and 

per-hectare carbon stocks), there is a fundamental difference in the distribution of 

carbon amongst the different forest pools, with tropical forests having 56% of carbon in 

biomass and 32% in soil, whilst boreal forests have 20% of carbon in biomass and 60% 

in soil.  

0

50

100

150

200

250

300

Africa Asia EU27 Other Europe North and

Central America

Oceania South America World

Region/subregion

C
a

rb
o

n
 s

to
c
k
s
 i
n

 f
o

re
s
t 

b
io

m
a

s
s
 (

G
tC

)

Figure 3.2.  Tree carbon stocks in forests for regions of the world for the year 2010. 

(Source: FAO, 2010.) 

The estimate of 363 GtC in the biomass of live trees reported by Pan et al. (2011) is 

markedly larger than the estimate of about 300 GtC suggested by FAO statistics. There 

are a range of underlying causes for the difference in these two estimates. However, it 

should be noted that the estimates reported in FAO (2010) are based on an intentionally 

simple and straightforward interpretation of growing stock estimates from National Forest 

Inventories, whereas the estimates of Pan et al. (2011) are based on a combination of 

inventory data, long-term field observations, and statistical and process models.  

Table 2.2 in Section 2.4.1 illustrated how forest area in the EU27 is distributed unevenly. 

This is also true of forest carbon stocks, as shown in Figure 3.3. Seven Member States 

account for almost 70% of EU27 tree carbon stocks (Germany, Sweden, France, Poland, 

Finland, Romania and Italy in descending order of the share of carbon stocks). 

Comparison of Figure 3.3 with the area estimates in Table 2.2 demonstrates how 

particular characteristics of forests can vary between Member States. For example in 

Section 2.4.1 it was noted that Finland and Spain have similar areas of forest. However, 

the carbon stocks in the forests of Spain and Finland are quite different, reflecting 

differences in forest characteristics (e.g. species composition, age distribution, stocking 

density of stands).  
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Figure 3.3.  Distribution of tree carbon stocks in forests amongst Member States of the 

EU27 for the year 2010 (total carbon stock in trees is slightly less than 10 GtC, as 

estimated from results reported in FAO, 2010). 

Pan et al. (2011) have attempted to estimate forest carbon stock changes, based on a 

combination of inventory data, long-term field observations and statistical and process 

models. The estimates of Pan et al. also include contributions due to deadwood, litter and 

soil. In Table 3.1, the estimates presented in Pan et al. are interpreted to infer carbon 

stock changes in forests for major regions of the world over the period 1990 to 2010. 

These are compared with simpler estimates for carbon stock changes in living trees 

based on FAO (2010). The two sets of results display drastic differences, with an 

estimated increase in global forest carbon stocks of 1.12 GtC yr−1 based on Pan et al. 

(2011), and an estimated decrease of 0.52 GtC yr−1 based on FAO (2010). This 

disagreement is due to several factors, most likely including:  

 More comprehensive consideration of forest carbon pools in the study of Pan et al. 

(2011).  

 Reliance on simple extrapolations of National Forest Inventory data as part of the 

compilation of results reported by FAO (2010). 

 More detailed analysis and modelling approach adopted by Pan et al (2011), in 

particular, the representation of continuing accumulation of carbon stocks in 

existing forest areas in the tropics, and also refined representation of the 

accumulation of carbon in tropical forest areas regenerating after felling or natural 

disturbances.  
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Table 3.1 Estimates of carbon stock changes in forests 

for regions of the world over the period 1990 to 2010 

Country/region 

Estimated carbon stock change1 (GtC yr−1) 

Based on Pan et al. 

(2011) 
Based on FAO (2010) 

Europe and Russian Federation 0.72 0.14 

North America 0.23 0.11 

Central and South America −0.09 −0.42 

Asia2 0.01 −0.08 

Oceania 0.06 −0.02 

Africa 0.19 −0.25 

World 1.12 −0.52 

Notes to Table 3.1: 

1 Positive values indicate carbon stock increases, whilst negative values indicate carbon 

stock decreases. 

2 Estimate from Pan et al. does not include the Indian subcontinent and a significant part of 

Western Asia. 

 

The preceding discussion emphasises the potential risks associated with simplistic 

approaches to calculation of forest carbon stocks and stock changes and the need to 

adopt appropriate and sufficiently comprehensive methods for estimating forest carbon 

dynamics. This is also true when attempting to characterise levels of carbon stocks 

associated with different types of forests (e.g. with regard to tree species and growth 

rate) and types of forest management. It is very important that the characterisation of 

forest areas in terms of carbon stocks is undertaken in conjunction with an accurate 

appreciation of site and growing conditions relevant to the region being considered, 

including approaches to forest management in the region.  

The results reported by Pan et al. (2011) indicate that carbon stocks in forests are 

increasing in most regions of the world, with the exception of Central and South America 

(mainly due to deforestation in South America). Generally in tropical regions, carbon 

stock changes appear to involve a quite delicate balance between the continued growth 

of existing forest areas, deforestation, and the regrowth of forest areas that have been 

felled or subjected to natural disturbance. Forest carbon stock changes in boreal and 

particularly temperate regions are estimated as making the bulk of the contribution to 

the global increase in carbon stocks. Forests in the USA make the predominant 

contribution in North America, whereas the estimated increase for Europe and the 

Russian Federation appears to be due to contributions that are distributed widely across 

these regions. The relatively large increases in forest carbon stocks in these regions have 

occurred, and are occurring, due to a number of factors as already observed for the 
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tropics, but recent afforestation represents an important driver of forest carbon stock 

increases, particularly in the EU27 (see for example discussion in Vilén et al., 2012). 

A programme of woodland expansion undertaken in a number of EU27 Member States 

over the past century has significantly increased the area of young forest stands. Past 

management of existing forests has also contributed to EU forests having a large 

proportion of young forest stands (Vilén et al., 2012). Currently, the carbon stocks of 

these young forests are increasing. However, the rate of forest expansion has dropped 

significantly in more recent decades, whilst the existing areas of young forest are 

growing older (and their growth rate is declining). Often, these forest areas are under 

management for timber production and are approaching the time of their first rotation 

(i.e. at which point the stands comprising the forest areas may be clearfelled and 

replanted). Under these circumstances, the rate of increase in forest carbon stocks in the 

EU27 is declining and may be close to reversal (Nabuurs et al., 2013). Similar 

observations may be made for Other Europe and for Central and North America, although 

the influence of past afforestation is less strong in these regions. 

The issue of forest carbon stock changes in various regions including the EU may not 

appear to be of obvious relevance to the question of how to manage forests and how to 

use harvested wood in terms of mitigation of climate change. Nevertheless it should be 

recognised that one of the reasons for changes in forest carbon stocks is the current 

management of significant areas of forests for the production of timber and bioenergy 

(also the low priority currently attributed to afforestation in some regions of the globe). 

The existing and likely future pattern of carbon stock changes thus forms part of the 

context in which options for future forest management and wood utilisation are assessed, 

essentially representing the baseline against which changes in forest management and/or 

wood use may be judged.  

3.4. Interplay between human management and natural processes 

Human management of forests can have a strong influence on the pattern of GHG 

emissions and carbon sequestration, although the associated responses may follow 

intricate cycles.  Managed forests are part of a dynamic system and so these processes 

are never entirely under human control. Forest systems are susceptible to natural 

disturbances e.g. forest fires, storms, drought and pest outbreaks, which can lead to 

substantial release of carbon to the atmosphere or reduced sequestration from the 

atmosphere (see for example Lindroth et al., 2009: van der Werf et al., 2010). 

Forestry systems typically exhibit short-term and long-term trends and cycles in forest 

carbon stocks and associated net GHG sequestration or emissions. It is important to 

allow for these trends and cycles in any assessment of the influence of forest 

management, including harvesting, on forest carbon stocks and their dynamics. 

Management interventions in forests can have variable effects on carbon stocks over 

time. For example, when a new stand of trees is planted, the trees can take decades to 

grow to maturity, implying that carbon sequestration takes place over quite long 
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timescales. In contrast, harvesting of trees from a stand reduces carbon stocks very 

quickly. Different components of forestry systems (e.g. vegetation, litter, soil and 

harvested wood) can also respond to management with different ‘reaction times’.  

As discussed further in Sections 3.9, 4.7 and 4.9 of this report, it is important that one-

off changes, trends and cycles in GHG sequestration and emissions are allowed for 

appropriately in assessments of GHG emissions. Such changes, trends and cycles can 

take place over time in forest systems in relation to the harvesting and use of forest 

bioenergy. 

3.5. Spatial scale and scale of biomass harvesting 

Scale is important – in terms of spatial scale, it is particularly important to distinguish the 

carbon stock changes that would be observed in an individual tree, or an individual stand 

of trees, as opposed to what would be observed for a population formed of many stands 

of trees (i.e. a forest). This point has been illustrated, for example, in a discussion of 

forest GHG balances by Matthews et al. (2014, see in particular Sections 3.2 and 3.3), 

which shows how cycles in forest carbon stocks within individual stands tend to ‘even out’ 

when considering whole forests (see Figure 3.4). The example in Figure 4 is based on 

5,600 ha of Sitka spruce grown under UK conditions, on a 56 year rotation, with 

immediate restocking on felling. Each year, trees comprising 17.9 ktC of wood are felled 

(through clearfelling of one fifty-sixth of the forest area), of which 11.4 ktC is harvested 

and 6.5 ktC (forming the ‘harvesting residues’) is left in the forest and eventually 

oxidises. However, this is exactly matched by carbon sequestration of 17.9 ktC due to 

the ongoing growth/re-growth of trees forming the other fifty-five fifty-sixths of the 

forest. Further discussion of this point can be found in Sections 3.2 and 3.3 of Matthews 

et al. (2014), see also Maclaren (1996, 2000) for the original discussion and examples. 

It is also important to consider scale in terms of the magnitude and type of harvesting 

interventions within forests. For example, if the scale of harvesting of trees is increased 

significantly (i.e. management through thinning or felling in forests is intensified), this 

will cause reductions in carbon stocks even when considering the spatial scale of whole 

forests, in the short term and potentially also in the long term. In some situations, 

increasing the productivity of forest stands may also increase carbon stocks. These points 

have been explored extensively in the scientific literature (see for example Kaipainen et 

al., 2004: Harmon and Marks, 2002), and are also considered further in Section 3.6 of 

this report. 
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Figure 3.4.  Illustration of how a balance may be maintained across an area of forest 

between tree growth and the harvesting and extraction of wood.  

 

3.6. The twin roles of biogenic carbon in the form of forest biomass 

As already noted in Section 1.2 of this report and as must now be very apparent from the 

discussion so far, a central concern for the potential use of forest bioenergy arises from 

the fact that the resource of biogenic carbon constituted by forest biomass makes two 

contrasting contributions in terms of climate change mitigation:  

1 The carbon stocks in forest biomass, litter and soil represent a natural reservoir of 

carbon sequestered from the atmosphere. This process of carbon sequestration is 

continuing at significant levels under current conditions and, in principle, could be 

‘managed’. 

2 Forest biomass can be harvested and used as a source of bioenergy which can be used 

in place of fossil energy sources and/or to make a range of solid wood products (e.g. 

sawn timber, wood-based panels, card and paper) which also represent a reservoir of 

sequestered carbon (although, arguably, a mainly temporary reservoir) and can be 

used in place of non-wood materials.  

Several critical issues arise from the fact that biogenic carbon can make these two 

contributions.  First of all, it follows that forests can be managed to conserve or enhance 

carbon stocks and/or to produce bioenergy and wood products to displace fossil fuels and 
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materials. There are certain specific situations in which efforts to increase the supply of 

forest bioenergy (and other wood products) can also involve increased carbon stocks. 

The most obvious example is when non-forest land with low initial carbon stocks is 

converted to forest land through afforestation activities. However, it remains a more 

general rule that there is a trade-off in terms of carbon stocks (and resultant GHG 

emissions) between activities aimed at extracting wood to produce bioenergy and other 

wood products, and activities aimed at sustaining or enhancing carbon stocks within 

forests. Essentially, attempting to enhance one of the twin contributions of biogenic 

carbon to climate change mitigation tends to act in antagonism to the other function, and 

there is consequently a trade-off between them.  

As discussed in Sections 2.6 and 2.7 of this report, the consumption of forest bioenergy 

is expected to rise and there may also be increased consumption of wood for materials 

and fibre products (Mantau et al., 2010). To meet these demands, forest biomass 

harvesting, extraction and/or patterns of wood utilisation will need to be ‘intensified’ by 

one means or another. The types of activity that might be involved in such 

‘intensification’ have been considered in Section 2.7, where it was noted that different 

activities, particularly those involving forest management, can have variable impacts on 

forest carbon stocks. It is fundamentally important that any changes in forest carbon 

stocks are assessed and included when calculating GHG emissions associated with the 

harvesting of forest biomass for products including bioenergy. This point is of central 

importance to the subject of this report, and is worth illustrating with some examples. 

Sections 3.6.1 to 3.6.3 describe three such examples based on results produced from 

simulations made using the Forest Research CARBINE forest carbon accounting model. 

These are all based on the example of a forest formed of relatively fast growing stands of 

Sitka spruce as grown in the UK, and as illustrated in Figure 3.4, Section 3.5. The results 

for carbon stocks in the examples include living trees, deadwood, litter and carbon 

retained in harvested wood products. For simplicity, carbon stocks in soil are not 

included. 

The examples considered together, along with other possible examples not illustrated 

such as afforestation, reveal that actions to increase the supply of forest bioenergy can 

have very variable effects on forest carbon stocks. However, generally, these effects are 

predictable. When considering options for the management of forest areas to increase 

the supply of forest bioenergy whilst sustaining carbon stocks, it may be important to 

consider the potential for a ‘package’ of measures undertaken in a population of stands 

on a site-by-site basis across large scales (Nabuurs et al., 2008). This might involve, for 

example, a systematic and coordinated programme of management across forest areas 

involving a combination of increased harvesting in some areas, conservation or 

enrichment of carbon stocks in other areas, and possibly also the creation of new forest 

areas. Currently, there has been limited exploration of the potential for such options. 
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3.6.1. Influence of rotation on forest carbon stocks 

Figure 3.4 in Section 3.5 illustrates the management of a significant forest area involving 

periodic harvesting and regeneration of forest stands, on a rotation of 56 years. The 

continuous harvesting and regeneration of stands involves a balance between forest 

carbon sequestration and extraction of harvested wood that maintains a constant carbon 

stock across the forest as a whole. The magnitude of the forest carbon stocks depends on 

the choice of rotation, as shown in Figure 3.5. The figure also shows the biomass 

productivity that can be achieved in UK Sitka spruce forests, depending on the selected 

rotation period (see also Appendix 2 for related discussion). Results for biomass 

productivity are based on total above ground biomass production and on sawlog biomass 

production (i.e. biomass of relatively large diameter stemwood).  

The estimated carbon stock in the forest rises monotonically as the rotation applied to 

forest stands is increased. In contrast, biomass productivity initially rises as the rotation 

is increased but reaches a maximum value, and then declines for longer rotations. In 

terms of total above ground biomass, managing the Sitka spruce stands forming the 

forest on a rotation of 55 years should achieve maximum potential production (5.4 odt 

ha−1 yr−1). Maximum production of biomass suitable for use as sawlogs is achieved at a 

somewhat longer rotation of 69 years (2.6 odt ha−1 yr−1). Potential production of total 

above ground biomass for a rotation of 69 years is slightly lower than for a rotation of 55 

years (5.1 odt ha−1 yr−1). The forest carbon stocks associated with rotations of 55 and 69 

years are 64 and 90 tC ha−1 respectively.  

Figure 3.5 illustrates how the choice of rotations applied to forest areas involves trade-

offs between achieving high productivity for different types of wood product and high 

forest carbon stocks, for example: 

 Choosing rotations to maximise total above ground biomass production (which may be 

desirable if paramount priority is given to bioenergy production) involves reduced 

potential for sawlog production.  

 Choosing relatively long rotations (e.g. greater than 80 years in the case of Figure 

3.5) to achieve high carbon stocks is likely to involve significantly reduced potential 

total biomass and sawlog productivity.  

 Choosing relatively short rotations (e.g. less than 45 years in the case of Figure 3.5), 

perhaps to achieve a quick or economically-optimal return in terms of revenue, 

generally involves significantly reduced potential total biomass and sawlog 

productivity, and also low forest carbon stocks. 

Such points are very important when considering the adjustment of rotations in forest 

areas in order to increase the supply of forest bioenergy. For example, many forest areas 

in the EU and elsewhere are managed on relatively long rotations to achieve a range of 

economic, environmental and landscape objectives. If a decision were to be taken to 

shorten rotations to increase total biomass or sawlog production, this would most likely 

lead to a reduction in the overall level of carbon stocks in these forest areas (with implied 

GHG emissions associated with biogenic carbon). On the other hand, there are also 
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examples of forest areas which are managed on relatively short rotations, largely driven 

by market demands. If a decision were taken to extend rotations to increase total 

biomass or sawlog production, this would most likely lead to an increase in the overall 

level of carbon stocks in these forest areas (with implied sequestration of biogenic 

carbon). It follows that actions to ‘intensify’ management of forest areas to increase 

supply of forest bioenergy, through adjustments to rotations, can have antagonistic or 

synergistic effects on forest carbon stocks, and implied GHG emissions or carbon 

sequestration. 
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Figure 3.5.  Illustration of the influence of rotation period on forest carbon stocks and 

biomass productivity. 

 

3.6.2. Increased extraction of harvest residues  

In the example forest system illustrated in Figure 3.4, Section 3.5, the individual stands 

forming the forest are harvested every 56 years. The stemwood is extracted and used to 

supply material products and bioenergy. However, the harvest residues (deadwood, 

branchwood, roots etc.) are left on site. The harvest residues decompose over a period of 

years or decades but, if the scale of the whole forest is considered, a stock of harvest 
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residues is sustained, which makes a contribution to the overall forest carbon stocks. If a 

decision is taken to extract some or all of the harvest residues to increase the supply of 

forest bioenergy, there will be an associated reduction in forest carbon stocks, as 

illustrated by the example in Figure 3.6. The extraction of harvest residues starts in year 

10 in the example, and involves the harvesting of 50% of branchwood and deadwood, 

with no harvesting of roots.  Note that the scale of the y−axis in Figure 3.6 does not start 

at zero. 

In this example of the extraction of harvest residues, there is an associated reduction in 

forest carbon stocks from about 146 tC ha−1 to about 143 tC ha−1. This takes place over 

more than 50 years, reflecting the rotation period applied to the forest stands. The 

carbon stock reduction is relatively modest (3 tC ha−1 or 2%) but is undeniable and needs 

to be allowed for when estimating GHG emissions related to biogenic carbon associated 

with this kind of forest bioenergy feedstock. Any GHG emissions due to associated 

changes in soil organic matter also need to be included.  
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Figure 3.6.  Illustration of reduction of forest carbon stocks due to increased extraction 

of harvest residues. 
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3.6.3. Introduction of harvesting in unmanaged forest with high carbon stocks 

In the absence of harvesting or other disturbances to the growing stock, potentially, 

forest areas can accumulate large carbon stocks. In principle, the carbon stocks would be 

equivalent to those for an ‘infinite’ rotation period (see discussion of example involving 

rotations in Section 3.6.1, notably Figure 3.5). The introduction of harvesting in such 

forest stands, involving application of a finite rotation period will lead to a reduction in 

forest carbon stocks, as illustrated by the example in Figure 3.7. This example involves 

the transformation of an area of forest formed of relatively old trees (150 years) to 

create a forest formed of stands managed on a rotation of 56 years, such as illustrated in 

Figure 3.4, Section 3.5. The transformation starts in year 10 in the example, and 

involves the progressive felling and regeneration of the original forest area over a period 

of 56 years.  

In this example of the introduction of harvesting in previously unmanaged forest areas 

with high carbon stocks, there is an associated reduction in forest carbon stocks from 

about 305 tC ha−1 to about 146 tC ha−1. The main reduction takes place over more than 

50 years, reflecting the rotation period applied to the forest stands. The reduction 

continues at a slower rate for at least another 50 years, reflecting the dynamics of 

carbon stocks in deadwood and litter. The carbon stock reduction is significant (159 tC 

ha−1 or more than 50%) and clearly needs to be allowed for when estimating GHG 

emissions related to biogenic carbon associated with production of forest bioenergy 

based on this type of management. Any GHG emissions due to associated changes in soil 

organic matter also need to be included.  

It should also be noted that, in the example in Figure 3.7, if harvesting is not introduced, 

the unmanaged forest continues to sequester a modest but discernable level of carbon 

stocks, rising from about 305 tC ha−1 to about 320 tC ha−1. This is a clear example of 

forest carbon stock dynamics associated with what can be described as a ‘counterfactual 

land use’, i.e. the carbon stock dynamics that would occur in terrestrial vegetation if a 

specified activity (in this case the introduction of harvesting in unmanaged forests) were 

not to be carried out. Reference to a counterfactual land use case is also implicit in the 

examples in Sections 3.6.1 and 3.6.2. When assessing GHG emissions associated with 

changes to land use or land management, it is very important to allow for the 

counterfactual land use. This point is illustrated further in examples given in Section 4.5 

of this report. However, the assessment of carbon stock dynamics for the particular case 

of vegetation systems involving ‘no harvesting’ or ‘no management’ can be problematic, 

and results can be uncertain (see Sections 3.11 and 3.12). 
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Figure 3.7.  Illustration of reduction of forest carbon stocks due to introduction of 

harvesting in previously unmanaged forests with high carbon stocks.  

 

3.7. Biogenic carbon in the form of harvested forest biomass 

The carbon cycle of forests extends into the life cycles of harvested wood products. As 

explained in Sections 2.3 and 2.5 of this report, harvested wood is used in a variety of 

ways to provide a range of materials and energy feedstocks. Moreover, the production 

and processing chains from harvested wood to finished products can be complex, 

frequently involving co-production, the manufacture of composite wood materials and the 

use of recycled wood feedstocks alongside newly harvested wood. 

A number of research studies have demonstrated that the manufacture and use of wood-

based materials generally involves low GHG emissions compared with situations in which 

non-wood materials are used to make equivalent products (see for example Peterson and 

Solberg, 2005: Gustavsson and Sathre, 2006: Gustavsson et al., 2006). One very 

important consequence is that the mix of materials and bioenergy produced from 

harvested wood has a significant influence on overall GHG emissions, e.g. compared to a 

scenario in which wood is not harvested (see for example Matthews et al., 2014). In 

some situations, the harvesting of wood to produce bioenergy as a complementary co-

product alongside certain material wood products can involve low GHG emissions being 

associated with the overall production system. This is particularly pertinent when it is 
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recalled that forests are rarely managed for the supply of bioenergy as a sole product 

(see Section 2.3). However, if the mix of wood products is important in determining 

overall GHG emissions, then evidently changes in the mix of materials and bioenergy 

produced from harvested wood will cause changes (reductions or increases) to the GHG 

emissions for the overall production system. The discussion in Sections 2.6 and 2.7 of 

this report concerning trends in the mix and in the prices of wood products should be 

referred to in this context. 

The complete characterisation of the life cycles of solid wood products, in terms of the 

fate of biogenic carbon requires consideration of the re-use, recycling and disposal of 

wood products at end of life. The treatment of solid wood products at end of life can have 

a significant influence on the overall GHG emissions due to use of products, as 

demonstrated for example by the results of Matthews et al. (2014). Decisions about 

whether to burn (with or without recovering the energy), recycle or dispose of wood 

products to landfill also have a strong influence on the timing with which biogenic carbon 

contained in products is released back to the atmosphere. The use of waste wood as a 

feedstock for bioenergy is generally viewed as preferable to disposal to landfill and 

beneficial in terms of GHG emissions, particularly as the waste wood resource may be 

under-utilised (see Section 2.5). However, there could be detrimental consequences for 

GHG emissions if an increased demand for waste wood as a bioenergy feedstock was to 

result in diversion of waste wood from use in recycling, e.g. as a feedstock for wood-

based panels (based on results reported by Matthews et al., 2014). 

The literature on forest bioenergy often refers to the concept of ‘biomass cascading’, 

implying the active management of harvested wood through a sequence of uses, the 

‘classic’ example involving use in solid wood products, then re-use or recycling as a 

feedstock for wood-based panels, and burning as a source of energy only ultimately after 

repeated use in solid products. 

3.8. Influence of forest bioenergy conversion technologies and 

‘counterfactuals’ 

The effectiveness of forest bioenergy as an efficient energy source and its potential for 

reducing GHG emissions exhibit some sensitivities to the conversion technologies for 

which it is used as a feedstock. This project is concerned with the use of solid bioenergy 

for heat and/or power (i.e. rather than use in liquid form as biofuels for transport), and in 

this context relevant conversion technologies include: 

 Power only generation (generally involving combustion, although potentially 

covering gasification and pyrolysis conversion technologies). 

 Power only generation through co-firing of biomass in coal-fired power stations. 

 District heating. 

 Small-scale and large-scale (commercial/industrial) combined heat and power 

(CHP). 

 Small-scale heating. 
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In general, the effectiveness of bioenergy is related to the efficiency of the conversion 

system. Large-scale and small-scale CHP systems can be very efficient, although often 

there are practical obstacles to their deployment. Power only generation in a dedicated 

biomass facility tends to involve relatively low efficiency. Forest bioenergy is recognised 

as particularly suited to small scale heat applications, which can be relatively efficient 

(see for example SDC, 2005). At the other extreme of scale, the co-firing of wood with 

coal in existing coal-fired power plants is often suggested as an option for generating 

electricity from wood that is quick to implement and relatively low cost, because a 

substantial part of the facilities are already in place and much of the capital investment 

may have already been repaid. 

The potential importance of the counterfactual case for land use or land management in 

determining the GHG emissions of forest bioenergy sources has already been highlighted 

in Section 3.6. Indeed, the need to account for counterfactual land use or land 

management in assessments of forest bioenergy is a central concern of this report. The 

effectiveness of forest bioenergy is also sensitive to the ‘counterfactual energy source’, 

i.e. the energy that would be consumed if the forest bioenergy were not used. There is 

also an interaction with the conversion technologies involved. 

It is important to appreciate the concept of ‘counterfactual’ energy sources for forest 

bioenergy, and more generally, ‘counterfactual’ products for solid wood products. When 

making an assessment of options for forest management aimed at climate change 

mitigation, particularly when comparing options involving conservation of carbon stocks 

in forests with options involving harvesting of forest bioenergy and/or wood products, it 

is extremely important to characterise the ‘counterfactuals’ for the forest bioenergy and 

wood products reliably. In this context, the counterfactuals for solid wood products are 

the sources of materials that would be utilised if wood was not harvested from the forest.  

The identification of appropriate counterfactual energy sources can be highly uncertain in 

some cases. For example, forest bioenergy used in small scale heat systems may 

displace existing heating systems based on natural gas, oil or coal, or electricity. It may 

thus be difficult to determine exactly what ‘mix’ of energy sources is likely to be 

displaced as a result of any efforts to expand the deployment of small scale heat systems 

based on forest bioenergy. Other cases may be more certain, for example, forest 

bioenergy co-fired with coal for power generation is clearly displacing the use of coal.  

Counterfactuals for solid wood products exhibit high sensitivity in terms of differences in 

GHG emissions. For example, medium density fibreboard (MDF) can be used to make 

furniture, e.g. an office filing or storage cabinet, or to make a non-structural partition in 

a room of a building. If an office storage cabinet is not made of MDF, it might be made of 

sawn timber, which would involve lower GHG emissions but displacement of sawn timber 

from another application. Alternatively, it might be made from sheet steel, involving 

higher GHG emissions. If not made from MDF, a partition in a room might be made from 

plasterboard, which would involve marginally different associated GHG emissions. Thus, 
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the benefits or otherwise of using MDF are highly dependent on the applications it is used 

for, and on assumptions about what the alternative would be to using MDF in such 

applications. 

The challenges posed by the problem of determining meaningful counterfactuals for 

harvested forest biomass and the calculation of associated GHG emissions are considered 

as part of the discussion in Sections 4.6 and 4.10 of this report dealing with essential 

concepts and key issues in LCA.  

3.9. Short-term and long-term consequences of forest management 

interventions 

As discussed in Section 3.4, the management of forests can have a strong influence on 

the pattern of GHG emissions and/or carbon sequestration, but these responses often 

follow intricate cycles. Whilst this is true, in general (as already considered in Section 

3.6), a number of studies have identified issues related to the timing of GHG emissions 

and carbon sequestration in response to intensified management of forests, particularly 

where this involves increased thinning, shortened rotations, the introduction of 

harvesting in unmanaged forests or increased extraction of biomass (see Sections 2.7 

and 3.6). In such situations, typically the reactions in terms of forest carbon stock 

changes and contributions to GHG emissions due to use of harvested wood (e.g. as 

bioenergy or as solid wood products) can be characterised as: 

 Initial reductions in forest carbon stocks (perhaps over a few years but sometimes 

much longer) with consequent implied increased GHG emissions (although this 

depends, to some extent, on how the harvested wood is used). 

 Stabilisation of forest carbon stocks in the longer term, but at a lower level than 

observed before forest management was intensified. 

 Short-term and long-term increases in levels of wood supply, with consequent 

additional potential to displace consumption of fossil energy sources and/or non-wood 

materials (although, again, this depends to some extent on how the harvested wood is 

used). 

This indicates that, for a number of possible sources of additional forest bioenergy, there 

must be an initial period during which associated GHG emissions are increased, after 

which there is a ‘switch-over’ to net decreases in GHG emissions. A number of research 

studies have reported such a pattern in GHG emissions of forest bioenergy sources, with 

estimates of the period to the point of switch-over ranging from 1 year to 100 years or 

more. Such timing issues, particularly contrasting short-term and long-term effects, are 

the subject of much study in the literature and are discussed further in Sections 3.6 and 

4.9, and particularly Section 5 of this report. 
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3.10. Growth rate of forests as a key factor 

It has long been established that the potential growth rate of trees forming forest stands 

is an important factor in determining the consequences for GHG emissions of decisions 

about forest management (e.g. when deciding whether to harvest trees, and, if so, by 

what management approaches) and the utilisation of harvested wood (see for example 

Nabuurs et al., 2008; Marland and Marland, 1992; Schlamadinger and Marland, 1996; 

Marland and Schlamadinger, 1997). There are several reasons why potential growth rate 

can be so important: 

 Generally speaking, the faster the growth rate, the quicker carbon can be 

sequestered, e.g. when an area of non-forest land is converted to forest land 

through afforestation. (It must be noted that this ignores certain important 

subtleties such as the fact that tree growth is usually measured in cubic metres of 

volume rather than tonnes of carbon and is usually based on the volume of 

stemwood in trees rather than total volume or biomass, i.e. including branches and 

roots. Nevertheless the statement holds in broad terms, particularly when 

comparing situations where reported growth rates are very different.) 

 The maximum carbon stock that can be ‘carried’ on an area of land is not very 

strongly correlated with growth rate. (This is for a number of reasons, for example, 

because tree mortality due to competition between trees tends to be more intense 

in forest stands with higher growth rates, which ultimately acts against any 

sequestration of carbon in trees.) Consequently, when forest carbon stocks are 

disturbed, by natural processes or by harvesting, generally they can be replenished 

to pre-disturbance levels more rapidly where growth rates are higher. 

 The faster the growth rate, the more wood can be harvested from a given area and 

the greater the subsequent potential for reducing GHG emissions through use of 

wood as bioenergy and solid wood products, displacing more of the potential 

demand for fossil energy sources and non-wood materials. 

The key significance of growth rate and consequent productive potential is recognised, 

for example, in the theoretical simulation results of Marland and Marland (1992), 

Schlamadinger and Marland (1996) and Marland and Schlamadinger (1997), as 

illustrated in Figure 1.2 in Section 1.2 of this report. 

As discussed in Section 2.4, mean forest growth rates over typical rotations in boreal and 

temperate regions, including the EU range from less than 2 m3 ha−1 yr−1 up to perhaps 

30 m3 ha−1 yr−1 in exceptional circumstances, with typical rates being around 4 to 8 m3 

ha−1 yr−1. It is very likely that options for managing forests to meet climate change 

mitigation targets (i.e. reducing GHG emissions and/or sequestering carbon) will be 

sensitive to growth rates over this range, implying a regional and perhaps site-by-site 

approach for the evaluation of management options. 
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3.11. Avoidance of harvesting as a forest management option 

Relatively recently (Searchinger, 2012), the view has been expressed that, whilst the 

continuation of existing management of forests for wood production through harvesting 

does not necessarily involve reductions in forest carbon stocks (see Section 3.5), 

nevertheless the effect of continued harvesting is generally to maintain forest carbon 

stocks at relatively modest levels. As a corollary, it is noted that, potentially, carbon 

stocks in forests would be larger if there was no harvesting. The question has thus 

arisen, would the suspension of harvesting lead to greater benefits in terms of forest 

carbon sequestration? Specifically, would these exceed the benefits associated with the 

use of harvested wood for bioenergy or wood-based materials? 

It is important to recognise that the case of ‘no harvesting’ or ‘no use’ needs to be a 

genuinely meaningful and realistic forest management option, if it is to be used as a 

comparator against which to assess all other cases for forest management. However, it is 

notable that studies and critical discussions of forest bioenergy that refer to such a 

scenario do not define or discuss what ‘suspension of harvesting’, or ‘suspension of 

management’ or ‘no use’ would actually entail in practice. Either the scenario is referred 

to as a theoretical concept, or there appears to be an implicit presumption that existing 

and future management in forest stands can be abandoned comprehensively, and the 

affected land areas can be left to develop without further human intervention. Moreover, 

the prospect of abandoning management in forests seems somewhat at odds with the 

principle of multi-purpose forest management, as discussed in Section 2.3. The ‘no 

management’ case would, therefore, appear to be in need of a practical definition and 

specification. 

The idea that harvesting can be suspended in forests to allow additional forest carbon 

stocks to be sequestered has led to the suggestion that estimates of GHG emissions for 

forest bioenergy involving harvesting and wood production should always be calculated 

relative to the case of no harvesting (Searchinger, 2012). However, this is an aspect of 

forest carbon assessment and methodology for calculating GHG emissions that is open to 

question. The position taken in this project is that the ‘no-harvest’ case may or may not 

be an appropriate comparator against which to assess other cases for forest 

management and wood use, depending on the specific question(s) posed by a particular 

assessment of forestry and wood consumption. In many situations, it may be more 

appropriate to represent the ‘no-harvest’ case distinctly and estimate GHG emissions and 

carbon sequestration for this case explicitly. As stressed in Section 4, it is the strong view 

of the authors of this report that a clear statement of the question(s) to be addressed is 

an essential pre-requisite for an effective and meaningful assessment of forest bioenergy, 

or any other scenario for forest management and wood use. Concomitantly, failure to 

clearly and unambiguously state the research question(s) to be addressed constitutes a 

major cause of confusion, uncertainty and misinterpretation in studies of forestry and 

wood utilisation. 
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3.12. Influence of natural disturbance events 

The natural (and in some cases anthropogenic) disturbance of forest areas (e.g. due to 

storms, disease, fire) generally has negative consequences for carbon stocks. The risks of 

significant, large-scale disturbance events tend to be mitigated by the systematic control 

of levels of growing stock in forest stands associated with management involving 

harvesting. It is particularly important to consider the possible consequences of 

disturbance when assessing forestry cases involving minimising or complete avoidance of 

management (notably harvesting), as in many situations, the consequent accumulation 

of old, large trees and high carbon stocks will greatly increase the risks of disturbance 

events (Schelhaas et al. 2003). So far, disturbance processes and their effects have not 

been represented adequately in the assessment of forest management options, although 

some studies have made initial steps to address this issue (Lindroth et al. 2009). 

There is limited acknowledgement of the very high uncertainty that should be attached to 

projections of future forest carbon sequestration under scenarios in which all harvesting 

is avoided. Whilst ongoing carbon sequestration is a likely outcome in the short term, it is 

important to note the high uncertainty attached to estimates of medium-term and long-

term carbon dynamics and also the increasing risks of natural disturbance. Consequently, 

high uncertainty should be attached to theoretical carbon sequestration achieved by low-

management or no-management forestry options. 

In cases where there is significant, large-scale incidence of forest disturbance, perhaps 

due to a major storm or disease outbreak, the affected trees can be left on-site to decay 

or they can be harvested, an activity referred to in this context as ‘salvage logging’. The 

harvested wood can be used for solid-wood products and/or as a bioenergy feedstock. 

Decisions about whether or not to carry out salvage logging, at what scale and over what 

period following the original disturbance event, can have both beneficial and detrimental 

consequences for GHG emissions and carbon sequestration, the latter occurring as the 

forest areas recover and re-grow, and will also strongly influence the timing of GHG 

emissions and carbon sequestration (see for example Thurig et al., 2009; Köster et al., 

2011). It should also be emphasised that some forms of disturbance can sometimes 

preclude salvage logging (e.g. when a forest fire burns wood beyond the point that it can 

be used), and can cause relatively immediate release of carbon stocks, which would act 

against the objective of conserving carbon stocks in forests. 

3.13. Market-mediated (indirect) land-use change (iLUC) 

The phenomenon of iLUC has been presented by some scientists and commentators as a 

crucial influence on the overall GHG impacts of certain land use and land management 

options aimed at mitigation of GHG emissions (Searchinger et al., 2008; Fargione et al., 

2008; Al-Riffai et al., 2010; Kim et al., 2011; Pena et al., 2011). The focus of the 

discussion tends to be on the agriculture sector and in particular the potential impacts of 

converting land used for production of food over to production of biomass crops for 
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energy use. Questions regarding iLUC can also occasionally arise when considering 

forestry.  

Studies which have attempted to quantify the potential impacts due to iLUC on activities 

aimed at GHG mitigation, generally through management of agricultural land (e.g. Plevin 

et al. 2010), have shown that results are highly sensitive to the detailed assumptions 

made in carrying out analyses, with estimated emissions arising from iLUC ranging from 

zero to ‘very large’. An ongoing debate about the risks and potential impacts of iLUC is 

seriously hampering the development of GHG mitigation policies involving land 

management and land-use change, mainly in the agriculture sector.  

Although potential risks related to iLUC are recognised in the forest sector, as already 

noted, iLUC is identified primarily as an issue in the agriculture sector and is, therefore, 

not regarded as a key subject for consideration in this report. The issue of iLUC is most 

likely to arise in scenarios involving land use change as an essential theme, e.g. where 

demands for bioenergy are met through afforestation activities in the context of forestry. 

The approach taken in this project for such scenarios (for energy crops more generally as 

well as afforestation) is to constrain the relevant activities so as to avoid significant risks 

of iLUC. It may be worth noting that an operational methodology for implementing such 

measures so as to avoid risks of iLUC has been proposed in LIIB (2012). 

3.14. International and EU accounting for biogenic carbon emissions 

In principle, GHG emissions from forest bioenergy are already accounted for, at least 

partially, as part of existing international efforts to limit climate change. As signatories 

(Parties) to the Kyoto Protocol14, EU Member States have legally binding commitments to 

limit or reduce national GHG emissions. The EU15 also has its own collective target. 

Targets for levels of GHG emissions have to be met over commitment periods, the first of 

which has run from 2008 to 2012, with a second running from 2013 to 2020. The EU has 

a number of policies and measures which express the EU’s collective commitment to 

reduce GHG emissions, which are complementary to wider commitments to the Kyoto 

Protocol, including a Decision on accounting for GHG emissions occurring in the Land 

Use, Land-Use Change and Forestry (LULUCF) sector (EU, 2013a). The Kyoto Protocol 

and the EU Decision specify accounting rules for various activities, which countries apply 

in demonstrating progress towards target levels of GHG emissions. 

For the first commitment period of the Kyoto Protocol, accounting rules for LULUCF 

required Parties to account for GHG emissions (and/or CO2 sequestration) occurring as a 

result of deforestation and afforestation activities taking place since 1990. Other 

accounting rules enabled Parties to account for GHG emissions (and/or CO2 

sequestration) occurring due to other LULUCF activities, potentially involving the 

management of e.g. existing croplands, grazing lands and forests. However, Parties could 

                                       
14

 United Nations (1998) Kyoto Protocol to the United Nations Framework Convention on Climate 

Change.  (Full text available at: http://unfccc.int/resource/docs/convkp/kpeng.pdf) 

http://unfccc.int/resource/docs/convkp/kpeng.pdf
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elect either to account or not to account for these various activities. The EU Decision did 

not exist during the first commitment period of the Kyoto Protocol. 

For the second commitment period of the Kyoto Protocol, accounting rules for LULUCF 

activities have been strengthened somewhat, and the EU Decision has come into 

operation. The accounting rules of both the Kyoto Protocol and the EU Decision now 

require Parties to account for GHG emissions (and/or CO2 sequestration) occurring as a 

result of the management of forest areas already in existence before 1990, as well as 

continuing to account for deforestation and afforestation activities taking place since 

1990. A detailed explanation of the new accounting rules for forestry in the second 

commitment period would be lengthy and potentially distracting. In short, if changes to 

the management of forest areas result in overall reductions in forest carbon stocks, 

compared with levels that would have been expected in the absence of the changes to 

forest management, then the GHG emissions implied by these carbon stock reductions 

must be accounted for. (On the same basis, changes to forest management resulting in 

increased carbon stocks, compared with the levels expected otherwise, may be claimed 

as a credit, although subject to a cap.) 

As a consequence of these accounting rules, if levels of harvesting in forest areas were to 

be intensified to meet increased demand for forest bioenergy, any permanent carbon 

stock changes in forests resulting from the increased harvesting would need to be 

accounted for. It may be noted that the Kyoto Protocol during the second commitment 

period and the EU Decision on LULUCF also include accounting rules for carbon stocks 

retained in (and ultimately released from) harvested wood products. However, in the 

case of harvested wood used for bioenergy, the GHG emissions due to combustion of the 

wood are represented as occurring instantaneously (i.e. at time of harvest). 

It follows that, certainly in principle, the accounting rules of international policies aimed 

at limiting GHG emissions already cover the GHG emissions associated with biogenic 

carbon consumed as forest bioenergy (specifically, where consumption of forest 

bioenergy is increasing above previously expected levels). However, it is important to 

understand certain complications and limitations of the current accounting approaches. 

Specifically, the GHG emissions occurring as a result of carbon stock changes in forests 

(which are, in turn, the result of increased harvesting) need to be accounted for by the 

Parties (countries) in which the affected forest areas are situated. In this case, a 

‘consuming country’ would not need to account for any GHG emissions associated with 

the biogenic carbon of forest bioenergy, but the ‘producing countries’ would have to 

account for those emissions, assuming the ‘producing countries’ were EU Member States 

or otherwise Parties to the Kyoto Protocol. This may create a certain tension between 

countries trading in forest bioenergy, since it would appear that the consumption of 

forest bioenergy is effectively being incentivised, whereas its production is potentially 

being disincentivised. The situation is more serious in the case where a ‘consuming 

country’ is an EU Member State or otherwise a Party to the Kyoto Protocol, and the 

‘producing country’ is not. In such cases, any GHG emissions due to increased levels of 
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harvesting in the forests of the ‘producing country’ would not be accounted for at all. At 

the very least, there is an implication that this leads to perverse incentives for the 

consumption of forest bioenergy from sources that are not covered by existing domestic 

and international policies aimed at limiting GHG emissions.  

3.15. Non-GHG climate effects of forests (albedo and aerosols) 

Before closing this section of the report, mention should be made of other effects of 

forests on global climate apart from those due to processes and cycles involving the 

major GHGs. However, it must be stressed that such effects are not the focus of this 

project and the following discussion is not comprehensive. The other main phenomena 

involve the interactions of forest areas with land surface albedo, and with atmospheric 

aerosols. 

The term ‘albedo’ refers to the reflectivity or reflection coefficient of the Earth’s surface, 

which is measured as the ratio between solar radiation reflected back from the surface, 

and the original solar radiation incident upon it. 

Aerosols are certain types of chemicals which, when present in the atmosphere, can 

reflect and scatter sunlight directly. They may also form into ‘particles’ which encourage 

the formation of clouds and can also make clouds whiter, also contributing to the 

reflection and scattering of solar radiation. 

The phenomenon of albedo is a very complex function of surface and radiation 

characteristics, involving land cover type, specifics of the vegetation, snow cover, soil 

moisture, and the incident angle and wavelength of radiation (Henderson-Sellers and 

Wilson, 1983; Ni and Woodcock, 1999). Changes in land use may also affect albedo. 

The ‘climate benefits’ of carbon sequestration in forests, e.g. achieved through 

afforestation, can be offset by changes in climate forcing resulting from changes in 

surface albedo. This is particularly the case in boreal and other snow-covered regions 

(Bright et al., 2012; Haberl et al., 2013), because darker trees capture more heat than 

snow does (Bonan and Pollard, 1992; Betts, 2000; Claussen et al., 2001; Randerson et 

al., 2006; Bala et al., 2007). On the other hand, this may mean that, potentially, the 

climate effects of CO2 emitted as a result of tree harvesting (and consequent reduced 

tree cover) may also be offset by related changes in albedo (Amiro et al., 2006; Bright et 

al., 2011; O’Halloran et al., 2012). Outside boreal and snow-covered regions, and 

particularly for areas covered by deciduous forests, the effects due to changes in albedo 

are generally weaker (Bonan, 2008; Anderson et al., 2010; O’Halloran et al., 2012). 

The climate forcing effects due to changes in surface albedo are further modified by the 

effects of aerosols and clouds. In general, these contributions tend to attenuate any 

effects due to changes in albedo (Schwaiger and Bird, 2010). Biophysical factors such as 

reflectivity, evaporation and surface roughness all influence the ultimate effects on 

climate, and variously act synergistically and antagonistically (Kulmala et al., 2004; 

Bonan, 2008; Jackson et al., 2008; Spracklen et al., 2008; Anderson et al., 2010). A 
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growing body of research suggests that trees can play an important role in the 

production of aerosols and in cloud formation and whitening (e.g. through the release of 

organic vapours such as terpenes), contributing a potentially significant cooling effect 

(Kulmala et al., 2004; Spracklen et al., 2008; Paasonen et al., 2013; Topping et al., 

2013). 

It remains the case that there are significant knowledge gaps and uncertainties 

concerning the interrelations between the biogeochemical and physical processes 

influencing climate forcing, and their specific relationships to forests. However, a case is 

emerging for considering such effects alongside the contributions made by biogenic 

carbon in forests, and more widely by GHG emissions (and CO2 sequestration) 

contributed by forestry activities. 

3.16. Synthesis of findings on forest carbon stocks and forest biogenic 

carbon 

The discussion in this section has been concerned with setting out the essential science 

and related issues underlying the role of forests in the carbon cycle, with relevance to 

forest bioenergy. This has included consideration of the biogenic carbon in forest 

biomass, its potential contributions to climate change mitigation, and the potential 

influence of forest management, particularly with regard to the production of forest 

bioenergy. There has been brief discussion of related subjects, such as existing 

approaches to accounting for biogenic carbon in forests and other influences of forests on 

regional and global climate. In accord with objective 1 of this Task, the preceding 

discussion has considered many factors that may lead to sensitivity in the GHG emissions 

associated with forest bioenergy. It may be inferred that a number of key factors 

contribute to variable but predictable outcomes in terms of the GHG emissions of forest 

bioenergy, as summarised in Table 3.2. 

For each factor in the Table 3.2, it is possible to characterise scenarios that will 

contribute towards, detract from, or be indifferent towards an objective of reducing GHG 

emissions. 
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Table 3.2 Summary of factors contributing to outcomes in terms of the GHG emissions  

of forest bioenergy 

Factor Influence on GHG emissions of forest bioenergy 
See 

Section(s) 

Forest 

management 

scenario 

GHG emissions associated with forest bioenergy are sensitive to the approach taken to forest 

management for production of wood, including for bioenergy. A number of broad scenarios for 

forest management can be identified, which can be ranked in terms of GHG emissions likely to 

be associated with any forest bioenergy produced, from ‘most effective’ in achieving low GHG 

emissions (or reduced emissions, compared with the emissions that would occur if the 

bioenergy was not produced via forest management) to ‘least effective’, as: 

 Increased wood production through afforestation (also avoiding the possibility of iLUC). 

 Increased wood production as part of the elevation of carbon stocks in degraded forests. 

 Continued wood production as part of ‘business as usual’ (sustainable yield management) 

of forests. 

 Increased wood production through intensified harvesting in forests (e.g. introduction of 

harvesting in forest areas not previously under management for wood production), with 

accompanying measures to enhance growing stock (e.g. increasing tree density on 

restocking, restocking with better growing/more productive trees). 

 Increased wood production through shortened rotations and/or more intense thinning in 

forests already in production. 

 Increased wood production through intensified harvesting in forests, without accompanying 

measures to improve growing stock (see previous point). 

3.6, 3.13 

Mean forest 

growth rate 

Generally, the faster the growth rate of forests, the quicker carbon can be sequestered (and 

also replaced after the disturbance of forest carbon stocks). Also, more wood can be harvested 

from a given area of forest and there is greater subsequent potential for reducing GHG 

emissions through use of wood as bioenergy and solid wood products. 

3.10 
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Table 3.2 (continued) Summary of factors contributing to outcomes in terms of the GHG emissions  

of forest bioenergy 

Factor Influence on GHG emissions of forest bioenergy 
See 

Section(s) 

Soil carbon 

stocks 

GHG emissions associated with forest bioenergy can be sensitive to the status of soil carbon 

stocks. When considering the creation of new forest areas (afforestation) with the intended 

management aim of producing (or co-producing) forest bioenergy, generally, the lower the 

initial soil carbon stocks, the greater the potential to sequester additional soil carbon stocks 

and the less likelihood of causing reductions in soil carbon stocks. Afforestation may therefore 

be most effective (in terms of soil carbon stocks) on lands with degraded soils, as part of land 

regeneration. When considering introducing harvesting in areas of forest previously not under 

management for wood production, or considering increasing the levels of harvesting in existing 

production forests, the additional harvesting (and any associated soil disturbance) is less likely 

to result in significant GHG emissions on soils with intrinsically low carbon stocks, the reverse 

being the case for soils with intrinsically high carbon stocks. In general, forest management 

may need to be considered on a site by site basis with regard to soil carbon stocks. On soils 

with intrinsically very high carbon stocks (e.g. deep peats), management to conserve soil 

carbon stocks is likely to be an important objective in the context of climate change mitigation. 

3.2 

Bioenergy 

counterfactual 

The production and utilisation of forest bioenergy can be ranked in terms of its potential 

effectiveness in reducing GHG emissions with respect to ‘counterfactual’ energy sources, from 

most effective to least effective, as: 

 Coal > Fuel oil > Natural gas > Other renewables. 

Occasionally, forest bioenergy can directly displace the consumption of grid electricity (e.g. 

when a wood-fired heating system directly replaces an electrical heating system). The 

effectiveness of such cases will be variable, depending on the existing mix of energy sources 

used in generating electricity. 

3.8 
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Table 3.2 (continued) Summary of factors contributing to outcomes in terms of the GHG emissions  

of forest bioenergy 

Factor Influence on GHG emissions of forest bioenergy 
See 

Section(s) 

Bioenergy 

conversion 

technology 

The GHG emissions associated with the production and use of forest bioenergy (when 

expressed per unit of energy produced, e.g. in units of gCO2-eq. per MJ or kgCO2-eq. per 

MWh) are sensitive to the type of conversion technology involved in consumption of the 

bioenergy. Scenarios can be ranked as ‘most effective’ (i.e. low GHG emissions per unit 

energy) to ‘least effective’, as: 

 Large-scale combined heat and power (large scale then small scale) 

 District heating 

 Small scale heating 

 Power only (co-firing in coal-fired power station) 

 Power only (dedicated biomass). 

3.8 
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Table 3.2 (continued) Summary of factors contributing to outcomes in terms of the GHG emissions  

of forest bioenergy 

Factor Influence on GHG emissions of forest bioenergy See 

Section(s) 

Production 

scenario 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solid wood co-

products 

counterfactuals 

GHG emissions associated with forest bioenergy are sensitive to the approach taken to supply 

bioenergy feedstock. At least four broad production scenarios can be identified, which can be 

ranked in terms of GHG emissions likely to be associated with any forest bioenergy produced, 

from ‘most effective’ in achieving low GHG emissions (or reduced emissions, compared with 

the emissions that would occur if the bioenergy was not produced via forest management), to 

‘least effective’, as: 

 Production from waste wood sources generated at the end of life of solid wood products. 

 Co-production alongside the manufacture of solid wood products (e.g. offcuts from sawn 

timber production) and production from harvesting residues. 

 Forest bioenergy as the sole product of raw harvested wood (i.e. all harvested wood is 

used exclusively for bioenergy). 

Certain important qualifying points need to be attached to these conclusions: 

 The scenario of forest bioenergy as the exclusive product of raw harvested wood refers 

literally to situations in which all wood harvested from forests is used for bioenergy. It 

does not refer to situations, typical of conventional forest management, in which some 

individual whole trees (stemwood and possibly also branches) of small size or poor stem 

form are used entirely to produce bioenergy as part of the production of a mix of types of 

raw harvested wood for a range of uses (see Section 2.1). 

 The production of forest bioenergy is least effective when feedstock is derived by diverting 

wood (regardless of source, i.e. raw wood, co-products or waste wood) from the 

manufacture of solid wood products. 

 The scenario of co-production of forest bioenergy alongside solid wood products is most 

effective when the solid wood co-products have high potential to displace GHG emissions 

of ‘counterfactual’ products, and less effective when this is not the case. 

3.7 
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3.17. Conclusions on forest carbon stocks and forest biogenic carbon  

It is now appropriate to summarise key insights from the preceding discussion relevant to 

the Task objectives (see Section 1.3). 

First of all, it should be observed that the quantities of biogenic carbon sequestered in 

forests are significant (Section 3.3). Currently, the continued accumulation of carbon 

stocks in forests in the EU27 results in sequestration equivalent to approximately 

between 5% and 10% of current GHG emissions in other sectors in the EU27. Globally, 

the current contribution of carbon sequestration in forests may amount to approximately 

15% of GHG emissions in other sectors. However, this contribution of forests, 

compensating to some extent for GHG emissions due to activities in other sectors, is 

likely to decline eventually, and potentially reverse. A number of factors are influencing 

the current and likely future development of forest carbon stocks, including the present 

and evolving management of forests. 

Considering factors that may lead to sensitivity in the GHG emissions associated with 

forest bioenergy (objective 1 of this Task), Table 3.2 in Section 3.16 has analysed a 

number of key factors that contribute to outcomes in terms of the GHG emissions of 

forest bioenergy, which can be summarised as shown in Figure 3.8. The figure illustrates 

how the effectiveness (or otherwise) of the harvesting and use of forest bioenergy (in 

terms of achieving low GHG emissions and/or reductions in GHG emissions compared 

with other options) may depend on a number of factors. By implication, the ‘least 

effective’ options involving bioenergy use appear on the left hand side of the figure, while 

the ‘most effective’ options appear on the right hand side. However, the consequences of 

different options for bioenergy use can be very context-specific. Note, in particular, that 

the figure does not show the relative importance of the various factors or any effects due 

to interactions between them. 

The analysis in Figure 3.8 could be viewed as an elaboration of the diagram illustrating a 

connection between basic forest characteristics (primarily, but not exclusively growth 

rate) and potential options for forest management to reduce GHG emissions originally 

presented in Matthews and Robertson (2005), slightly reinterpreted by Matthews et al. 

(2007), and repeated here as Figure 3.9. The picture in Figure 3.9 suggests the 

possibility for priorities or emphasis attached to different forest management and wood-

use options to be matched to forest characteristics. In this context, the term ‘preferred 

uses’ implies how the mix of forest management prescriptions, i.e. aimed at conservation 

of carbon stocks, production of solid wood products or bioenergy, might be optimised 

from the perspective of biogenic carbon, depending on the productive potential and 

characteristics of forest areas, or land on which new forests could be established. 

However, only one generic and quite loosely defined characteristic is considered and the 

question arises as to whether such an approach can be ‘mapped’ meaningfully and 

usefully onto the various factors considered in Figure 3.8. This is considered further as 

part of the detailed review of literature in Section 5 of this report. 
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The discussion in this section is not intended primarily to inform understanding of the 

sensitivity of the GHG emissions associated with forest bioenergy to calculation 

methodologies (objective 2 of this Task). However, it is apparent from the summary 

analysis in Table 3.2 and Figure 3.8 that the results of a particular study of GHG 

emissions of forest bioenergy will depend on the comprehensiveness and accuracy with 

which the forest bioenergy production and conversion system is represented, notably 

with regard to the factors identified. It is also important that such studies include a clear 

and complete statement describing the forest bioenergy production and consumption 

system(s) actually under study, otherwise the applicability and relevance of any results is 

likely to be ambiguous and potentially confusing. These points are also of vital 

importance with regard to characterising a methodology which is suitable for calculation 

of GHG emissions associated with the use of forest bioenergy (objective 3 of this Task). 
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Figure 3.8.  Illustration of how the GHG emissions associated with the harvesting and use of forest bioenergy may depend on 

a number of factors. 
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Figure 3.8 (continued).  Illustration of how the GHG emissions associated with the harvesting and use of forest bioenergy 

may depend on a number of factors. 
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Figure 3.9.  Simplistic illustration of how land/forest management for carbon stocks and 

biomass utilisation might be matched. (Sources: Matthews and Robertson, 2005; 

Matthews et al. 2007.) 

 

3.17.1. Key messages concerning forest biogenic carbon and its management 

Sensitivity of GHG emissions due to biogenic carbon 

Biogenic carbon can make a very variable contribution to the GHG emissions associated 

with forest bioenergy. Consequent GHG emissions can vary from negligible levels to very 

significant levels (similar to or greater than GHG emissions of fossil energy sources). In 

some specific cases, forest bioenergy use may be associated with net carbon 

sequestration. Many factors influence GHG emissions of forest bioenergy due to biogenic 

carbon. These factors have been analysed in the preceding discussion and their 

influences have been summarised in Table 3.2, Section 3.16 and Figure 3.8, Section 

3.17. GHG emissions are very sensitive to these factors but outcomes are predictable, at 

least in principle.  

Additionality of GHG emissions and reductions 

Although perhaps not explicitly stated, there is a general presumption in the discussion 

presented in this section of a focus on GHG emissions that would occur as a result of 

changes in the level of consumption of forest bioenergy. Any contribution of biogenic 
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carbon to GHG emissions associated with existing consumption of forest bioenergy 

effectively forms a component of baseline levels of GHG emissions. The critical question 

is concerned with the effects that a change in the scale of consumption of forest 

bioenergy would have on baseline levels of GHG emissions, i.e. whether they would 

increase or decrease. This needs to be clearly understood and allowed for in assessments 

of contributions of biogenic carbon to GHG emissions of forest bioenergy. This point is 

explored further in Section 4. 

Baseline forest management  

As part of the assessment of the effects of changes in levels of consumption of forest 

bioenergy, it is necessary to include appropriate assumptions about the age distribution 

of existing forests, deforestation and afforestation into scenarios for future land use and 

forest management to meet demands for forest bioenergy. This is required for the 

construction of a baseline scenario, representing ‘business as usual’ development of the 

management of forests, against which any policy scenarios may be evaluated. 

Furthermore, it is necessary to consider the possible influences of changes in demands 

for forest bioenergy on the age distribution of forests and on future rates of deforestation 

and afforestation. 

It is also necessary to characterise the existing management of relevant forest areas, 

and the effects of management on the development of forest carbon stocks. As with 

deforestation and afforestation, this is required for the construction of a baseline 

scenario, representing ‘business as usual’ development of the management of forests, 

against which any policy scenarios may be evaluated.  Furthermore, it is necessary to 

consider the possible influences of changes in demands for forest bioenergy on future 

patterns of forest management. 

Relevance of scale 

The concept of scale is relevant to the assessment of GHG emissions associated with the 

consumption of forest bioenergy in two senses.  

Firstly, forest bioenergy systems need to be assessed at an appropriate spatial and 

temporal scale. The spatial scale needs to reflect the complete terrestrial vegetation 

system involved in supplying bioenergy. Examples of relevant spatial scales, variously 

depending on context, include the complete areas of forests supplying a particular 

consumer with bioenergy, all of the forests situated within a country or group of 

countries, or all of the forests managed by a commercial company or land owner. The 

scale of an individual forest stand is generally of less relevance except for very specific, 

detailed purposes. The temporal scale needs to capture the variable effects of forest 

bioenergy on GHG emissions over time. GHG emissions calculation methodologies need 

to address sensitivities of results to interactions between human management of forests 

and natural processes and in particular the generally contrasting short-term and long-

term consequences of forest management interventions. 
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Secondly, the contribution of biogenic carbon to GHG emissions of forest bioenergy is 

sensitive to the scale of consumption. For example, a modest increase in consumption 

might be achieved through marginal adjustments to existing management of forest 

areas, with limited effects on forest carbon stocks. However, a significant increase in 

consumption, for example as illustrated by the ‘high wood mobilisation’ scenarios 

considered in the EUwood study (Mantau et al., 2010) and EFSOS II study (UN-ECE, 

2011) would require changes to forest management such as those illustrated by 

scenarios in Table 2.10, Section 2.7. Many of these scenarios for changes in forest 

management would involve significant and variable influences on the development of 

forest carbon stocks. Consequently, the variable effects of scale of consumption need to 

be allowed for in assessments of the contribution of biogenic carbon to GHG emissions of 

forest bioenergy. 

Related to the issue of scale, it is important to recognise that transitions in the level of 

consumption of forest bioenergy, and consequent responses of forest carbon stocks, can 

involve long timescales. This is particularly true when considering significant increases in 

consumption of forest bioenergy, which would require major changes to the management 

of large forest areas over time.  

Counterfactuals  

For assessments of GHG emissions of forest bioenergy involving changes to the 

management of forests and/or changes to patterns in the use of harvested wood, it is 

essential to characterise realistic and justifiable ‘counterfactuals’. Often it is relevant to 

study the change from ‘business as usual’ in patterns of land use, i.e. forest 

management, thus making the construction of a ‘business as usual’ scenario relevant as 

part of the definition of the counterfactual. For harvested wood products, counterfactuals 

involve the ‘business as usual’ patterns for wood use, and also a set of assumptions 

about what energy sources and materials might be used instead of forest bioenergy and 

harvested wood products. When defining such counterfactuals, it is important to 

recognise that the use of wood for material and fibre products, and as a feedstock for 

chemicals, may become more important than forest bioenergy in the future, as part of 

the development of a bioeconomy, or an otherwise decarbonised economy.  

LULUCF accounting rules 

Existing EU and international accounting systems for biogenic carbon in forests and 

harvested wood, supporting international efforts to limit GHG emissions, serve very 

specific purposes and are unsuitable for more general application as calculation methods 

for assessing the GHG emissions associated with forest bioenergy. 
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4. Life cycle assessment: essential concepts and key issues  

4.1. Purpose 

The purpose of this section is to:  

 Introduce the essential elements of LCA methods and calculations.  

 In particular, to clarify why different LCA studies can, quite validly, produce different 

results. 

 Establish the prime importance of determining a clear goal for any LCA study to 

address.  

The discussion in this section is not intended to be an exhaustive account of the theory 

and application of LCA. 

4.2. The genesis and principles of LCA 

LCA has its roots in ‘energy analysis’, essentially dating from the early 1970s (Chapman, 

1975; Boustead and Hancock, 1979), when the principal concern was with constraints on 

the supply of fossil energy sources and the implications for energy security. Subsequently 

this has expanded into the science of ‘industrial ecology’ (Socolow et al. 1994), which 

involves the more general study of the interactions between human activities and the 

environment. In industrial ecology, a range of tools have been developed for analysing 

environmental impacts ranging from the specific impacts due to the manufacture of an 

individual product, to global impacts of a set of manufacturing processes or a set of 

human activities. A family of methods derived from the first law of thermodynamics (i.e. 

that energy cannot be created or destroyed) form basic analytical tools for industrial 

ecology. These tools include the methods of substance flow analysis and material flow 

analysis (Bringezu et al. 1997; den Hond, 2000), showing the lineage back to energy 

analysis. At the product or process level, LCA extends to these methods by attempting to 

quantify the environmental impacts of the use of materials and services, in particular, the 

impacts of specific production and processing systems (Rebitzer et al. 2004). LCA 

encompasses a methodological framework for estimating and assessing the 

environmental impacts related to the ‘life cycle’ of a specified product, process or service 

(ISO 2006:14040; ISO 2006:14044). 

The question may arise, are there other techniques apart from LCA, which might be used 

to assess the GHG emissions associated with the production and use of forest bioenergy? 

It is the view of the authors of this report that, if LCA did not exist as a formal approach 

for such purposes, it would need to be invented. LCA is a systematic methodology for 

assessing the effects on the environment of a human activity, such as an agricultural 

practice, an industrial process, a commercial enterprise or a whole economic system. An 

integral part of this methodology involves calculating ‘balance sheets’ for specified 

human activities. As such, LCA has much in common with financial accounting – it is 

concerned with assessing, monitoring or regulating the ‘performance’ of an existing 

activity, or appraising the ‘potential performance’ of a possible new or changed activity. 
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However, in contrast to financial accounting, LCA generally deals with balance sheets for 

physical variables15 rather than money, such as the expenditure of energy and raw 

materials, the outputs of goods, machines, services and waste, including GHG emissions.  

The suitability of LCA as a methodology for assessing GHG emission of bioenergy and 

other systems is occasionally challenged (see, for example, Delucchi, 2011, 2013). 

Generally, such challenges are based on important difficulties in providing suitable 

information for LCA and, usually, do not translate into substantial criticisms of the 

fundamental principles and methodologies of LCA itself.  These difficulties are associated 

with aspects such as the modelling of indirect land-use change and vegetation carbon 

stock dynamics which would present problems for any assessment technique, no matter 

how this was formulated. 

The concern of LCA with physical variables may lead to the misapprehension that there 

should be a single, definitive result for an LCA of a specified activity. However, as 

explored in this section, LCA has more in common with financial accounting than just a 

preoccupation with balance sheets of one kind or another. LCA is essentially a socio-

economic or, perhaps more precisely, a techno-economic tool. Consequently, results for a 

physical system depend on the techno-economic context in which the system is being 

assessed. This means that the details of LCA calculations and reported results must be 

specified and carried out so that they are appropriate for addressing the techno-economic 

question being addressed. Concomitantly, the results of LCA studies need to be 

interpreted with a clear understanding of the techno-economic questions originally posed. 

4.3. The main approaches of LCA: consequential and attributional LCA 

An absolutely critical step in LCA involves clearly stating the goal of the exercise, which 

requires an absolutely clear understanding of the research question which the LCA is 

intended to address. Much, if not all, of the details of actual LCA calculations flow 

naturally from a clearly and unambiguously stated question. Problems arise when an LCA 

is performed without having established and stated an essential question to be answered 

and/or when the detailed LCA methods actually applied are inappropriate for addressing 

the stated question. This issue is of great relevance when considering published LCA 

studies, particularly if trying to compare results from different studies. 

Relatively recently, a notable attempt has been made to offer guidance on how to 

identify appropriate methodologies and conventions when undertaking LCA for different 

objectives by distinguishing two fundamentally different classes of LCA, referred to as 

‘consequential LCA’ and ‘attributional LCA’ (Curran et al. 2005; Finnveden et al. 2009; 

Brander et al., 2009). 

Although fundamentally different, the distinction between the approaches of 

consequential and attributional LCA can sometimes be quite subtle. They also share 

                                       
15

 It may be noted that LCA has been extended to include wider variables, such as indicators of 

social values, but such extensions are outside the scope of the discussion in this report. 
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many common features, essentially being variants of the same basic methodology. 

Brander et al. (2009) have attempted to summarise the key differences between the two 

approaches by describing their key features with respect to a number of aspects of LCA. 

A somewhat elaborated and amended version of the description of Brander et al. is 

shown in Table 4.1. 

Currently, there is much debate over the interpretation and application of consequential 

LCA and, especially, attributional LCA.  The basis of disagreements is often the lack of 

clear definition of these methodologies and associated terms.  The existing standard of 

the ISO 14040 series (ISO 2006:14040; ISO 2006:14044), does not really resolve these 

disagreements since its crucial role in emphasising the need for first establishing the goal 

of LCA, and then ensuring a transparent framework in presenting how this was achieved 

in producing results, is frequently overlooked.  Instead, resolution is usually sought in the 

detailed options for undertaking LCA that this standard documents, rather than in its 

fundamental principles.  One particularly notable attempt to provide guidance, by 

clarifying and expanding these detailed options, is provided in the JRC’s International 

Reference Life Cycle Data System (ILCD) Handbook (JRC, 2010).  It is particularly helpful 

that the ILCD Handbook defines the aims of consequential modelling in LCA as, 

“…identifying the consequences that a decision in the foreground system has for other 

processes and systems in the economy…” (JRC, 2010, pages 71 and 72) and that, “One 

important aspect of consequential modelling is that it is not depicting the actual process 

of e.g. the suppliers of a specific product supply-chain as an attributional model does, but 

it is modelling the forecasted consequences of decisions” (JRC, 2010, page 164).  Such 

guidance supports the definition and application of consequential LCA in areas of policy 

analysis. 

The objective for this project, as stated in Section 1, is “a qualitative and quantitative 

assessment of the direct and indirect greenhouse gas (GHG) emissions associated with 

different types of solid and gaseous biomass used in electricity and heating/cooling in the 

EU under a number of scenarios, in order to provide objective information on which to 

base further development of policy on the role of biomass as a source of energy with low 

associated GHG emissions”. Given this objective, it should be evident from the 

descriptions presented in Table 4.1 that consequential LCA is the correct approach to 

adopt for the purposes of such an assessment. It should also be apparent that the 

approaches of attributional LCA and consequential LCA may generate very different 

results, e.g. for GHG emissions, and this can be a major reason for the diversity of 

estimates presented in the scientific literature for GHG emissions associated with forest 

bioenergy. 

Recently, a very important contribution to the debate over the relevant application of 

attributional and consequential LCA has been provided by Plevin et al. (2013). In 

particular, this warns against the use of attributional LCA in the evaluation of policy 

decisions. This warning is based on a thorough and well-argued examination of the 

limitations of attributional LCA and the capabilities of consequential LCA. Fundamentally, 
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Plevin et al. (2013) recommend that those conducting LCA “…consider carefully and 

systematically the questions they are attempting to answer and ensure that the form of 

the LCA used is appropriate to answer those questions”. In this regard, it is stated that 

attributional LCA “…is not designed to answer the questions of whether a change in 

energy system use results in climate-change mitigation benefits”.  Instead, it is 

concluded that “decision making is best supported by an analysis that anticipates the 

effects of the decision…” and this requires the use of consequential LCA so that it can 

“support robust decision making”. Many aspects associated with the subsequent 

application of consequential LCA in policy analysis are discussed and important 

recommendations are made. 

Table 4.1 introduces a number of key concepts that are highly relevant to understanding 

the correct application of LCA methods, and also the potential for diversity in the results 

generated by different LCA studies. Particularly important concepts include: 

 The definition of the system under study 

 Delineation of the system boundary 

 System boundary expansion 

 Calculation and representation of GHG emissions 

 Allocation of GHG emissions to co-products. 

These aspects of LCA methodology are explored in Sections 4.4 to 4.7. It is also 

necessary to consider:  

 The relevance of a functional unit in LCA studies, and how this may be defined 

 How to represent GHG emissions and their impacts over time 

 The necessity (or otherwise) of referring to a baseline in GHG emissions calculations. 

These subjects are considered in Sections 4.8 to 4.10 respectively. 

 



 

 

9
8
    |

    F
in

a
l re

p
o
rt o

n
 T

a
s
k
 1

    |
    R

o
b
e
rt M

a
tth

e
w

s
   |

    1
5

th M
a
y
 2

0
1
4
 

B
io

g
e
n
ic

 C
a
rb

o
n
  

a
n
d
 F

o
re

s
t B

io
e
n
e
rg

y
 

Table 4.1 Summary of key differences between attributional and consequential LCA  

(modified from Brander et al., 2009) 

LCA aspect Attributional life cycle assessment (ALCA) Consequential life cycle assessment (CLCA) 

Question the 

method 

aims to 

answer  

What are the total emissions (and resulting impacts 

on the environment) from the processes and 

material flows identified as associated with the life 

cycle of a product?  

What is the change in total emissions (and resulting 

impacts on climate) as a result of a marginal change in 

the production (and consumption and disposal) of a 

product?  

Application 

ALCA is applicable for understanding the emissions 

(and resulting impacts on the environment) 

identified as associated with the life cycle of a 

product. ALCA is also appropriate for consumption-

based emissions accounting.  

 

ALCA is not an appropriate approach for quantifying 

the change in total emissions resulting from policies 

or other decisions that change the output of certain 

products. 

CLCA is applicable for informing consumers and policy-

makers on the change in total emissions (and resulting 

impacts on climate) arising from a proposed or actual 

decision or action. As important examples, the decisions 

or actions may be to do with purchasing a product or 

determining a policy. 

 

CLCA is not appropriate for consumption-based 

emissions accounting because it quantifies changes in 

GHG emissions associated with changes in activities, 

rather than total GHG emissions attributable to a 

specific product or service. 

System 

boundary 

The processes and material flows identified as used 

in the production, consumption and disposal of the 

product. 

All processes and physical flows which are directly or 

indirectly affected by a marginal change in the output of 

a product, e.g. through market effects, substitution (i.e. 

displacement of existing use of products), use of 

constrained resources, etc. 

Marginal or 

average 

data 

ALCA tends to use some sort of average data in 

calculations, e.g. the average ‘carbon intensity’ of a 

national electricity grid. 

CLCA tends to use marginal data in calculations when 

appropriate, e.g. the ‘marginal long-term carbon 

intensity’ of a national electricity grid. However, in some 

specific situations, reference to average data may be 

appropriate. 
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Table 4.1 (continued) Summary of key differences between attributional and consequential LCA  

(modified from Brander et al., 2009) 

LCA aspect Attributional life cycle assessment (ALCA) Consequential life cycle assessment (CLCA) 

Market 

effects 

ALCA does not consider the market effects of the 

production and consumption of the product. 

CLCA considers the market effects of the production and 

consumption of the product, related to the decision (and 

implied changes in production and consumption of a 

product). 

Allocation 

methods 

ALCA allocates emissions to co-products based on 

common characteristics such as economic value, 

energy content, mass, or some other quantity 

relevant to the objective of the LCA study. 

CLCA uses system expansion, by means of the 

application of substitution credits, to quantify the effect 

of co-products on emissions. As such, in principle, 

allocation is strictly not appropriate as part of CLCA but, 

in practice, it may be difficult to completely avoid 

allocation, e.g. as part of detailed intermediate 

calculations required for an LCA study. 

Non-market 

indirect 

effects 

ALCA does not include other indirect effects. 

(Generally, these are not relevant.) 

CLCA should include all other indirect effects, such as 

the interactions with existing policies or the impact of 

research and development on the efficiency of the 

production of other products. 

Uncertainty 

ALCA can have low uncertainty because the 

relationships between inputs and outputs are 

generally stoichiometric. However, ALCA results can 

involve large uncertainties in some situations, e.g. 

due to uncertainties in production data or 

parameters such as emissions factors used as the 

basis for LCA calculations. 

 

There is also an intrinsic sensitivity in ALCA related 

to the selection of allocation methods. 

CLCA is very often highly uncertain because, as part of 

representing the effects of changes, it relies on 

assumptions or models that seek to represent complex 

socio-economic systems that include feedback loops, 

random elements and likely present and future 

behaviour. 
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4.4. System definition and system boundary delineation 

As already stressed in Section 4.2, the first step in an LCA study involves defining the 

goal and scope of the study. This is followed by the development of a life cycle inventory 

(LCI), which forms the basis for a life cycle impact assessment (LCIA), the results of 

which are then interpreted. The definition of the object or system being studied, and the 

system’s ‘function’, are central elements of an LCA study. This involves describing 

quantitatively and qualitatively the object or system that is being analysed (e.g. an 

individual product, a production process, the provision of a service or some other human 

activity). The extent of the object or system under study can be specified quite flexibly, 

thus enabling the use of the LCA framework for research questions related to single 

products or more widely to a company, an ‘activity’ or a country or region, the latter 

sometimes being referred to as scenario or system-level studies. 

Intimately associated with the definition of the system and its function, is the delineation 

of an appropriate ‘system boundary’. The identity of a system can be established by a 

system boundary, which is an imaginary line drawn around all the activities that are 

relevant to the analysis being conducted. It should be noted that, whilst it is common for 

the system boundary to be considered a spatial concept, it also has a temporal dimension 

which is of equal importance. The specific spatial and temporal location of a system 

boundary is important because it subsequently defines what is included, and, therefore, 

what is excluded from the system and its analysis. 

A forest-related example of a system and its (spatial) system boundary is shown in 

Figure 4.1a. It must be emphasised that this example, along with the others presented in 

this section, represent highly simplified illustrations for the purposes of explaining key 

principles of LCA methodology. As such, they should not be taken as exemplars of 

general LCA methodology. The example in Figure 4.1a illustrates how the delineation of 

the system boundary not only determines the system being studied, but also implicitly 

specifies many of the calculations needed for an LCA study. In this case, the ‘system’ 

consists, spatially, of a forest stand of exactly 1 hectare in area. This is clearly delineated 

by the systems boundary in Figure 4.1a. For this example, the temporal system 

boundary is a period of 10 years in the development of the forest stand, such as the 

period formed by the years 2004 to 2013. During this period, the trees forming the forest 

stand continue to grow and accumulate carbon stocks, and there is also a thinning 

intervention in which some trees are felled and some of the wood removed (harvested) 

from the stand. To simplify the example, the consideration of emissions in Figure 4.1a is 

limited to carbon dioxide (CO2). Flows of CO2 into and out of the system are shown by 

arrows crossing the system boundary. 
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Figure 4.1a. An example of a ‘system’ and its associated ‘system boundary’ (thick black 

line). The system consists of a 1 hectare stand of trees. The system consists of a 1 

hectare stand of trees. 

 

To calculate the CO2 emissions for the system in Figure 4.1a, all that is necessary is to: 

 Identify all of the flows of CO2 that pass across the system boundary. 

 Quantify each of these CO2 flows. 

 Work out the sum of all the flows of CO2 across the system boundary, allowing for 

whether CO2 flows into the system or out of it, so as to calculate the overall flow of 

emissions. 

For this purpose, the convention is adopted that a flow into the system takes a negative 

sign, whereas a flow out of the system takes a positive sign. In effect, this represents the 

exchange of CO2 between the 1 hectare stand of trees and the atmosphere over a 10 

year period.  As shown in Figure 4.1a, the continued growth of the trees forming the 

stand over the specified 10 year period results in the net accumulation of 36.7 tCO2 into 

the system, adding to the existing carbon stocks in the living biomass of the growing 

trees, deadwood, litter and soil organic matter. This forest carbon sequestration is the 

net result of tree growth through the process of photosynthesis, minus losses due to 

respiration of the living trees, soil microbes etc., and decay of deadwood, litter and soil 

organic matter. For simplicity, the net outcome of these processes (sequestration of 36.7 

tCO2) is shown in Figure 4.1a, rather than the individual contributions due to 

photosynthesis, respiration and decay. 
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In addition to the net sequestration of CO2 in the stand of trees, the thinning intervention 

causes the removal of 12.8 tCO2 contained in the tissues of harvested wood. Over the 

same period, the decay of the harvesting residues left in the forest after the thinning 

event results in an emission of 4.8 tCO2 occurring over the 10 year period encompassed 

by the temporal system boundary. Although most, potentially all, of the CO2 sequestered 

in the harvested wood may still be retained (in solid wood products) well after the 10 

year period has elapsed (and therefore has not in fact been emitted to the atmosphere), 

the removal (flow) of carbon in the harvested wood still counts as an emission, because 

the flow has crossed the system boundary. This is a direct consequence of how the 

system has been defined and where the system boundary has been drawn. 

As explained above, the overall CO2 emissions for the system shown in Figure 4.1a are 

calculated as the sum of the CO2 flows crossing the system boundary, allowing for their 

direction of flow (in or out), which in this case is: 

−36.7 tCO2 + 4.8 tCO2 + 12.8 tCO2 = −19.1 tCO2  

(overall, sequestration into the system). 

It is important to appreciate that the result obtained for the forest system in Figure 4.1a 

is just one of a number of possible results that can be calculated, depending on how the 

system is defined and where the system boundary is drawn, both spatially and 

temporally. Two other possibilities for the spatial system boundary are illustrated in 

Figures 4.1b and 4.1c.  

In Figure 4.1b, the system boundary encloses the forest stand as in Figure 4.1a, and also 

the wood harvested from the forest stand. In this case, most of the CO2 sequestered in 

the harvested wood is retained within the system, because the wood has been converted 

into products which are still in existence at the end of the 10 year period encompassed 

by the temporal system boundary. However, during this period, some of the harvested 

wood decays or is destroyed (perhaps during the processing of wood into finished 

products). This results in an emission of 0.9 tCO2, which crosses the system boundary as 

shown in Figure 4.1b. The change in the system boundary from that shown in Figure 4.1a 

to the one shown in Figure 4.1b has the effect that an emission of 0.9 tCO2 needs to be 

counted in association with the harvested wood, instead of an emission of 12.8 tCO2. This 

gives an overall result for CO2 emissions of: 

−36.7 tCO2 + 4.8 tCO2 + 0.9 tCO2 = −31.0 tCO2. 
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Figure 4.1b. An example of a ‘system’ and its associated ‘system boundary’ (thick black 

line). The system consists of a 1 hectare stand of trees and the wood harvested from the 

stand. 

 

 

 

Figure 4.1c. An example of a ‘system’ and its associated ‘system boundary’ (thick black 

line). The system consists of a 1 hectare stand of trees, the wood harvested from the 

stand and the activities of machines involved in forest management operations.  
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In the final example shown in Figure 41c, the system boundary also encloses the 

machinery and fossil energy sources used or consumed in forest operations (i.e. as part 

of management of the forest stand). During the 10 year period under consideration, 0.2 

tCO2 are emitted by machines carrying out management operations in the forest stand. 

An allowance may also be made for the CO2 emissions arising from the manufacture and 

maintenance of the machines. However, this will not be the full amount, since the 

machines will be used in many areas of forest, not just this one, and will generally be in 

operation before and/or after the 10 year period encompassed by the system boundary 

considered in these examples. Counting some of the emissions due to machine 

manufacture and maintenance adds a further 0.001 tCO2 in this example. Overall CO2 

emissions for the system boundary in Figure 4.1c are calculated as: 

−36.7 tCO2 + 4.8 tCO2 + 0.9 tCO2 + 0.2 tCO2 + 0.001 tCO2 = −30.799 tCO2. 

The examples in Figures 4.1a to 4.1c demonstrate how, for essentially the same subject, 

relatively small and simple variations in system definition and the delineation of the 

system boundary used in LCA calculations can lead to different results for the GHG 

emissions associated with the system. Yet, none of these calculations are intrinsically 

‘right’ or ‘wrong’. Crucially, each of these choices may be correct, depending on the goal 

and scope of the LCA study: 

 The system and system boundary in Figure 4.1a might be the right one to choose 

when monitoring the management of a forest stand in some circumstances, e.g. to 

show that management is consistent with the principle of sustainable yield (see 

Section 2.3). 

 A system boundary similar to that shown in Figure 4.1b is actually in use for 

calculating GHG emissions from forests and associated harvested wood products as 

part of the reporting of national GHG emissions inventories for the Land Use, Land-Use 

Change and Forestry Sector in accordance with international commitments to the 

United Nations Framework Convention of Climate Change (UNFCCC, 1992). 

 A systems boundary similar to that shown in Figure 4.1c may be appropriate when 

estimating a GHG emissions factor for the production of raw harvested wood. 

It should also be noted that different temporal system boundaries are appropriate in each 

of the examples in Figures 4.1a to 4.1c, specifically: 

 The monitoring of sustainable yield might be based on a 10 year period, depending on 

the detailed context. However, the longer term pattern over successive 10 year 

periods would need to be considered when making judgements about whether 

management is sustainable. 

 Reporting of GHG emissions as part of national GHG inventories involves a 1 year 

period, with inventories reported annually. 

 It may be appropriate for a GHG emissions factor for raw wood production to be 

calculated over a period encompassing one or more complete ‘forest management 

cycles’ (see Section 2.3). 
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Clearly, results for GHG balances will be sensitive to the choice of temporal system 

boundary. 

It is worth pausing to reflect on the conclusions of the preceding discussion. So far, the 

two main approaches to LCA (attributional and consequential) have been reviewed, and 

the most basic element of LCA methodology has been considered, i.e. the definition of 

the system being studied and the choice of system boundary. Yet it is evident already 

that there is no ‘single’ answer to an LCA for a given subject, rather, the result can 

depend strongly on the way in which the system is defined and in particular on the 

system boundary selected. This is just one basic aspect of LCA methodology and, as 

described in the rest of this section, other aspects of LCA methodology may also vary and 

can strongly influence the result ultimately obtained. As a consequence, it is very easy 

for different LCA studies to generate a variety of results, sometimes apparently in 

conflict. With a system as sophisticated as the production and consumption of forest 

bioenergy (with many possible original sources of wood and process chain steps, see 

Sections 2 and 3), it is, therefore, unsurprising that results for GHG emissions exhibit a 

big range which may appear confusing and sometimes contradictory. However, as 

already stressed in the preceding discussion, the critical issue is to be clear about the 

goal of the particular LCA study being undertaken, i.e. the research question being 

addressed, and to interpret results for LCA in this context. 

Figures 4.1a to 4.1c also illustrate another essential concept in LCA, that of ‘system 

boundary expansion’. This principle sounds potentially quite complex. In fact, it means 

simply that the system boundary in an LCA study needs to be drawn as wide as 

necessary (and no wider), in order to encompass all of the activities and processes 

relevant to addressing the research question that has been posed. A further example of 

system boundary expansion, of particular relevance to consequential LCA, is discussed in 

Section 4.5.4. 

4.5. Robust definitions for GHG emissions 

So far in this report, GHG emissions have been referred to in a general sense or with 

relevance given by a specific context. However, at this point in the discussion, it is 

necessary to define certain metrics for GHG emissions clearly and rigorously. These 

different metrics for GHG emissions serve different purposes and/or represent different 

quantities, so it is important to apply the correct approaches when estimating and 

reporting GHG emissions. It is equally important to be clear about which types of GHG 

emissions are being referred to (for example, when presenting or commenting on results 

for forest bioenergy). It should also be noted that there is no standard and widely 

accepted terminology for referring to and reporting GHG emissions. Indeed, this appears 

to be one of the causes of confusion and disagreement in the literature of GHG emissions 

associated with forest bioenergy. However, as stressed in the glossary of this report 

(Appendix 1), it is not the intention of this report to impose strict definitions on the 

scientific literature, either retrospectively or for the future. Instead, the report proposes 
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definitions for key terms, such as types of GHG emissions, for consistent use 

subsequently in this report and wider project. Where appropriate in this report, attention 

may be drawn to discrepancies or inconsistencies in the application of terminology in the 

wider literature.  

The key types of GHG emissions requiring clear and robust definitions are: 

 Direct and indirect GHG emissions (see Section 4.5.1) 

 Absolute GHG emissions (see Section 4.5.2) 

 Attributed GHG emissions (see Section 4.5.3) 

 Consequential GHG emissions (see Section 4.5.4). 

4.5.1. Direct and indirect GHG emissions 

The terms ‘direct GHG emissions’ and ‘indirect GHG emissions’ are not of central 

importance to this project, but it is important to understand how these terms are used in 

this project, because the term ‘indirect GHG emissions’ has been referred to explicitly in 

the specification of project Tasks (specifically Task 4). It may also be important to 

understand the variety of meanings these terms may have in the scientific literature. 

‘Direct GHG emissions’ is a term which has been used variously to refer to: 

 GHG emissions directly due to the use (i.e. combustion) of an energy source, e.g. 

coal, oil, natural gas or biomass. 

 GHG emissions that occur in a specific part of an activity or process that is under 

consideration, e.g. when considering a specific forest operation, the GHG emissions 

due to consumption of fossil fuels in machinery carrying out the forest operation. 

 Possibly, the sum of the quantities described in the previous two points (where 

relevant). 

‘Indirect GHG emissions’ is a term that has been used variously to refer to: 

 GHG emissions that occur as part of the provisioning and processing of an energy 

source, such as coal, oil, natural gas, biomass or electricity (i.e. the construction, 

maintenance and operation of the infrastructure and associated activities and 

processes involved in the supply and use of an energy source). 

 GHG emissions from wider activities or processes, ‘connected to’ a specific part of an 

activity or process that is under consideration, e.g. when considering a specific forest 

operation, the GHG emissions associated with the construction and maintenance of the 

machinery carrying out the forest operation. 

 GHG emissions that are not themselves GHGs, but which may be precursors of 

atmospheric GHGs, e.g. carbon monoxide, which can be a precursor of carbon dioxide. 

 GHG emissions associated with bioenergy use due to the effects of indirect land use 

change. 

It should be noticed that the lists of possible meanings for the terms given above are not 

exhaustive (for example, Repo et al., 2011, 2012, have used the term, ‘indirect GHG 

emissions’ to mean the CO2 emissions resulting from the combustion of forest harvesting 
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residues, compared with the CO2 emissions that would occur if the harvesting residues 

were left to decompose naturally in the forest). 

The diversity of possible meanings described above is a clear example of the potential for 

confusion when considering published statements on GHG emissions associated with the 

use of forest bioenergy. 

For the purposes of this project (which are quite specific), the following definitions are 

adopted for direct GHG emissions and indirect GHG emissions: 

 Direct GHG emissions are those GHG emissions directly due to the use of an energy 

source, e.g. coal, oil, natural gas or biomass, or, GHG emissions due to the 

consumption of these energy sources, as implied by the consumption of electricity. In 

the case of a forest bioenergy source, essentially these are the GHG emissions directly 

due to the consumption and ultimate combustion of biogenic carbon to generate useful 

energy. 

 Indirect GHG emissions are those GHG emissions from wider activities or processes, 

‘connected to’ a specific part of an activity or process that is under consideration. In 

the specific case of a forest bioenergy source, essentially these are the GHG emissions 

that occur as part of the provisioning and processing of the forest bioenergy source 

(i.e. the construction, maintenance and operation of the infrastructure and associated 

activities and processes involved in the supply and use of the forest bioenergy 

source). It does not include direct GHG emissions as defined above. 

It should be noted that it is possible for the terms direct GHG emissions and indirect GHG 

emissions to be used, as appropriate, in association with the terms ‘absolute GHG 

emissions’, ‘attributed GHG emissions’ and ‘consequential GHG emissions’, which are 

defined in Sections 4.5.2, 4.5.3 and 4.5.4 respectively. 

4.5.2. Absolute GHG emissions 

Absolute GHG emissions can be defined as the total GHG emissions occurring in 

association with a clearly defined activity. In this context, an activity is considered to be 

‘clearly defined’ if the system has been defined and the system boundary has been 

delineated as described in Section 4.4. In addition, the system and its boundary need to 

be consistent with an unambiguously stated goal for the LCA study. Absolute GHG 

emissions are calculated as the sum of all GHG emissions crossing a system boundary, as 

described in Section 4.4. The examples in Figures 4.1a to 4.1c all illustrate the 

calculation of absolute GHG emissions. It must be stressed that, strictly, calculations of 

absolute GHG emissions are not made in comparison with some other possible activity 

and do not involve calculating GHG emissions compared with any sort of 

reference/baseline value or reference/baseline projection for GHG emissions (indeed, it 

would be physically and numerically incorrect to do so). 
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4.5.3. Attributed GHG emissions 

For the purposes of this report and wider project, attributed GHG emissions are defined 

to distinguish them from absolute GHG emissions and consequential GHG emissions (see 

Sections 4.5.2 and 4.5.4), which are of principal relevance for this project. Attributed 

GHG emissions are defined as GHG emissions calculated and reported as part of an 

attributional LCA study. In practice, attributed GHG emissions may be calculated in a 

similar way to absolute GHG emissions, but may involve certain elaborations that can 

have a significant effect on results. In particular: 

 Comparison may be made with reference/baseline values or reference/baseline 

projections for GHG emissions in some calculations, e.g. particularly relation to land 

use. 

 Results for GHG emissions may be ‘attributed’ to a single product or service, or may 

be allocated amongst two or more co-products or services (depending on the details of 

the system being studied). 

The details of such calculation procedures will depend strongly on the context of the 

attributional LCA study, i.e. its specific goal and scope. 

Results for attributed GHG emissions are of very limited relevance to the objectives of 

this project, and further discussion of this subject is beyond the scope of this report. The 

important points here are that: 

 Such results are unsuitable as a basis of “a qualitative and quantitative assessment of 

the [changes in] direct and indirect greenhouse gas (GHG) emissions associated with 

different types of solid and gaseous biomass used in electricity and heating/cooling in 

the EU [as a result of the changes in activities implied] under a number of scenarios”, 

as required for this project (see Section 1). 

 Results for attributed GHG emissions can vary significantly, depending on the 

objective of individual attributional LCA studies and associated calculation procedures. 

This represents an important source of apparent variation of results presented in the 

scientific literature for GHG emissions associated with the use of forest bioenergy. 

4.5.4. Consequential GHG emissions 

Consequential GHG emissions can be defined as the total change in GHG emissions that 

occurs (or would occur) as a consequence of a change (or possible/proposed change) to 

an existing activity. As such, consequential GHG emissions are typically calculated and 

reported as part of a consequential LCA study. An example of the calculation of 

consequential GHG emissions is given in Figures 4.2a to 4.2c. These figures illustrate the 

approach to system definition, system boundary delineation (and expansion), and GHG 

emissions calculation, appropriate to address the research question: 

Q1. “What would be the consequences for GHG emissions, over a ten year period, 

of carrying out a thinning operation in a 1 hectare stand of trees, where, 

previously, no such thinning operation was planned?” 
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As with earlier examples in this section, for the sake of simplicity, only CO2 emissions are 

considered (i.e. there is no consideration of non-CO2 GHGs such as methane and nitrous 

oxide). 

Figure 4.2a shows how initially the system is defined simply as consisting of the 1 

hectare forest stand as it currently exists, and as it would develop over the specified 10 

year period if the proposed thinning operation were not to be carried out. The system 

boundary is drawn, equally simply, around the 1 hectare forest stand. 

The continued growth of the trees over the 10 year period results in the sequestration of 

36.7 tCO2 in the forest stand, as already described in the example in Figure 4.1a. Unlike 

the example in Figure 4.1a, there is no thinning and so no losses of CO2 from the system 

due to the harvesting of wood. Equally, there are no CO2 emissions due to the decay of 

harvesting residues over the 10 year period. 

The absolute CO2 emissions (see Section 4.5.2) for the system shown in Figure 4.2a over  

the specified 10 year period are thus −36.7 tCO2 (net sequestration). 

 

Figure 4.2a. An example of a system and its system boundary (thick black line). The 

system consists of a 1 hectare stand of trees, which is not subject to any harvesting 

(thinning or felling).  

Figure 4.2b shows the system as it would exist over the 10 year period if the proposed 

thinning operation were to be carried out. This is an elaboration of Figure 4.1c (Section 

4.4), showing how the raw harvested wood is converted into finished wood products, and 
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also showing the wood processing facilities involved in the manufacture and utilisation of 

the finished products. As discussed in Sections 2.3 and 2.5, patterns of wood processing 

and utilisation can be quite complex, involving various processing stages, the generation 

of a number of co-products and a chain of flows of raw harvested wood and recycled 

wood. A simple case is illustrated in Figure 4.2b, with the raw harvested wood being used 

to manufacture two finished wood (co-)products, ‘A’ and ‘B’. It is not important for this 

example to specify the exact natures of products A and B, but product A might be taken 

to be some sort of bioenergy feedstock, whereas product B might be taken to be some 

sort of structural timber product. 

 

Figure 4.2b. An example of a system and its system boundary (thick black line). The 

system consists of a 1 hectare stand of trees, which is subject to a thinning operation. 

The raw harvested wood is processed to make two finished co-products. 

Over the specified 10 year period, the processing facilities involved in the manufacture of 

finished products A and B (including the power station which burns the forest bioenergy 

product A to produce useful energy), consume fossil fuels and other resources. This 

results in CO2 emissions of 3.2 tCO2. As with the case of machinery involved in forest 

operations in the example in Figure 4.1c (Section 4.4), an allowance is made for CO2 

emissions associated with the construction and maintenance of these wood processing 

facilities which, in the example in Figure 4.2b, is 0.3 tCO2 for the 10 year period. The 

loss, decay or (in the case of product A) burning of finished wood products results in CO2 

emissions of 5.0 tCO2 over the specified 10 year period. (This is higher than the 

equivalent value of 0.9 tCO2 given in the example in Figure 4.1c, Section 4.4. In that 

example, all of the raw harvested wood was assumed to be converted into solid wood 

products, generally with lifespans longer than the 10 year period considered in the 

examples in this section.) 
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Based on Figure 4.2b, the absolute CO2 emissions (see Section 4.5.2) for the system 

representing the change in activity proposed in the stated research question are 

calculated as 

−36.7 + 4.8 + 5.0 + 0.2 + 0.001 + 3.2 + 0.3 = −23.199 tCO2 

It is important to observe that, in Figure 4.2b, the system boundary has been expanded 

(e.g. compared with Figure 4.2a, or Figures 4.1b and 4.1c) to ensure that all the 

processes and flows associated with the changed activity are included within the system 

boundary, so that the CO2 emissions associated with the changed activity are fully 

captured in calculations. 

It is also necessary to expand the original system boundary in Figure 4.2a. This is 

needed to ensure that all the processes and flows that would take place in the absence of 

the change in activity are included within the system boundary, and that associated CO2 

emissions are completely captured in calculations. The system boundary needs to ensure 

that the system representing ‘no change in existing activity’ is directly comparable with 

the changed system of Figure 4.2b. An equivalent system and associated system 

boundary for the ‘no change in existing activity’ case is shown in Figure 4.2c. 

Essentially, the original system boundary of Figure 4.2a has been expanded to 

encompass the ‘counterfactual’ goods and services. These are the activities and 

processes involved in providing the goods and services that would otherwise be provided 

by products A and B in Figure 4.2b if the change in activity proposed in the original 

research question were to occur (see Section 3.8). For this simple example, it is assumed 

that if the change in activity were to take place, products A and B would be consumed in 

place of alternatives produced from resources other than wood, i.e., products A and B 

would ‘displace’ the production and consumption of these non-wood products. The forest 

bioenergy product A might displace the production and consumption of fossil fuel for 

power generation, whilst the structural wood product B might displace the production and 

consumption of an equivalent steel or concrete product (for example). 

As in Figure 4.2a, the continued growth of the trees over the 10 year period results in the 

sequestration of 36.7 tCO2 in the forest stand. Additionally, the manufacture of the 

structural non-wood product B has associated CO2 emissions of 17.0 tCO2. The 

processing and burning of fossil fuel to produce useful energy (equivalent to what would 

be generated from product A) results in CO2 emissions of 4.8 tCO2. Similarly to the 

system in Figure 4.2b, an allowance is made for CO2 emissions of 0.3 tCO2, representing 

the emissions due to the construction and maintenance of the factories and power 

stations involved in the manufacture and processing and/or conversion of the alternative 

products A and B. 
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Figure 4.2c. An example of a system and its system boundary (thick black line). The 

system consists of a 1 hectare stand of trees, which is not subject to any harvesting 

(thinning or felling). Compared to Figure 4.2a, the system boundary has been expanded 

to include the ‘counterfactuals’ to the wood products A and B, produced by the system 

shown in Figure 4.2b.  

 

Based on Figure 4.2c, the absolute CO2 emissions (see Section 4.5.2) for the system 

representing no change in activity are calculated as: 

−36.7 + 4.8 + 17.0 + 0.3 = −14.6 tCO2 

As defined at the outset of this discussion, consequential GHG emissions (in this example 

CO2 emissions) are calculated as the difference between the two results for absolute GHG 

emissions obtained above, i.e. the consequential GHG emissions over the specified 10 

year period for the change in activity considered in Figure 4.2b, with respect to ‘no 

change’ (Figure 4.2c), are calculated as: 

−23.199 − (−14.6) =  −8.599 tCO2 

The negative sign on this result indicates that the change in activity results in an overall 

reduction in CO2 emissions to the atmosphere over the specified 10 year period. (A 

positive sign would indicate a net increase in CO2 emissions due to the change in 

activity). 

4.6. Scenarios in consequential LCA 

As outlined in Sections 4.3 and 4.5.4, consequential LCA involves the estimation of GHG 

emissions for a specified change to an activity, or set of activities, in comparison with the 

case in which the specified change in activity does not take place. These two cases or 
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situations, real or possible, and the associated system descriptions, may be referred to 

as scenarios.  

Different scenarios can be given different names or labels for convenience, reflecting the 

cases or situations they are intended to represent. For example, a scenario which 

describes the changes to a system that may take place if a proposed policy is 

implemented might be referred to as a ‘policy scenario’. Most importantly, the scenario 

representing the existing situation, or ‘no change’, against which any scenario (or set of 

scenarios) involving changes is compared, may be variously referred to in the scientific 

literature as the ‘baseline’ scenario, ‘reference’ scenario or ‘counterfactual’ scenario. 

Hereafter in this report and wider project, the term ‘baseline’ is used to refer to this 

scenario. 

For each scenario, it is necessary to describe ‘what the world looks like’ if the scenario 

were to be realised. This description takes the form of an appropriate definition of a 

system and its associated system boundary, as already illustrated in Sections 4.4 and 

4.5.4. Although the examples in these sections show quite simply how such systems can 

be defined, and how associated GHG emissions may be calculated, it must be noted that, 

in some circumstances, some aspects of these descriptions can be challenging and 

uncertain. In particular, there may be uncertainties relating to the definition of the 

baseline scenario. To illustrate, considering the relatively simple examples of a 

consequential LCA study shown in Figures 4.2b and 4.2c, the definition of the baseline 

scenario in Figure 4.2c requires assumptions to be made about ‘what the world would 

look like’ if the changes in activities proposed in Figure 4.2b do not in fact take place. To 

reflect this, the baseline scenario (Figure 4.2c) includes assumptions about ‘what would 

happen’ if the harvested wood products A and B were not to be produced. As explained in 

Section 4.5.4, this is treated quite simply in Figure 4.2c, by assuming that the availability 

of products A and B would ‘displace’ existing use of fossil fuels and a structural product 

manufactured from non-wood materials. Thus, the assumption is made that, if the 

change in activity (the thinning operation in the stand of trees) were not carried out, it 

would be necessary to continue to consume certain fossil fuels and non-wood materials. 

Such assumptions about the types of resources, products and/or services consumed in 

the baseline scenario may be referred to as ‘counterfactual’ resources, products or 

services or, more simply, as ‘counterfactuals’ (see Section 3.8). 

It must be stressed that the identification and definition of appropriate counterfactual 

resources, products and/or services as part of the baseline description are based on a set 

of assumptions. Clearly, such assumptions may by highly uncertain in some 

circumstances. In this example (Figures 4.2b and 4.2c), the harvested wood products 

may not displace fossil fuel and non-wood materials as identified in the baseline scenario. 

Even if it is reasonable to assume that fossil fuels and non-wood materials represent 

realistic counterfactual products, there may still be uncertainties over the precise types of 

fossil fuel source and non-wood materials providing the counterfactual resources, 



Biogenic Carbon  

and Forest Bioenergy 

114    |    Final report on Task 1    |    Robert Matthews   |    15th May 2014 

products and/or services. There may also be uncertainties involved in assumptions about 

the processes involved in their manufacture and/or conversion. 

Potentially, significant uncertainties may also be introduced when considering how 

scenarios might develop in the long term. For example, under current conditions, there 

might be reasonable certainty in identifying an appropriate fossil energy source as a 

counterfactual product for a particular type of forest bioenergy. However, generally this 

will become increasingly uncertain in ensuing decades, because various sources of 

energy will become more or less available over time, whilst the utilisation of the forest 

bioenergy will most likely cause shifts in the mix of energy sources used to meet future 

needs. 

Another phenomenon which can become very important in scenarios covering long time 

scales is the disposal of finished wood products at end of life (this is also true for 

counterfactual products). Whilst some material wood products may only remain in 

primary use for a few years (e.g. paper, packaging), many form parts of structures that 

can last up to 30 or more years (e.g. fence posts, furniture), or even potentially 100 

years or longer (structural timber in buildings). When wood products (or their 

counterfactuals) come to the end of their life in primary use, a decision has to be taken 

as to what to do with the material forming the product, i.e. recycle it, burn it (in the case 

of wood, potentially generating energy in the process) or dispose of the material, e.g. to 

landfill (see Figure 2.7, Section 2.5). Results generated by Matthews et al. (2014) have 

shown that the GHG emissions associated with the treatment of wood and other 

materials at end of life can be extremely sensitive to such decisions (see for example 

Figure 5.12 in Matthews et al., 2014). When developing scenarios for forest management 

and wood utilisation, assumptions about how materials are treated at end of life may be 

reasonably certain when considering current practice, but are likely to be more 

speculative when considering longer time scales. 

Given the significant potential for uncertainties, it is very important that transparency is 

ensured regarding any assumptions in scenarios about the use and long-term fate of 

wood products, and about counterfactual resources, products and services. Where 

necessary, the sensitivity of final results for consequential GHG emissions to these 

assumptions should be explored as part of LCA calculations. 

4.7. Selection of temporal system boundary (time horizon) for LCA 

calculations 

The importance in LCA studies of determining a suitable temporal system dimension (or 

‘time horizon’) as an integral part of a system boundary (in addition to the spatial 

element) has been referred to at several points in the preceding discussion (see Sections 

4.3, 4.4 and 4.5.4). Essentially, the same principles apply when selecting a time horizon 

as for the spatial system boundary, i.e. the time horizon needs to be appropriate for 

addressing the research question being posed. In consequential LCA, a relevant starting 

point for the time horizon is generally the time at which the change or changes in 
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activities or processes are being made (or would be made). The finish point of a time 

horizon will tend to be very specific to the context of the research question. For example, 

in policy analysis, there may be a desire for a possible policy to achieve certain results or 

outcomes by a certain target year, or after a specified number of years. Such target 

years or periods translate immediately for the purposes of setting the end point to an 

LCA time horizon. Even then, there may be interest in understanding the longer term 

implications of changes made to meet shorter term targets. In this project, several 

temporal system boundaries have been specified at the point of project inception 

namely: 

 From present up to a target year of 2030 

 From present up to a target year of 2050 

 From 2020 with time horizons of 20, 50 and 100 years. 

More generally, it is important to recognise that the choice of temporal system boundary 

can have a big influence on the final results of an LCA study, just as for the spatial 

system boundary. This represents another potentially important source of variation in 

results of LCA studies of GHG emissions associated with the production and use of forest 

bioenergy. 

4.8. Selection of a functional unit for LCA calculations 

An important step in LCA closely related to system definition and system boundary 

delineation involves identifying an appropriate functional unit.  The importance of this is 

explained in the relevant standard for LCA (ISO 14040:2006) where it is mainly 

considered in terms of establishing a common function for the systems, products or 

services under analysis, so that LCA results can be compared in a meaningful manner.  

The role of the functional unit is elaborated further in the ILCD Handbook (JRC, 2010). 

The results of an LCA study, such as GHG emissions, are expressed with respect to the 

functional unit. As with system definition and system boundary delineation, the selection 

of an appropriate functional unit for calculating results should derive from the goal of the 

specific LCA study and the research question being posed. 

Taking the example in Figure 4.1c (Section 4.4), the functional unit could be selected to 

be the whole forest stand, giving the result for CO2 emissions already presented in 

Section 4.4, i.e. −30.799 tCO2. Alternatively, the functional unit could be taken as 1 

hectare of the forest stand, giving the results in units of tCO2 ha-1. (Since the stand is, in 

fact, 1 hectare in area in this example, the result is numerically the same as for the 

whole stand.) Another possibility in this example is to express the CO2 emissions with 

respect to a cubic metre of raw harvested wood produced by the system. In Figure 4.1c, 

over the 10 year period considered, suppose 14 m3 of raw harvested wood are produced 

from the forest stand. The CO2 emissions can be expressed per cubic metre of raw wood 

produced by calculating: 

−30.799 / 14 = −2.2 tCO2 m
−3, or −2200 kgCO2 m

−3 
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Other possible functional units are an oven dry tonne or kilogram of raw harvested wood, 

or a tonne or kilogram of carbon contained in raw harvested wood. More generally, in 

principle, almost anything can be selected as a functional unit, as long as it relates to the 

system under study, e.g. a kilogram of product manufactured, a whole factory (giving 

results ‘per factory’), the whole of a commercial company or even a whole country, or 

the complete global vegetation system. A key point is that reference to a functional unit 

makes it possible to make comparisons that are valid, because results are reported on a 

consistent basis. It may also be noted that there can be distinct advantages in selecting a 

functional unit that is related to the useful output or service provided by the system. For 

example, suppose a power station emits CO2 emissions of 600 tCO2 while operating over 

a single year, and the following year it emits 550 tCO2. From the perspective of the 

functional unit of the power station, CO2 emissions have dropped from the first year to 

the next. However, suppose that the power station also generated less electricity in the 

second year, e.g. perhaps 750 GWh in the first year and 680 GWh in the following year. 

If the electricity generated by the power station is chosen as the functional unit, the 

results are: 

(600 / 750) x 106 = 800 gCO2 MWh−1 for the first year, and 

(550 / 680) x 106 = 809 gCO2 MWh−1 for the following year 

Thus, although it is still the case that the total CO2 emissions for the power station have 

reduced from the first year to the next, this is seen to be associated with a drop in 

output, and a slight drop in efficiency. 

4.9. Representation of timing and impacts of GHG emissions 

The discussion in this section has included a number of examples of the calculation of 

GHG emissions for defined systems, generally involving a 10 year temporal system 

boundary or time horizon. As explained in Section 4.7, time horizons can be quite short, 

but often can involve periods of many decades, depending on the goal of a particular LCA 

study. In the examples in Sections 4.4 and 4.5, GHG emissions have been calculated 

very simply as the total GHG emissions occurring during the specified time horizon of 10 

years. This way of expressing GHG emissions over a time horizon is often used in LCA 

studies, and such results can be referred to as cumulative GHG emissions for a specified 

time horizon. Typically, cumulative GHG emissions have units of tCO2, ktCO2, MtCO2, or 

similar. Any of the previously introduced results for GHG emissions (absolute, attributed 

and consequential) can be expressed on such a cumulative basis. However, the main 

reason for using this approach in the examples included in this section has been for the 

sake of simplicity. More generally, LCA studies may handle the timing of GHG emissions 

relatively simply (similar to the approach in this section) or with considerable 

sophistication. 

Another straightforward way of calculating and reporting GHG emissions over time is to 

express them as a sequence of annual estimates. This approach can be useful, e.g. for 
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showing trends or fluctuations, but may also make the display and interpretation of 

results unwieldy. A simple alternative to cumulative GHG emissions is to report 

annualised GHG emissions. These are calculated simply by dividing results for cumulative 

GHG emissions by the time horizon, giving results typically in units of tCO2 yr−1, ktCO2 

yr−1, MtCO2 yr−1, or similar. 

Representing the detailed timing of GHG emissions in results of LCA studies can be 

important. Trends or fluctuations in GHG emissions may provide insights into variable 

impacts of an activity (or change in activity) over time. The timing of GHG emissions can 

also be important in terms of the resultant impacts on atmospheric warming. In some 

LCA studies, trajectories of GHG emissions are processed to obtain results in terms of 

warming potentials, reflecting an ultimate aim behind many LCA studies of efforts to limit 

anthropogenic climate change. 

The diversity of approaches adopted in the scientific literature to presenting the ultimate 

results for LCA studies of forest bioenergy can make it difficult to compare published 

studies and understand any differences. From the perspective of this current project, it is 

important to adopt approaches to the handling of the timing of GHG emissions that are 

consistent with the broad project objectives. Insights may be gained by reviewing the 

various indices developed and used in the scientific literature, as explored in Section 5.2 

and Appendix 3 of this report. 

4.10. Reference to a baseline in LCA calculations 

The potential relevance of baseline levels and projections to the calculation of attributed 

GHG emissions was touched on in Section 4.5.3. The ensuing discussion is concerned 

with this possible role of baselines, primarily in the application of attributional LCA. 

However, it is very important to reiterate that, as established in Section 4.3, 

consequential LCA is identified as the appropriate tool to use for the purposes of this 

project. The essential contribution made by a baseline scenario in the calculation of 

consequential GHG emissions has been described in Sections 4.5.4 and 4.6. A discussion 

of baselines with regard to attributional LCA has been included here because this is an 

important area of current and ongoing controversy. Furthermore, the adoption of 

different baselines in calculations of attributional GHG emissions represents a major 

cause of apparent disagreement in published results for the GHG emissions associated 

with forest bioenergy. An understanding of this issue is, therefore, very important for the 

interpretation of results for the GHG emissions of forest bioenergy reported in the 

scientific literature. 

The preceding discussion in this section has stressed the importance of establishing a 

clear goal and scope for an LCA study. Such a position is also taken in relevant ISO 

standards for LCA (ISO 14040, 14044). The goal and scope are important for clearly 

identifying the reasons for carrying out an LCA study. ISO 14040 and 14044 emphasise 

that important aspects of goal and scope determination include definition of the system, 

delineation of the system boundary, selection of a functional unit, and adopting a 
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systematic approach to the interpretation of results that is consistent with the stated 

goal. However, the ISO standards do not mention the application of baselines at all, thus 

leaving this subject as an open issue to be specified as part of the goal and scope 

definition in LCA studies. 

Whilst the significance and approach to specification of baseline scenarios is very clear 

when applying consequential LCA, unfortunately, this is not the case for attributional LCA 

studies, particularly in relation to the representation of activities to do with land use. 

More specifically, in attributional LCA, one of the most critical and contentious issues 

concerns the basis for deciding on the appropriateness of referring to a baseline when 

calculating GHG emissions, particularly with regard to land use. Effectively, there are two 

highly contrasting schools of thought on the question of how to select a baseline when 

representing land-use activities in attributional LCA. 

One school of thought considers attributional LCA to be an approach for characterising 

(or ‘attributing’) the actual GHG emissions occurring due to an activity or process (see, 

for example, Brander et al., 2009). This would imply that no baseline (or, otherwise, an 

explicit baseline of zero GHG emissions) is adopted when calculating GHG emissions. 

Such an approach gives results which are identical to absolute GHG emissions as defined 

in Sections 4.4 and 4.5.2, and illustrated in Figure 4.1a to 4.1c. (The results in Figure 

4.2a to 4.2c also illustrate the calculation of absolute GHG emissions when considered 

individually; it is only when results are compared with one another that results for 

consequential GHG emissions are obtained; see Section 4.5.4.) In a fundamental sense, 

the ‘zero baseline’ approach can be viewed as completely consistent with some of the 

founding principles of LCA methodology. In effect, it upholds the principle that, for a GHG 

emission to ‘count towards’ a defined system, activity or process, the GHG emission must 

actually cross the system boundary (see discussion in Sections 4.4 and 4.5.2). 

The other school of thought is based on a number of observations, specifically with 

regard to land use. The choice of baseline can be crucial for biomass and bioenergy 

systems because of the tight connection to land use and the dynamic nature of land-

based carbon stocks (see Section 3 of this report). This second school of thought 

recognises that all land under human management has been perturbed from an initial 

state in which it was free from human intervention (e.g. a completely unmanaged 

forest), to the type of land use under consideration (e.g. a forest under management for 

production of wood). Such perturbations (referred to by some authors as ‘land 

occupation’) have a strong tendency to interfere with the natural development of land-

based vegetation systems. It is argued that, unperturbed, this vegetation would adapt so 

as to optimise the ecological capacity of the land (e.g. to support vegetation growth and 

stocks of biomass and carbon). The human interventions generally result in the sub-

optimal utilisation of the ecological capacity of the land (Muys, 2002), for example, by 

causing carbon stocks to be reduced to lower levels than would be the case in the 

absence of human intervention (see Section 3.11). Apart from ‘land occupation’, humans 

may also make changes to the existing management of land, involving land-use change, 
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such as when an area of pasture is converted to a managed forest by planting trees. 

Some authors refer to such activities as ‘land transformation’. 

A number of researchers have been considering how to represent land-use activities 

involving ‘land occupation’ or ‘land transformation’ as part of LCA methodology (Lindeijer 

et al., 2002; Milà i Canals et al., 2007a; Koellner et al., 2013). The UNEP/SETAC Life 

Cycle Initiative project has proposed that land use impacts in LCA should be assessed as 

proportional to the difference in the ‘quality’ associated with the activity or process being 

assessed, and a reference case (Milà i Canals et al., 2007b; Koellner et al. 2013). 

Building on these ideas, Milà i Canals et al. (2007b), JRC-IES (2010) and Helin et al. 

(2012) have suggested that reference should be made to a baseline of ‘no use’ when 

making assessments of land-use activities. Milà i Canals et al. (2007b) suggested that, 

when applying attributional LCA, the appropriate baseline for land use should represent a 

‘state of natural relaxation’ (i.e. the reversion of the land and vegetation growing on it to 

an unmanaged state, free from human intervention). Koellner et al. (2013) advocate a 

similar approach, proposing the use of ‘(quasi-) natural land cover’ as a baseline when 

assessing the impacts of land use at a global scale. These various ideas are all consistent 

with the view that, when assessing GHG emissions associated with forest bioenergy, 

comparison should be made with a scenario in which harvesting in relevant forest areas 

is suspended to allow addition forest carbon stocks to be sequestered (see Section 3.11). 

The implications of referring to a ‘no-use’ scenario in calculating the attributional GHG 

emissions of forest bioenergy can be illustrated by referring to the example systems and 

calculations already illustrated in Figure 4.2, but within this rather different context. First 

of all, consider the system shown in Figure 4.2b (Section 4.5.4), which describes a 

thinning operation in a 1 hectare stand of trees, and the processing and conversion of the 

harvested wood into two co-products. For the purposes of the current discussion, 

suppose that the thinning operation is carried out as part of the long-existing and 

ongoing management of the stand of trees for wood production (the temporal system 

boundary in the examples in Figures 4.2a to 4.2c is only 10 years, but this is not 

important for illustrating the principles of these calculation methods for GHG emissions). 

The calculation of absolute GHG emissions for this system has already been described in 

Section 4.5.4 (note that, for simplicity, the calculations were for CO2 emissions only), 

with a final result of −23.199 tCO2 being obtained for the 10 year period considered. 

According to the second school of thought, the calculation of attributed GHG emissions 

for this system requires this result to be compared with a baseline scenario of ‘no use’ 

(i.e. no thinning operation), which, for this example, can be taken to be illustrated in 

Figure 4.2a. Absolute GHG emissions for the system shown in Figure 4.2a are −36.7 tCO2 

(see Section 4.5.4). Thus, attributed GHG emissions for the example system in Figure 

4.2b would be calculated as16: 

                                       
16

 It should be noted that, in attributional LCA, these overall GHG emissions would also need to be 

allocated as appropriate to the two co-products. However, this is not relevant to the current 
discussion and is not considered here. 
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−23.199 −(−36.7) = +13.501 tCO2 

This result for attributed GHG emissions, suggesting net GHG emissions to the 

atmosphere, is drastically different to the result for absolute GHG emissions of −23.199 

tCO2 (suggesting net sequestration). Such disagreement in results, as illustrated by the 

preceding example, and the contentions and controversy surrounding the correct 

approach to calculation of attributed GHG emissions, have made a substantial 

contribution, arguably, the substantive contribution, to confusion and uncertainty over 

the GHG emissions associated with the production and use of forest bioenergy. 

The rationale of the second school of thought in requiring the calculation of GHG 

emissions to be made relative to a baseline scenario of ‘no use’ (with regard to land-use) 

might appear strange or might be difficult to understand. For example, it could be viewed 

as contravening the fundamental principle of LCA methodology that requires that GHG 

emissions should be calculated strictly on the basis of flows across the system boundary 

that occur due to the activity (i.e. this should involve consideration of any flows that 

‘could have occurred’, if the activity did not take place). However, it may be possible to 

justify the application of a ‘no use’ baseline in attributional LCA in contexts where the 

objective is to quantify the effects on the environment of an existing system, 

representing an existing activity, in comparison to the situation where the activity does 

not take place. It is certainly possible to understand the thinking of the proponents of 

such an approach by drawing an analogy with the calculation of GHG emissions 

associated with the use of fossil fuels.  

To illustrate, consider a situation in which a certain quantity of fossil fuel, perhaps coal, is 

burnt to produce useful energy, and there is a requirement to calculate the associated 

GHG emissions. First of all, the emissions of the most important GHGs occurring directly 

as a result of burning the coal are calculated. Then, the contribution to GHG emissions 

arising from the provisioning and processing of the coal (i.e. mining, transport and 

processing) are estimated. Finally, emissions directly due to burning the coal and due to 

provisioning of the coal are then added together to give a final result, separately for each 

GHG. 

This may appear to be a very straightforward procedure (and, indeed, it may be in 

reality). However, what may not be so apparent is that this approach to calculation can 

be viewed as being made implicitly in comparison with a ‘no use’ baseline. In other 

words, implicitly, the question is being posed: 

Q2. “What GHG emissions occur as a result of consuming (burning) a given 

quantity of coal to generate useful energy as opposed to not consuming it?” 

In the case of fossil fuels, such interpretations are trivial and no complications arise, 

because the ‘no use’ baseline is coincident with a baseline of zero GHG emissions. 

Crucially, this is not generally the case for bioenergy sources, and is certainly not the 
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case for forest bioenergy. Suppose it is accepted that the calculation of attributed GHG 

emissions for forest bioenergy implicitly involves posing the question: 

Q3. “What GHG emissions occur as a result of consuming a given quantity of forest 

bioenergy as opposed to not consuming it?” 

Clearly it is necessary to consider how carbon stocks in forest areas would develop if the 

bioenergy (or indeed any other products) were not to be harvested. These carbon stock 

changes represent a baseline against which to compare the absolute GHG emissions 

associated with the production and use of the forest bioenergy. However, this does beg 

the further question, is the purpose of such calculations really to address questions such 

as formulated in (Q2) and (Q3)? It may be noticed that in certain contexts the question 

posed in Q3 might imply analysis that is more consistent with the methods of 

consequential LCA rather than attributional LCA.  

The answers and resolutions to all these issues lie in making sure that the goal of any 

LCA study, and therefore the research question being posed, are clearly defined and 

understood, and that the calculation methods are consistent with the stated goal and 

research question. This has been a central argument of the discussion presented in this 

section. One possible resolution might involve adoption of a ‘business as usual’ baseline 

as an alternative to an exclusive application of a ‘zero GHG emissions’ or ‘no use’ 

baseline. It should be noted that, in cases where the introduction of management in 

forest areas previously not under management for production, the ‘business as usual’ 

baseline is the same as the ‘no use’ baseline. In other cases, adoption of a ‘business as 

usual’ baseline would ‘factor out’ naturally occurring trends and cycles in carbon stock 

changes, and distinguish the changes in forest carbon stocks occurring as a result of 

changed activities (e.g. increased or decreased levels of harvesting). 

Settling the debate over appropriate application of baselines in attributional LCA studies 

of forest bioenergy is beyond the scope of this report and, in any case, is not necessary 

as part of meeting the objectives of this project. However, the preceding discussion 

attempts to set out the issues and, in particular, explain the thinking behind the different 

approaches that have been proposed for baseline selection. Following on from this, Table 

4.2 lists a few examples of hypothetical LCA studies and research questions, and 

suggests appropriate options for baselines for each example. There appears to be no 

ambiguity over the selection of baselines in the examples involving application of 

consequential LCA. However, the baselines suggested for cases involving attributional 

LCA may be regarded as speculative and tentative. 
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Table 4.2 Possible examples of LCA studies and suggested baselines for calculation of GHG emissions 

associated with bioenergy sources 

Goal Research question 
Scope (results, 

interpretation) 

LCA 

approach 

Suggested baseline 

(in the case of 

bioenergy sources) 

Strengths (+), 

weaknesses (-) 

and other 

comments (x) 

To assess the effects 

on GHG emissions of 

possible scenarios 

involving increased (or 

decreased) 

consumption of forest 

bioenergy in a country 

(or group of 

countries), also 

involving the 

continuation of 

existing (and possibly 

increased) levels of 

energy consumption. 

What change in GHG 

emissions would occur if 

the consumption of 

forest bioenergy were 

to be increased (or 

decreased) by a 

specified quantity 

relative to current (and 

projected) levels of 

energy consumption? 

Change in GHG 

emissions for the 

country (or group 

of countries). 

 

Results could also 

be expressed with 

respect to a 

functional unit of 

total energy 

consumption for 

the country (or 

group of countries). 

 

The time horizon 

should reflect the 

period over which 

the changes are 

intended to take 

place, and/or the 

period over which 

there is interest in 

achieving impacts 

on climate. 

Consequential. 

GHG emissions that 

should occur for 

current and projected 

future levels of energy 

consumption, including 

contributions due to 

forest bioenergy, in 

the country (or group 

of countries) under a 

‘business as usual’ 

scenario (i.e. ‘no 

change’). 

(+) The baseline 

clearly reflects 

the goal of 

assessing a 

change to 

existing 

activities. 

(-) It may not be 

possible to 

observe or verify 

whether the 

business as usual 

scenario 

represents a 

realistic 

outcome. 

(x) Results will 

be for changes in 

GHG emissions 

that occur due to 

the proposed 

activities, 

compared to no 

change in 

existing 

activities. 

To assess the effects 

on GHG emissions of 

possible scenarios 

involving increased (or 

decreased) 

consumption of forest 

bioenergy in a country 

(or group of 

countries), also 

involving the planned 

decreases in levels of 

energy consumption. 

What change in GHG 

emissions would occur if 

the consumption of 

forest bioenergy were 

to be increased (or 

decreased) by a 

specified quantity 

relative to current (and 

planned/projected 

decreases in) levels of 

energy consumption? 

GHG emissions that 

should occur for 

current and projected 

future levels of energy 

consumption, including 

contributions due to 

forest bioenergy, in 

the country (or group 

of countries) under a 

‘business as usual’ 

scenario (i.e. ‘no 

change’), but which 

includes the planned 

decrease in energy 

consumption. 
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Table 4.2 (continued) Possible examples of LCA studies and suggested baselines for calculation 

of GHG emissions associated with bioenergy sources 

Goal Research question 
Scope (results, 

interpretation) 

LCA 

approach 

Suggested baseline 

(in the case of 

bioenergy sources) 

Strengths (+), 

weaknesses (-) 

and other 

comments (x) 

To provide actors with 

information on actual 

GHG emissions 

occurring under 

‘business as usual’ 

forest management 

and forest bioenergy 

use, for a given 

region and over a 

given period, to 

support efforts to 

achieve lower GHG 

emissions. 

What GHG emissions 

actually occur as a 

result of the existing 

consumption of forest 

bioenergy in a given 

region and over a 

given period, assuming 

existing patterns of 

consumption continue 

into the future? 

Mean absolute GHG 

emissions for a 

specified energy 

source, expressed 

with respect to a 

functional unit of 

delivered 

(consumed) 

energy. 

 

The temporal 

system boundary 

should reflect the 

period specified in 

the goal and 

research question. 

Attributional. 

Zero GHG emissions 

(absolute GHG 

emissions are 

calculated as the sum 

of all GHG emissions 

crossing the system 

boundary, see 

Sections 4.4 and 

4.5.2). 

 

Alternatively, a 

baseline of BAU GHG 

emissions should 

‘factor out’ naturally 

occurring trends and 

cycles in GHG 

sequestration and 

emissions associated 

with forests. This 

baseline would also 

accurately represent 

contributions to GHG 

emissions in cases 

where bioenergy 

production is 

increased, e.g. by 

intensifying harvested 

or increasing forest 

biomass extraction. 

(+) Results should 

be observable and 

verifiable (at least 

in principle). 

(+) Results should 

be suitable for 

‘book-keeping’ or 

‘accounting’ of GHG 

emissions of forest 

bioenergy 

supply/consumption 

chains. 

(-) Does not reflect 

the full implicit 

impacts of the 

system (in that 

comparison is not 

made with the ‘no 

use’ case). 

(x) In the case of 

co-production, 

results for (forest) 

bioenergy are very 

sensitive to the 

allocation method 

applied for GHG 

emissions. 
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Table 4.2 (continued) Possible examples of LCA studies and suggested baselines for calculation 

of GHG emissions associated with bioenergy sources 

Goal Research question 
Scope (results, 

interpretation) 

LCA 

approach 

Suggested baseline 

(in the case of 

bioenergy sources) 

Strengths (+), 

weaknesses (-) 

and other 

comments (x) 

To provide actors with 

information on GHG 

emissions associated 

with consumption of 

different sources of 

energy; to support 

efforts to achieve 

lower GHG emissions. 

What GHG emissions 

occur as a result of 

consuming a given 

quantity of a given 

energy source, as 

opposed to not 

consuming it? 

Mean GHG 

emissions for a 

specified energy 

source, expressed 

with respect to a 

functional unit of 

delivered 

(consumed) 

energy. 

 

The temporal 

spatial boundary 

may be relevant to 

a period in which 

relevant actions are 

supposed to be 

taken, or may be 

based on the full 

life cycle of the 

bioenergy 

system(s)/ 

source(s). 

Attributional. 

GHG emissions that 

would occur under a 

‘no use’ scenario. 

 

Alternatively a baseline 

of BAU GHG emissions 

would accurately 

represent contributions 

to GHG emissions in 

cases where bioenergy 

production is increased 

or decreased. 

(+) Results 

should reflect the 

typical impacts of 

the complete 

(bio)energy 

system. 

(-) The baseline 

may not be 

realistic and/or 

may be uncertain 

(see Sections 

3.11 and 3.12). 

(x) Depending on 

the scope of the 

LCA study, 

consequential 

LCA may be a 

more appropriate 

approach. 

(x) In the case of 

co-production, 

results for 

(forest) 

bioenergy are 

very sensitive to 

the allocation 

method applied 

for GHG 

emissions. 
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4.11. Conclusions on LCA principles and methodology 

As previously with Sections 2 and 3 of this report, it is appropriate to summarise key 

insights from the preceding discussion relevant to the Task objectives (see Section 1.3). 

Objective 1 of the Task is concerned with identifying factors that may lead to sensitivity 

in the GHG emissions associated with forest bioenergy. This subject has been explored 

extensively in Sections 2 and 3. This section is primarily concerned with addressing 

objectives 2 and 3 of this Task, i.e. to inform understanding of the sensitivity of the GHG 

emissions associated with forest bioenergy to calculation methodologies, and to 

characterise a methodology which may be suitable for calculation of GHG emissions 

associated with the use of forest bioenergy relevant to the assessment to be made in this 

project. 

With certain notable exceptions, the principles of LCA are relatively well-established at a 

general level with associated detailed methodologies and standards. However, 

considerable care must be exercised when reviewing and evaluating existing LCA studies, 

because methodologies may be applied with more or less objective and transparent 

reasoning. As already noted, some key details of LCA calculations have not been 

specified definitively. 

An absolutely critical first step in an LCA study involves clear definition of the goal and 

scope and an unambiguous statement of the research question to be addressed. This key 

point, and the various points raised in the preceding discussion, require particular 

attention when reviewing literature on LCA studies of forest bioenergy. Decisions about 

the goal, research question and scope are critical in determining the details of methods 

applied in individual LCA studies, regardless of whether they are labelled as attributional, 

consequential or some other type of LCA approach (Zamagni et al. 2012). These details 

have been discussed to a greater or lesser extent in this section, depending on their 

relevance to this current project. Table 4.3 gives a summary assessment of the key 

aspects of LCA methodology with potentially very high influence on the results of LCA 

studies and, therefore, on the conclusions drawn. The table also suggests approaches for 

some aspects of LCA methodology suitable for adoption as part of the assessment 

required for this project. 

Section 5 of this report presents an analysis of LCA studies in the scientific literature 

concerned with forest bioenergy, and attempts to interpret their results. However, given 

the assessment in Table 4.3, it may already be inferred that results and conclusions of 

LCA studies will be very sensitive to methodological details, and that some studies will be 

more relevant than others for the purposes of this project. 

An absolutely crucial conclusion for this project is that details of LCA methodology need 

to derive directly and demonstrably from the project objectives, and this point must be 

carried forward transparently in the subsequent development of the project. 
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Table 4.3 Summary assessment of key aspects of LCA methodology 

Aspect of LCA methodology Suitable approach for current project 

Adoption of attributional or consequential 

LCA approach. 

This project is concerned with comparing 

GHG emissions that would occur under 

different scenarios for future bioenergy 

consumption. Therefore, consequential LCA 

is the appropriate approach. 

System definition. To be elaborated as part of Tasks 2, 3 and 

4 of this project. System boundary delineation. 

Selection of time horizon. 

Time horizons have already been specified 

for the project at the point of project 

inception, namely: 

 From present up to a target year of 

2030 

 From present up to a target year of 

2050 

 From 2020 with time horizons of 20, 50 

and 100 years. 

Selection of functional unit. 

A suitable functional unit is the EU27 (i.e. 

effects on total GHG emissions in the EU27 

associated with scenarios for bioenergy 

consumption). Another possible functional 

unit would be GHG emissions expressed 

per unit of energy consumed in the EU27. 

Detailed specification and description of 

scenario being studied, under current 

conditions and into the future. 

Addressed as part of Task 2 of this project. 

In consequential LCA, specification and 

description of ‘no change’ baseline 

scenario, under current conditions and into 

the future. Including specification of 

‘counterfactual’ products and/or services 

and associated processes. 

Addressed as part of Task 2 of this project. 

In attributional LCA, decision about 

whether to refer to a baseline scenario of 

some sort (as opposed to a ‘zero GHG 

emissions’ baseline) and, if so, specification 

and description of baseline scenario, under 

current conditions and into the future. 

Not relevant for this project. 

In attributional LCA, the approach to 

allocating GHG emissions (particularly 

those due to biogenic carbon) to co-

products. 

Not relevant for this project. 

Choice of metric or index for presentation 

of ultimate results of LCA study. 

Cumulative or annualised GHG emissions 

for the specified time horizon may be 

suitable. This point is explored further in 

Section 5. 
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4.11.1. Key messages on LCA principles and methodology 

LCA is the appropriate methodology 

LCA is the appropriate methodology for the assessment of GHG emissions associated with 

the consumption of forest bioenergy. There can be challenges in representing 

contributions to GHG emissions due to terrestrial vegetation and its management, but 

this is true regardless of the methodology employed. 

LCA methods and results depend on the goal and scope being addressed 

LCA studies can address quite wide ranging goals, scopes and research questions. The 

specific methodological approaches and detailed calculation methods depend strongly on 

the specific goal, scope and question being addressed. As a consequence, the results of 

different LCA studies can vary considerably and, whilst perfectly valid for the questions 

being addressed, are often not comparable. Particular LCA studies under review may, or 

may not, be relevant, depending on the context. Ultimately, it is always important to be 

very clear about the goal and research question when undertaking an LCA study. 

Consequential LCA is used for assessing GHG impacts of changes in bioenergy 

use 

An approach known as consequential LCA, as opposed to an alternative of attributional 

LCA, should be applied when assessing the impacts on GHG emissions due to increased 

or decreased forest bioenergy. The purposes, modelling principles and methods of 

consequential LCA and attributional LCA are fundamentally different and they can 

produce very different results for GHG emissions. These differences need to be clearly 

understood. 

Consequential LCA requires careful specification of scenarios 

The calculation of GHG emissions in consequential LCA typically involves the development 

of two scenarios, i.e. the scenario of interest (describing how the world may change, e.g. 

if bioenergy consumption is increased) and a baseline scenario (describing how the world 

will develop if the changes of interest do not occur). Currently there is some confusion 

and ongoing debate amongst researchers with regard to the application and definition of 

a baseline in attributional LCA studies, particularly in the case of land use and land 

management. However, it is important to recognise that this debate is not relevant to 

consequential LCA methods, for which the position is more straightforward. A baseline 

scenario of ‘business of usual’ is generally appropriate in consequential LCA studies. In 

consequential LCA, the system being studied, and both the scenario of interest and the 

baseline scenario, require careful specification and generally involve many assumptions, 

which must be clearly stated and taken into account when interpreting results. 
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5. Assessment of literature on GHG emissions of bioenergy 

5.1. Purpose 

Sections 2, 3 and 4 of this report, respectively, have set out the essential background 

concerning: 

 Forests, their management and the utilisation of wood for bioenergy and solid wood 

products 

 Forest carbon stocks, forest management and the role of biogenic carbon  

 Fundamental principles and practices of life cycle assessment. 

These discussions effectively lay the ground for a critical review of existing literature on 

the GHG emissions associated with forest bioenergy and how these should be assessed. 

The purpose of this section is to present this critical review.  

Section 5.2 reviews the various metrics used in scientific literature for expressing the 

climate impacts of bioenergy consumption. This specific subject is important for 

understanding the results and conclusions of various studies and in particular when 

making comparisons of different reported results. 

As noted in the introduction to this report (Section 1.3), this current report is not the first 

to attempt a literature review and there are a number of important precedents which 

require careful consideration. Section 5.3 considers in detail a particularly prominent 

recently published review, the JRC technical report on carbon accounting for forest 

bioenergy (Marelli et al., 2013). This provides a context in which to analyse other notable 

reviews and commentaries concerning scientific understanding of GHG emissions 

associated with forest bioenergy. Five such reviews and commentaries are considered in 

Section 5.4. In Section 5.5, wider consideration is given to individual scientific studies of 

the GHG emissions of forest bioenergy, and an attempt is made to extend and elaborate 

on the insights drawn by the previous reviews and commentaries on the subject. Some 

concluding remarks are made in Section 5.6 and key messages are presented.  

5.2. Literature on metrics for quantifying GHG emissions of forest 

bioenergy 

In the scientific literature, many different metrics have been used to measure GHG 

emissions or related global warming impacts of bioenergy (see e.g. Johnson and Tschudi, 

2012; Bird et al., 2012; Helin et al., 2012; Brandão et al., 2013). Some of these metrics 

rely on annual or cumulative GHG emissions associated with bioenergy systems, some of 

them rely on cumulative radiative forcing related to the GHG emissions, and some of the 

indicators take into account the avoided GHG emissions from fossil energy displacement 

by bioenergy (e.g. Pingoud et al., 2012; Cherubini, 2010). Furthermore, in some studies, 

GHG emissions or related impacts are measured in comparison with a predefined baseline 

scenario for land use, implying the calculation of ‘consequential’ or ‘relative’ GHG 

emissions. Other studies refer to ‘absolute’ or ‘attributed’ GHG emissions (for a 

discussion on this, see for example Bird et al., 2010; Bird et al., 2012; EEA, 2011; 
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Dehue, 2013; Holtsmark, 2013a). The range of metrics referred to is thus quite diverse 

and prolific, and requires careful consideration. A critical review of individual metrics 

referred to in published studies of GHG emissions of forest bioenergy is included in 

Appendix 3. This includes an assessment of the major strengths and weaknesses of each 

metric. The use of various metrics for GHG emissions and warming potentials in different 

published studies of forest bioenergy represents a major source of variation and is an 

important reason why studies present variable assessments of the potential of forest 

bioenergy and may reach differing conclusions.  

In principle, indicators that measure annual absolute CO2 or CO2-equivalent emissions 

trajectories are the most relevant to current climate policy, which is based on the 

monitoring, reporting and verification of inventories of annual GHG emissions. However, 

it is evident that results expressed in absolute terms do not describe the impacts of 

changes in the consumption of bioenergy on GHG emissions. Consequential/relative GHG 

emissions involving comparison with an appropriate baseline scenario are more relevant 

in this context. GHG emissions can be measured on an annual or cumulative basis and 

both approaches have advantages and disadvantages. There can be problems or 

limitations when relying on results for GHG emissions which are reported using simple 

mass-based physical units such as tonnes of CO2. GHG emissions reported in this way 

have similar weight regardless of the time when the emissions occur. When considering 

the cumulative warming potential of GHG emissions, the timing of the emissions is 

critically important and needs to be considered in conjunction with the specific warming 

potential and atmospheric lifetime of the emissions. However, it is important to note that 

climate studies have strongly suggested that cumulative absolute GHG emissions over a 

period to 2050 represent robust indicators of warming impact relevant to meeting climate 

policy targets (Allen et al., 2009; Meinshausen et al., 2009)17. This implies that: 

 A relatively simple metric of cumulative GHG emissions might be referred to when 

considering climate impacts of changes in consumption of forest bioenergy, provided 

that the time horizon for calculating such results does not greatly exceed the year 

2050. 

 For time horizons beyond the year 2050, it is more appropriate to refer to metrics of 

climate impacts expressed in terms of warming potentials. 

 It is particularly important to know whether changes in the consumption of forest 

bioenergy will result in increased, decreased or no change in GHG emissions by the 

year 2050.  

Based on the review of metrics in Appendix 3, it may be further concluded that, when 

comparing GHG emissions or cumulative warming potential of forest bioenergy and fossil 

                                       
17 More precisely, for a particular class of emissions scenarios considered in the climate studies, it 

is suggested that cumulative emissions up to 2050 and emission levels in 2050 are robust 
indicators of the probability that twenty-first century warming will not exceed 2 °C relative to pre-
industrial temperatures (Meinshausen et al., 2009). It is extremely important to stress that this 
conclusion only holds for the specific policy target of keeping global temperature rise this century 
within 2 °C, i.e. it most certainly does not hold more generally. 
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energy sources, relevant metrics include relative carbon neutrality factor and GWPnetbio 

(see Appendix 3). 

5.2.1. Metric for comparison of studies  

A major part of the subsequent discussion in this section is concerned with a meta-

analysis of published studies on GHG emissions of forest bioenergy and in particular 

reported results. The reference to so many types of metric for GHG emissions presents a 

serious obstacle to such an exercise. One possible solution is to refer to the metric most 

frequently reported in published studies. It may also be possible to translate results 

based on other metrics into the more commonly reported type of result.  

The main metric selected for the meta-analysis of studies carried out for this report is 

most commonly referred to in the literature as ‘GHG emissions payback time’. This metric 

was also used as the basis for an earlier meta-analysis reported by the JRC (Marelli et 

al., 2013). A number of key papers present their main results as GHG emissions payback 

times. 

Given the extensive reference to GHG emissions payback times in the meta-analysis in 

this report and in other major studies, it is important to understand what this metric 

represents, and also to be aware of its limitations18. 

The concept of GHG emissions payback time is derived from the observation that, for a 

number of possible sources of additional forest bioenergy, there must be an initial period 

during which associated GHG emissions are increased, relative to the alternative of using 

fossil energy, after which there is a ‘switch-over’ to net decreases in GHG emissions (see 

Section 3.9 and related wider discussion in Section 3). In broad terms, the GHG 

emissions payback time represents the period to the switch-over in GHG emissions.  

The typical definition and calculation of GHG emissions payback time can be explained by 

an example. Section 3.6 included three examples describing how forest carbon stocks 

may change as a result of forest management interventions aimed at increasing the 

production of wood for bioenergy. One of these examples (Section 3.6.2) considered the 

change in forest carbon stocks that would occur in a 5,600 hectare forest, as a result of a 

decision to extract a proportion of harvest residues for use as bioenergy, whereas 

previously these would have been left in the forest. (Note this means that the 

counterfactual land use is taken to involve not extracting the harvest residues, see 

Section 3.6.) In this example, there is an associated reduction in forest carbon stocks 

from about 146 tC ha−1 to about 143 tC ha−1 (see Section 3.6.2 and in particular Figure 

3.6), which takes place over roughly 50 years. 

                                       
18

 It should also be noted that the term ‘GHG emissions payback time’ is not particularly favoured 

by the authors of this report, since it is related to the term ‘carbon debt’ and presents similar 
problems for understanding and interpreting results. However, the term is used in this report, 
rather than adding to an already confusing array of terminology by proposing an alternative name. 
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Table 5.1 shows the GHG emissions due to biogenic carbon that would occur over an 11 

year period from the start of extraction of harvest residues, as a result of forest carbon 

stock changes. The results for emissions are expressed in tonnes carbon per hectare, and 

on a cumulative basis, i.e. the GHG emissions for each year are calculated as the sum of 

emissions that have occurred up to that year, since the start of extraction of harvest 

residues. The results clearly show that the GHG emissions of the bioenergy due to 

biogenic carbon cannot be assumed to be zero. However, it can also be seen that the 

trajectory of cumulative GHG emissions for the bioenergy is non-linear – initially 

emissions increase relatively quickly, but in later years in the table, the cumulative 

emissions are gradually levelling off. 

Table 5.1 Illustration to the calculation of a GHG emissions payback time 

Time since start 

of extraction of 

harvest residues 

(years) 

Cumulative emissions since start of extraction of 

residues1  

(tC ha−1) 

Biogenic carbon 

(forest carbon 

stock change) 

Equivalent fossil 

energy source2 
Difference3 

1 0.34 0.19 0.15 

2 0.61 0.39 0.22 

3 0.85 0.58 0.27 

4 1.06 0.78 0.28 

5 1.25 0.97 0.28 

6 1.42 1.17 0.25 

7 1.57 1.36 0.21 

8 1.71 1.55 0.16 

9 1.84 1.75 0.09 

10 1.96 1.94 0.02 

11 2.07 2.14 −0.06 

Notes to Table 5.1: 

1 Based on simulations made using the Forest Research CARBINE forest carbon accounting model. 

See Section 3.6 and in particular Section 3.6.2 for more information. 

2 Calculated using a ‘multiplier for efficiencies’ of 0.6 for the forest bioenergy (see Section 1.2 and 

Marland and Schlamadinger, 1997). This implies that 1 tC of forest bionergy has the potential to 

displace GHG emissions of 0.6 tC which would occur if an equivalent amount of energy was 

generated using a fossil energy source. Mitchell et al. (2012) note that a multiplier for 

efficiencies of 0.8 represents a highly efficient utilisation of bioenergy, whilst a value of 0.2 

represents a highly inefficient method of bioenergy utilisation. 

3 There may be slight discrepancies due to rounding. 

 

Table 5.1 also shows estimates for cumulative GHG emissions that would occur if a fossil 

energy source was used to produce an equivalent amount of energy to that generated 

using the extracted harvest residues. (This fossil energy source is taken as the 

counterfactual energy source, see Sections 3.8 and 4.6.) For the example 5,600 ha forest 
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being modelled, a constant quantity of harvest residues are extracted each year, thus a 

fixed amount of fossil energy consumption is potentially displaced each year. The GHG 

emissions that would occur due to the use of fossil energy instead of the forest bioenergy 

are estimated for this example at 0.19 tC ha−1 per year, with the result that cumulative 

GHG emissions for the fossil energy source rise linearly, i.e. by 0.19 tC ha−1 each year. 

A comparison of the cumulative biogenic carbon emissions due to use of the forest 

bioenergy, and due to the use of an equivalent fossil energy source, reveals a pattern 

over time. Initially, the cumulative emissions of the forest bioenergy are greater than 

those of the fossil energy source. For example, in the first year, the GHG emissions of 

the forest bioenergy are 0.34 tC ha−1, whereas the emissions of the fossil energy source 

are 0.19 tC ha−1, a difference of 0.15 tC ha−1. However, because the cumulative GHG 

emissions due to use of the bioenergy gradually ‘level off’ over time, whilst the 

cumulative GHG emissions due to use of the fossil energy continue to rise linearly, 

eventually a time is reached when the cumulative GHG emissions due to use of the two 

energy sources is the same. This time can be referred to as the GHG emissions payback 

time for the forest bioenergy. For the example of increased extraction of harvest residues 

illustrated in Table 5.1, the GHG emissions payback time is around 10 to 11 years. 

It is important to stress that, as illustrated by the above example, when the GHG 

emissions payback time is reached, this does not mean that the GHG emissions 

associated with a bioenergy source can be taken to be zero. Rather, the cumulative GHG 

emissions are the same as they would have been for an equivalent fossil energy source. 

In the years before the payback time, cumulative GHG emissions due to using the 

bioenergy are greater than those for the equivalent fossil energy source. For the years 

following the payback time, cumulative GHG emissions due to using the bioenergy are 

less than those for the equivalent fossil energy source. Thus, crucially, the use of the 

bioenergy source only achieves GHG emissions reductions compared to the fossil energy 

source from the point when the payback time is reached. 

Reliance on results expressed as GHG emissions payback times for assessing and 

comparing different published studies of forest bioenergy has certain strengths and 

weaknesses. 

A number of published studies report results expressed as GHG emissions payback times. 

Furthermore, it is often possible to infer estimates of GHG emissions payback times from 

different types of results presented in other published studies. Thus, by referring to GHG 

emissions payback times, it is possible to compare the results of quite a large number of 

studies. This can be regarded as an important strength of such an approach. 

Unfortunately, there is no standard specification for calculating GHG emissions payback 

times, and studies may adopt varying calculation methods. For example, some 

researchers present results for a related metric referred to as ‘carbon sequestration 

parity point’, which may be viewed as a particular type of GHG emissions payback time 

which is calculated in a specific way. More generally, a whole class of metrics can be 
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defined and calculated in several ways, all of which can be referred to as GHG emissions 

payback times. The specific details of LCA methodology adopted in studies can also affect 

the results ultimately reported. These issues have the consequence that results in the 

literature are not always strictly consistent and comparable, representing an important 

weakness in relying on such estimates. 

Other weaknesses can be identified in referring to results expressed as GHG emissions 

payback times as principal results for the analysis and comparison of published 

assessments of forest bioenergy. Most obviously, GHG emissions payback times do not 

give a direct measure of the actual change in GHG emissions that would occur as a result 

of consuming a bioenergy source. By definition, GHG emissions payback times give a 

clear indication that GHG emissions are most likely increased before the payback time, 

and reduced thereafter. However, this does not provide information on the magnitudes of 

the initial increase in GHG emissions or the subsequent decrease. Ultimately, such results 

do not directly provide information on the impacts on climate warming that would occur 

as a result of consuming a bioenergy source. 

In referring to results for GHG emissions payback times, as discussed earlier, it is 

important to note that climate studies have strongly suggested that cumulative absolute 

GHG emissions over a period to 2050 represent a robust index of warming impact 

relevant to meeting climate policy targets. This also suggests that achieving GHG 

emissions reductions before 2050 is important, from which it may certainly be inferred 

that bioenergy sources with GHG emissions payback times longer than (say) 35 years are 

‘high risk’ in terms of their relevance to meeting climate policy targets. 

On this basis, it may be concluded that forest bioenergy sources and systems might be 

tentatively ranked in terms of risk by considering estimates of GHG emissions payback 

times as ‘low risk’, ‘moderate risk’, ‘high risk’ and ‘very high risk’, as indicated in Table 

5.2. 

Table 5.2 Possible classification of bioenergy sources and systems based on 

GHG emissions payback time 

GHG emissions payback time 
Risk attached to bioenergy 

source/system 

1 year or less Low  

30 years or less Moderate 

Greater than 30 years High 

Indefinite Very high 

 

The decision to base a significant part of a meta-analysis of literature on forest bioenergy 

on consideration of results for GHG emissions payback time is pragmatic, for reasons 

given above. The results of any such meta-analysis clearly require very careful 

interpretation and any conclusions must be drawn with considerable caution.  
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5.3. JRC technical report: Carbon accounting of forest bioenergy  

This important review by the EU Joint Research Centre was published in spring 2013. It is 

being widely cited and has set an agenda for debate on the GHG emissions associated 

with forest bioenergy, and approaches to calculation. Many of the observations and 

points made echo those already covered in Sections 1-4 of this current report. It is, 

nevertheless, important to consider in some detail the analysis presented in the JRC 

report, and in particular, the findings and conclusions.  

The following discussion of the JRC review is structured to address three essential 

subjects: 

1 The objectives and scope of the review (see Section 5.3.1) 

2 Key findings, insights and conclusions of the review (see Section 5.3.2) 

3 Points requiring further clarification (see Section 5.3.3).  

Brief conclusions concerning the JRC review are presented in Section 5.3.4. 

5.3.1. Objectives and scope 

The stated aim of the JRC review is, “to analyse the climate impact of forest bioenergy by 

reviewing in detail the most up-to-date information on the subject in terms of modelling 

approach and techniques, data availability, results and conclusions achieved by the 

international scientific community and published in relevant peer-reviewed journals or by 

internationally recognised institutions”.  In particular the review considers, “the main 

physical phenomena underpinning the forest bioenergy carbon accounting through the 

results available in the literature, and … quantify the possible contribution of forest 

bioenergy pathways to the achievement of … climate policy targets”.  

As with this current report, the scope of the JRC review is concerned specifically with 

GHG emissions associated with bioenergy rather than other aspects such as security of 

energy supply, socioeconomics, biodiversity and rural development. However, the report 

does include a section considering some other influences of forest systems and forest 

management on climate, notably albedo, aerosols and ‘black carbon’. This latter 

discussion extends beyond the scope of this current report, but is clearly pertinent to any 

analysis of the role of forest bioenergy in avoiding dangerous climate change.  

It is very important to appreciate that the scope of the JRC review is specifically 

concerned with understanding the potential impacts of significant increases in the 

consumption of forest bioenergy in the EU associated with efforts to meet existing and 

possible future targets for bioenergy use. The review focuses on the implications of such 

increased consumption of forest bioenergy on GHG emissions, and to some extent 

considers the implications for ‘carbon accounting’, or more specifically, the need to allow 

for contributions due to biogenic carbon in LCA calculations of GHG emissions, including 

certain approaches for achieving this. Other scenarios, notably the possibility of a more 

general mobilisation of wood resources in the EU or in other parts of the world, as part of 

increased consumption of wood as a source of materials and/or chemicals as well as 

bioenergy, appear to be regarded as out of scope.  
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There are two core technical discussions in the review. The first of these deals with the 

issue of most obvious and immediate concern, i.e. the extent of the contribution of 

biogenic carbon to GHG emissions of forest bioenergy resulting from carbon stock 

changes in forests, which would take place if production of biomass from forests was to 

be increased to meet rising demands for forest bioenergy. The second technical 

discussion addresses “market mediated effects of forest bioenergy”. Such effects may 

involve the diversion of harvested wood from use for materials to use as bioenergy. They 

may also involve incomplete displacement of fossil fuels by forest bioenergy, intensified 

competition for the existing forest bioenergy resource, and indirect land use change. 

Other subjects are also considered, for example, non-GHG climate drivers and the 

findings of large scale techno-economic modelling studies.  

5.3.2. Key findings, insights and conclusions 

Probably one of the most important and valuable sections of the JRC review presents a 

‘meta-analysis’ of results for GHG emissions of forest bioenergy as presented in recent 

scientific journal articles and reports. The key findings of this ‘meta-analysis’ are 

presented in Tables 1 to 3 and Figures 13 to 16 of the JRC review.  

The meta-analysis considers two broad types of scenario, involving two distinct types of 

wood feedstock to meet increased demands for forest bioenergy: 

1 Increased harvesting of stemwood, through increased felling of forest areas, or 

increased thinning. One scenario represents increased supply of stemwood for 

bioenergy achieved through planting new forest areas on marginal agricultural land. 

(See Section 3.6.) 

2 Extraction of harvesting residues (see Sections 2.3 and 2.5), where previously these 

were left to rot in the forest or burnt at roadside.  

Related results from one key research paper (Mitchell et al., 2012) are also repeated and 

discussed.  

Within each of the two broad scenarios considered, results reported by individual studies 

are classified according to certain details of the specific forest bioenergy system being 

studied: 

 ‘Area’ (geographical location) 

 ‘Forest type’ (essentially whether the forest is considered to be growing in temperate 

or boreal conditions) 

 ‘Study boundaries’ (essentially the scale of forest system studied, ‘representative 

stand’, ‘forest management unit’ or ‘landscape’) 

 ‘[Forest management] scenarios’ (essentially the type of change to forest 

management involved in increasing the supply of forest bioenergy, such as additional 

felling in forest areas, increased ‘management intensity’, replacing existing forest with 

plantations, extraction of harvest residues) 

 ‘Fossil system’ (the energy source, fossil fuel and conversions system which it is 

assumed the forest bioenergy should displace).  
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Rather than presenting results directly in terms of estimated GHG emissions for forest 

bioenergy, the meta-analysis summarises results expressed as GHG emissions payback 

times (see Section 5.2.1). The JRC review places great emphasis on the concept and 

metric of ‘payback time’. The JRC review also discusses results reported in scientific 

literature for a metric referred to as, ‘carbon sequestration parity point’. These results 

presented in the JRC review are not considered further in this section. As already 

stressed in Section 5.2.1, results expressed as GHG emissions payback times need to be 

interpreted with great caution. 

Table 1 of the JRC review reports estimates for GHG emissions payback time derived 

from six scientific papers and reports (Walker et al., 2010; McKechnie et al., 2011; 

Zanchi et al., 2011; Colnes et al., 2012; Holtsmark, 2012a; Jonker et al., 2013), which 

consider ‘bioenergy production scenarios’ in which additional stemwood is harvested for 

use as forest bioenergy. The various studies cover geographical locations in Europe 

(Austria and Norway), Canada and the USA. In many cases, the forest management 

scenarios considered involve additional harvesting in existing forests, e.g. additional 

felling or thinning. In some cases, forest management scenarios involve replacing 

existing forest with high-productivity plantations managed on short rotations. 

Table 3 of the JRC review reports estimates for GHG emissions payback time derived 

from four scientific papers and reports (Mitchell et al., 2009; McKechnie et al., 2011; 

Zanchi et al., 2011; Repo et al., 2012), which consider ‘bioenergy production scenarios’ 

in which additional pre-commercial thinnings or harvest residues are extracted for use as 

forest bioenergy. The various studies cover geographical locations in Europe (Austria and 

Finland), Canada and the USA. One study (Repo et al., 2012) considers the extraction of 

different ‘fractions’ of harvest residues, i.e. branchwood or stumps. 

In both Tables 1 and 3 of the JRC review, a range of energy conversion systems are 

covered (e.g. electricity, heating, combined heat and power and bioethanol transport 

fuel). Fossil energy sources assumed to be displaced involve coal, oil, natural gas and 

fossil transport fuel. 

Further results for GHG emissions payback times are presented in Figure 14 of the JRC 

review, which repeats estimates graphically in a paper by Mitchell et al. (2012). This 

study is notable for its modelling of GHG emissions payback times associated with 

additional bioenergy consumption across a wide range of scenarios involving: 

 Four initial land states (agricultural land; forests managed on a rotation for production 

of solid-wood products; forest land subject to recent significant natural disturbance; 

biological mature forest, no management involving harvesting, with high carbon 

stocks in trees). 

 Three forest growth rates (‘low’, ‘moderate’, ‘high’). 

 Three ‘biomass longevities’, i.e. rates at which forest woody biomass naturally decays 

(‘low’, ‘moderate’, ‘high’). 
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 Six forest management scenarios involving different intensities of bioenergy 

harvesting (thinning of 50% of trees every 25, 50 or 100 years; clearfelling every 25, 

50 and 100 years). 

 Fossil energy system displaced by bioenergy as a continuous variable, represented by 

a ‘bioenergy conversion factor’, similar to the ‘multiplier for efficiencies’ defined by 

Marland and Schlamadinger (1997; see discussion of Figure 1.2, Section 1.2 in this 

current report). 

The estimates of GHG emissions payback times as reported in Tables 1 and 3 and Figure 

14 of the JRC review display a range from instantaneous to more than 1000 years. From 

a policy perspective, this range encompasses every conceivable situation. Potentially, 

some forest bioenergy sources could make vital contributions to providing energy with 

low associated GHG emissions. Certain other forest bioenergy sources offer only marginal 

improvements over fossil energy sources. In other cases, the promotion of forest 

bioenergy would be regarded as severely frustrating the achievement of targets for 

reductions in GHG emissions. In this context, it is no wonder that some commentators 

have described the potential contribution of (and the GHG emissions associated with) 

forest bioenergy as complex and uncertain. However, the wide range in estimates may 

not represent uncertainty as such, but may reflect systematic variation due to key factors 

and details of LCA methodology (see Sections 3.16 and 4.11). 

Although the results in Tables 1 and 3 and Figure 14 of the JRC review are compiled from 

just nine studies in total, the range of scenarios and cases represented is sufficient to 

permit a tentative investigation to be made of structure in the reported estimates for the 

specific bioenergy production scenarios under consideration. Further details are given in 

Appendix 4. 

The analysis in Appendix 4 shows the extreme range of outcomes for GHG emissions 

payback time as already discussed, and there is also clearly some variability in results for 

individual scenarios, where multiple estimates are available. However, the ordering of 

results in the table strongly suggests that scenarios can be ranked in terms of GHG 

emissions payback time, from consistently extremely long (at the top of the table) to 

consistently negligible (at the bottom of the table). In Table 5.3, these results are used 

to classify the bioenergy sources and systems considered as ‘low risk’, ‘moderate risk’, 

‘high risk’ or ‘very high risk’, as discussed and defined in Section 5.2.1. 

A number of detailed, sometimes tentative, observations can be drawn from the analysis 

in Appendix 4, perhaps of most significance: 

 Fossil energy (counterfactual) scenario, in conjunction with the efficiency of forest 

bioenergy conversion, can be important in determining the GHG emissions payback 

time for additional bioenergy production. Generally the shortest payback times are 

associated with a fossil energy counterfactual scenario of coal; payback times are 

longer for oil and longest for natural gas. For some scenarios (towards the bottom of 
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the table), the payback times are negligible or very short, regardless of fossil energy 

counterfactual scenario. See also Section 3.8 of this report. 

 Outcomes in terms of GHG emissions payback times are very sensitive to the initial 

state of land (in terms of carbon stocks) before introduction of additional bioenergy 

production (e.g. high carbon stocks in biologically mature forest or recently disturbed 

forest areas). 

 Payback times are generally longest for forest management/production scenarios 

involving increased intensity of harvesting or increased extraction of biomass for the 

production of bioenergy only. 

 For forest management scenarios involving the replacement of systems with existing 

high carbon stocks with plantations dedicated to producing forest bioenergy, the 

potential growth rate (biomass productivity) that can be achieved by the new 

plantations is very important. See also Section 3.10 of this report. 

 For forest management/production scenarios involving increased intensity of 

harvesting or increased extraction of biomass, co-production of solid wood products 

with forest bioenergy could be a ‘game changer’ for resultant GHG emissions payback 

times. However, note that only one study in Table 5.3 considers increased intensity of 

harvesting involving co-production (Zanchi et al., 2011). The high sensitivity to 

counterfactuals for wood products has been established in other studies (see for 

example Matthews et al., 2014). See also Sections 3.7 and 3.8 of this report. 

Some of the preceding observations are further supported by the multi-scenario 

sensitivity analysis presented by Mitchell et al. (2012), notably those concerning fossil 

energy counterfactual scenario and the initial state of land in terms of carbon stocks. This 

study deservedly receives close attention in the meta-analysis presented in the JRC 

review. The findings of Mitchell et al. (2012) also reinforce the general importance of 

potential growth rate (biomass productivity) as an important factor in determining GHG 

emissions associated with the production and use of forest bioenergy (as expressed in 

terms of GHG emissions payback time in this specific context). 

The JRC review reaches broadly similar, although rather less elaborated, conclusions to 

those offered in the preceding discussion, Appendix 4 and in Table 5.3 (see Tables 2 and 

12 of the JRC review). 

Thus far, the consideration of the JRC review presented here has focussed on the first of 

the two core technical discussions identified earlier, i.e. the extent of the contribution of 

biogenic carbon to GHG emissions of forest bioenergy resulting from carbon stock 

changes in forests. As already explained, a second technical discussion addresses the 

issue of “market mediated effects of forest bioenergy”. The JRC review identifies four 

principal market mediated effects: 

1 Diversion of existing supply of harvested wood from the manufacture of solid-wood 

products to use as bioenergy. 

2 Interactions between the use of forest bioenergy in existing and new applications, and 

also interactions with the consumption of other energy sources. 
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3 Increased forest bioenergy consumption leading to only partial displacement of fossil 

energy sources. 

4 Indirect land use change arising from increased requirements for forest bioenergy. 

The possibility of increased demand for bioenergy causing a diversion of harvested wood 

from the manufacture of solid wood products has already been explored in Sections 2.7 

and 3.7. The JRC review discusses the importance of allowing for the potential diversion 

of wood feedstock from the manufacture of solid wood products for use as bioenergy, 

and stresses that studies that fail to consider such potential effects may come to 

misleading conclusions. It is also noted that such effects might be integrated into 

assessments of GHG emissions due to use of forest bioenergy through the approach of 

consequential LCA (see Section 4.3 of this current report).  Several studies addressing 

the issue of potential diversion of wood feedstock from the manufacture of solid wood 

products to use as bioenergy are considered in the JRC review (Böttcher et al., 2011; 

Guest et al., 2012a; Pingoud et al., 2012). These establish that GHG emissions can 

increase, even when wood consumption is maintained at current levels, if harvested 

wood is diverted from the manufacture of solid wood products for consumption as 

bioenergy. Two of these studies (Guest et al., 2012a; Pingoud et al., 2012) focus on the 

role of ‘biomass cascading’, i.e. the management of harvested wood through a sequence 

of uses, involving initial utilisation in solid wood products and burning of wood as a 

source of energy on ultimate disposal of solid products (see Sections 2.5 and 3.7 of this 

current report). It should also be noted that several of the scenarios modelled in the 

study of Mitchell et al. (2012) implicitly involve the diversion of harvested wood from the 

manufacture of solid wood products for use as bioenergy (see Table 5.3). 
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Table 5.3 Classification of forest management/bioenergy production 

scenarios in terms of risk with regard to GHG emissions 

Risk 
Forest management/bioenergy production 

scenario 
Comments 

‘Very high’ 

or ‘high’ 

Harvesting of forest with high carbon stocks, 

and replacement with rotational forest 

management for production of bioenergy only. 

 

Salvage logging and restoration of forests on 

rotational management for production of 

bioenergy only. 

 

Additional harvesting of stemwood and ‘residual 

wood’ for bioenergy only in forest stands for fire 

prevention. 

 

Additional harvesting of stemwood in forest 

areas already under management for 

production, for bioenergy only. 

 

Diversion of harvested wood from solid wood 

products to bioenergy, leaving harvesting 

intensity unchanged. 

Very sensitive to 

counterfactuals for 

forest bioenergy and 

solid wood products. 

Additional harvesting of stemwood in forest 

areas already under management for 

production, for bioenergy only. 

Sensitive to fossil 

energy counterfactual. 

‘Moderate’ 

Harvesting of forest with high carbon stocks and 

replacement with high-productivity short 

rotation plantations for production of bioenergy 

only. 

Sensitive to 

productivity of short 

rotation plantations. 

Extraction of harvest residues. 

Sensitive to harvesting 

of stumps, soil nutrient 

status and to fossil 

energy counterfactual. 

Extraction of pre-commercial thinnings. 
Sensitive to fossil 

energy counterfactual. 

‘Low’ 

Creation of new forests for bioenergy only on 

marginal agricultural land with low initial carbon 

stock.* 

Bioenergy will not 

become available 

immediately but carbon 

stocks on land should 

increase quickly. 

However, this is 

sensitive to the initial 

carbon stocks of the 

agricultural land. 

Variable, 

‘low’ to 

‘high’ 

Harvesting of biologically mature forest with 

high carbon stocks for sustained co-production 

of solid wood products and bioenergy. 

Extremely sensitive to 

counterfactuals for 

harvested wood. 

Note to Table 5.3: 

* The JRC review emphasises the importance of avoiding indirect land use change when creating 

new forest areas, particularly when this takes place on land previously used for agriculture. 
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The discussion in the JRC review of interactions between the use of forest bioenergy in 

existing and new applications, and also interactions with the consumption of other energy 

sources, is somewhat confusing and hard to follow. To some extent this issue appears to 

overlap with the possibilities of the diversion of harvested wood from the manufacture of 

solid wood products for use as bioenergy (see previous paragraph) and of increased 

forest bioenergy consumption leading to only partial displacement of fossil energy 

sources (see following paragraph). The JRC review observes that competition for forest 

resources due to increased bioenergy use (more specifically, transport biofuels) has been 

already identified in Schwarzbauer and Stern (2010) and Forsström et al. (2012). It is 

also noted that in a briefing for the EU parliament (Wunder et al., 2012), the authors 

state that an increasing demand for forest bioenergy in the EU will have significant 

effects worldwide. These observations lead to the general conclusion that rising demands 

for forest bioenergy will lead to changes in the patterns of forest management, the 

utilisation of harvested wood (for energy and other applications), and also changes in the 

consumption of fossil energy sources. The critical point appears to be that additional 

pressure on forests and other ecosystems could drive conflicts over the use of forest 

resources (i.e. supplies of harvested wood) and over land use more generally. Particular 

concern is expressed with regard to potential risks to energy security in countries already 

strongly reliant on local use of forest bioenergy, including harvest residues. The JRC 

review concludes that the potential risks associated with bioenergy feedstocks derived 

from harvest residues which are being diverted to production of biofuels, and the 

potential GHG emissions associated with different conversion processes and feedstocks, 

are still not well addressed, and deserve particular attention for future scientific studies. 

The JRC review highlights that published studies of GHG emissions associated with the 

production and use of forest bioenergy generally make the assumption that each unit of 

bioenergy produced replaces an equivalent unit of energy from fossil sources. However, 

because of the complexity of economic systems and human behaviour, this may not 

actually happen in practice. Rather, there may be a general increase in consumption of 

energy services following an improvement in the efficiency of delivering those services 

(or in the total potential supply of energy services). This increased consumption may 

have the effect that, in practice, a unit of bioenergy produced may replace less than an 

equivalent unit of fossil energy. The JRC review cites a number of studies (mainly 

concerned with efforts to increase energy efficiency) which suggest that such effects can 

be very significant (Chen and Khanna, 2012; Drabik and de Gorter, 2011; Druckman et 

al., 2011; Greening et al., 2000; Hochman et al, 2010; Rajagopal et al., 2011; Sorrell, 

2007; Thompson et al., 2011; York, 2012). The JRC review notes the controversial and 

disputed nature of these studies. However, should such effects be real and significant, 

then there are clear implications for assessments of GHG emissions associated with use 

of forest bioenergy, and also for policies towards forest bioenergy (and other energy 

sources). A related issue is the potential for competition between different renewable 

sources of energy, and the JRC review points out that ‘blanket’ incentives for renewable 

energy sources could, for example, lead to some situations in which forest bioenergy with 
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long GHG emissions payback times displaces the use of renewable energy sources with 

shorter payback times (e.g. photovoltaic, wind, biogas from manure). It is suggested 

that there may be a role here for attaching sustainability criteria to sources of forest 

bioenergy. However, what may seem a straightforward idea in principle is likely to be 

rather complicated in practice. 

Indirect land use change, which may occur as a result of afforestation activities aimed at 

increasing the supply of forest bioenergy, has already been discussed briefly in Section 

3.13. In its discussion of this subject, the JRC review observes that an additional demand 

of bioenergy from forests may trigger, via market demand, an expansion of forested 

land. Although the direct impact on vegetation and soil carbon stocks of affected land is 

generally positive, there may be indirect impacts due to the diversion of other lands to 

make up for lost agricultural production. The JRC review therefore stresses the 

importance of creating forests on abandoned or degraded land. It is also considered 

important that potential effects of indirect land use change are integrated into 

assessments of GHG emissions of forest bioenergy, noting examples of studies which 

have not undertaken such complete assessments (Galik and Abt, 2012; Sedjo and Tian, 

2012). At the same time, the JRC review acknowledges the difficulty of making such 

assessments. It is concluded that current methodologies for including indirect land use 

change are crude, and it is not possible to arrive at a clear assessment of the likely 

magnitude of impacts due to indirect land use change. However, the JRC review 

considers that, based on existing literature (Cocchi et al., 2011), any such impacts 

cannot be assumed to be negligible, highlighting the strong possibility of demand for 

forest bioenergy stimulating land use change, e.g. afforestation in countries such as 

Brazil, and regions of Africa. 

The JRC review concludes that the need for a better understanding of indirect impacts 

such as described above should not be ignored.  

As explained at the outset of this discussion, the JRC review also covers other subjects 

beyond those covered in the two core technical discussions identified here and described 

above. 

The JRC review supports the view expressed in this current report (see Section 4.2) that 

LCA is the appropriate tool for assessing GHG emissions associated with the use of forest 

bioenergy, noting the general agreement on this point in the scientific community 

(Cherubini, 2010) and the policy community (EU Directive 2009/28/EC on Renewable 

Energy). However, the JRC review highlights that numerous methodological choices and 

assumptions have to be made when performing an LCA, with the consequence that 

results for GHG emissions can differ significantly, even for apparently similar systems 

(see Section 4 of this report). 

The JRC review suggests that the main reasons for diverging results are: type of biomass 

sources, assumptions about alternative counterfactual land use conversion technologies, 

input data sources, end-use technologies, allocation method, system boundaries, 
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reference energy system, and other assumptions including issues relating to data quality 

and age (Cherubini et al., 2009; Cherubini, 2010). It is stressed that choice of time 

horizon can be critical in determining results for GHG emissions of forest bioenergy 

systems, particularly with regard to comparisons with a baseline scenario. These and 

many other observations made in the JRC review concur with the discussion in Sections 3 

and 4 of this current report and, in particular, conclusions presented in Sections 3.17 and 

4.11. 

There is some consideration of metrics for assessment of GHG emissions associated with 

forest bioenergy, notably an index called GWPbio (Cherubini et al., 2011ab) and another 

index referred to as a ‘carbon neutrality factor’ (Schlamadinger et al., 1995). However, 

the JRC review does not reach any definitive conclusions on the suitability and/or 

advantages and disadvantages of such metrics.  

The JRC review makes notable efforts to consider the potential contributions of non-GHG 

climate effects related to forests and their management for bioenergy production. It is 

concluded that the contributions of these climate forcers is still highly uncertain, but in 

some cases cannot be assumed to be negligible and therefore should be included in 

analyses of the potential for forest bioenergy to contribute to limiting climate change. 

Currently, the precise methods for achieving such integration in assessments would 

appear to be a challenge for research.  

The discussion of large scale techno-economic modelling is given some prominence in the 

JRC review and the findings of several studies are discussed (Böttcher et al., 2011; Kallio 

and Salminen, 2012; UN-ECE, 2011). These studies all support the view that an 

indiscriminate increase in consumption of forest bioenergy to meet targets for renewable 

energy is likely to cause a net increase in GHG emissions. In this context, the European 

Forest Sector Outlook Study II, EFSOS II (UN-ECE, 2011), concludes that, in order to 

maximise the forest sector’s contribution to climate change mitigation, the best strategy 

would be to combine forest management focused on accumulation of forest carbon stocks 

with maintaining a continuous supply for solid wood products and forest bioenergy. 

However, it is noted that, in the long term, the capacity of forests to sequester carbon 

will reach an upper limit. This will mean that the only potential for further mitigation of 

GHG emissions is through regular harvesting, to maintain or enhance carbon stocks in 

solid wood products, and to avoid emissions from non-renewable materials and fossil 

energy sources (Aquino Ximenes et al., 2012). 

A number of other subjects also receive attention in the JRC review, for example, the 

potential for a positive response in the forest sector to increased demand for bioenergy 

through the introduction of certain forest management approaches; and uncertainties 

related to risks of natural disturbance in forest areas.  



Biogenic Carbon  

and Forest Bioenergy 

144    |    Final report on Task 1    |    Robert Matthews   |    15th May 2014 

5.3.3. Points requiring clarification 

Whilst the JRC review is thorough in scope and draws out many valuable insights from 

existing scientific literature on assessments of GHG emissions associated with the use of 

forest bioenergy, there are several points where commentary in the JRC review is 

somewhat ambiguous and some clarification is needed.  

Although sections of the JRC review state the scope and problem definition, including the 

aim of the review, the ultimate goal is not always clear, and sometimes seems to shift. In 

particular, in some places the discussion in the review strongly suggests that the goal is 

to clarify the approach and methods required when accounting for GHG emissions 

associated with the consumption of forest bioenergy. Such a methodology would be 

relevant, for example, within a regulatory framework such as the EU Renewable Energy 

Directive. At other points, the discussion is clearly concerned with changes in GHG 

emissions that may occur, given incentives for a significant increase in the consumption 

of forest bioenergy, and how such potential changes in GHG emissions should be 

assessed. Most likely, both subjects are being addressed as valid issues within the scope 

of the review, but the lack of clarity and distinction between the two subjects is a 

potential cause of confusion.  

The blurring of the boundaries between the discussions of LCA methodologies for the 

purposes of accounting for GHG emissions of forest bioenergy on the one hand, and of 

the assessment of impacts of incentives aimed at increasing consumption of forest 

bioenergy on the other hand, is also found in the two core technical discussions of the 

JRC review described in Section 5.3.2 of this current report. The first of these technical 

discussions, dealing with the contribution of biogenic carbon to GHG emissions of forest 

bioenergy, makes significant reference to a meta-analysis of results for GHG emissions of 

forest bioenergy as presented in recent scientific journal articles and reports. This meta-

analysis has proved useful for identifying scenarios for forest bioenergy production that 

are likely to be associated with negligible, short or long GHG emissions payback times 

(see Section 5.3.2). However, the studies included in the meta-analysis seem to address 

varying goals and research questions, although generally there is a focus on GHG 

emissions associated with systems in which levels of forest bioenergy production are 

increased. Clearly, therefore, many if not all of these studies are assessing potential 

impacts of a change to existing activities, consistent with consequential LCA. There 

appears to be some confusion in this discussion, because the JRC review labels all of the 

studies included in this meta-analysis as examples of “attributional modelling”. The 

second core technical discussion in the JRC review, addressing “market mediated effects 

of forest bioenergy”, is described as being concerned with “consequential life cycle 

inventory modelling”. However, it is clear that at least some of the studies considered in 

the meta-analysis of the first technical discussion more closely resemble consequential 

LCA than attributional LCA. The consideration of so-called “attributional modelling” in the 

JRC review is further confused by the description of how a “bioenergy system” is defined. 

In particular the JRC review comments that, ‘this system is compared to a fossil 
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“reference system” (sometimes called “counterfactual”) in which the energy is produced 

with fossil energy sources’. This is evidently confusing or mixing the principles of 

attributional LCA and consequential LCA (see Section 4.3 of this current report). 

It is notable that the JRC review focuses on the potential consequences for GHG 

emissions due to a significant increase in the consumption of forest bioenergy, generally 

based on the presumption that relevant incentives would be aimed exclusively at 

stimulating forest bioenergy production and consumption, rather than a wider 

mobilisation of wood resources to increase the use of solid wood products alongside 

forest bioenergy (i.e. incentivising of co-production). In many respects such a 

presumption is reasonable or at least understandable. Currently, existing incentives for 

forest bioenergy consumption, most obviously the EU Renewable Energy Directive, are 

exclusively concerned with bioenergy rather than with encouraging the use of wood for a 

wide range of applications. Moreover, the JRC review could only consider those studies 

available in the scientific literature, and the vast majority of these involve assessments of 

situations in which, specifically and exclusively, production of forest bioenergy is 

increased. This focus derives from the recognition of the current scale of interest in 

bioenergy sources (see for example Sections 2.6 and 2.7 of the current report). 

However, the limited information available in the JRC review on scenarios involving 

increased harvesting of forest biomass for co-production of solid wood products and 

forest bioenergy strongly indicates that these scenarios can be ‘game changers’ in terms 

of achieving net GHG emissions reductions in short timescales (see Section 5.3.2). As a 

consequence, scenarios involving co-production receive limited attention in the JRC 

review. The potential complexity and challenging nature of providing the incentives 

across sectors that would be needed to stimulate increased harvesting for co-production 

must be acknowledged. Nevertheless it is important that this potentially highly relevant 

scenario receives proper assessment.  

In its consideration of “attributional modelling” of GHG emissions of forest bioenergy, and 

elsewhere, the JRC review is ambiguous in its position on the relevance of a ‘no use’ 

scenario as a baseline when assessing forest carbon stock changes associated with the 

production of forest bioenergy (or other wood products). At various points in the review, 

reference is made to use of a ‘no use’ scenario or ‘business as usual’ as a baseline in the 

calculation of carbon stock changes in forests. However, it is notable that, in Section 

2.1.1 of the JRC review, the view is expressed that carbon stock changes in the forest, 

resulting from the use of the biomass for bioenergy, need to be accounted for; but the 

reference system (fossil fuels use) should also include what would happen to the forest 

carbon stock in the absence of bioenergy production. This appears to be advocating the 

general application of a ‘no use’ scenario as a baseline in the calculation of GHG 

emissions due to forest carbon stock changes. As discussed in some detail in Sections 

3.11 and 4.10 of this current report, the status of a ‘no use’ scenario as a suitable 

baseline is open to challenge in at least some contexts. Crucially, as discussed in Section 

4.10, a baseline scenario needs to be selected that is appropriate for the goal and 
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research question addressed by a specific LCA study. The JRC review may not in fact be 

advocating general application of a ‘no use’ scenario as a baseline, but it is unclear from 

the discussion in the review exactly what position is taken on the selection of suitable 

baselines, particularly for land use. 

One final point worthy of clarification concerns the representation of counterfactuals in 

assessments of GHG emissions over long time horizons. The JRC review observes that, 

for short time horizons, assumptions about fossil energy sources displaced by increased 

consumption of bioenergy might be based on current patterns of energy use with 

reasonable reliability. For long time horizons, it may be necessary to allow for trends in 

the patterns of energy use, for example, allowing for policies aiming to ‘decarbonise’ 

national economies or sectors over ensuing decades. However, it is also important to 

avoid ‘circularity’ in such calculations, e.g. in situations where increased consumption of 

forest bioenergy makes a significant contribution towards achieving the planned 

decarbonisation.  

5.3.4. Conclusions on JRC technical report  

The review presented in the JRC technical report (Marelli et al., 2013) is thorough and 

authoritative. The scope covers most of the salient issues and literature, and the analysis 

and conclusions reached are largely sound. The meta-analysis of results for GHG 

emissions of forest bioenergy, as presented in recent scientific journal articles and 

reports, is particularly valuable. The review provides many valuable insights as described 

in this current report in Section 5.3.2. However, the aims of various discussions in the 

review are not always clear and this is a source of potential confusion (see Section 

5.3.3). Some important potential scenarios for increasing forest bioenergy production are 

given limited attention, most obviously the possibility of increasing levels of harvesting in 

forests for co-production of solid wood products and forest bioenergy. Some key 

methodological issues, most obviously the selection of a baseline land use scenario for 

estimating GHG emissions due to changes in forest carbon stocks, are left ambiguous 

and unresolved, with no clear position recommended. There is also limited consideration 

of the methodologies actually applied by the published studies included in the review, 

and the potential influence of methodological choices on results. 

In concluding, the JRC review stresses that, “the assumption of biogenic carbon 

neutrality is not valid under policy relevant time horizons (in particular for dedicated 

harvest of stemwood for bioenergy only) if carbon stock changes in the forest are not 

accounted for”. This very important statement requires careful interpretation. Essentially 

this confirms that it is necessary to allow for any changes in forest carbon stocks 

associated with the harvesting of wood, including the production of forest bioenergy. By 

this stage in the discussion in this current report, it must be evident that such a claim is 

undisputable.   
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5.4. Other recent reviews and commentaries on GHG emissions 
associated with forest bioenergy 

In addition to the JRC technical report reviewed in the preceding discussion, there are 

several other important reviews and commentaries in the scientific and technical 

literature that address the subject of the potential role of forest bioenergy, with particular 

regard to meeting targets for renewable energy and levels of GHG emissions in the EU. 

Six such reports and scientific papers have been identified as requiring close assessment 

(Trømberg et al., 2011; Schulze et al., 2012; Adams et al., 2013; EEA, 2013; Lamers 

and Junginger, 2013; Ros et al., 2013). These vary in length, scope and treatment of the 

subject of forest bioenergy but have all been identified as having some significance, 

variously representing substantial technical assessments, important critical insights, 

and/or having prominence in the ongoing scientific discussion concerning forest 

bioenergy, associated GHG emissions, and how these should be assessed. Reviews of 

each of these six reports and scientific papers are presented in Tables 5.4 to 5.9, using 

the same structure adopted for considering the JRC review, as discussed in Section 5.3. 

Some overall conclusions are presented in Section 5.4.1, including consideration of 

common points drawn from all the reviews, including the JRC review. 

 

Table 5.4 Analysis of PBL/Alterra note: 

Climate effect of wood used for bioenergy (Ros et al., 2013) 

Objectives and Scope 

The introduction to the note explains that the Dutch Ministry of Infrastructure and 

the Environment requested an overview of the impact of wood used for bioenergy on 

greenhouse gas emissions and climate change. The PBL/Alterra note presents this 

overview. The stated main objective is to provide information that is relevant in the 

process of setting sustainability criteria for using woody biomass as a source of 

energy.  

The overview covers wood produced for use as bioenergy from clear felling of 

forests, thinning operations, harvest residues and waste wood. It is not clear 

whether the scenarios considered assume that additional production of wood from 

forests is for a mix of products (i.e. a general mobilisation of the resource for solid 

wood products and bioenergy), or exclusively to increase the supply of bioenergy. 

The emphasis is on use of forest bioenergy for power generation, but there is some 

consideration of biomass transport fuels. The geographical scope is primarily on 

Europe, with time horizons of 2030 and 2050 considered. Supporting analysis and 

modelling focuses on two metrics for representing the impacts on GHG emissions of 

increased harvesting of forest biomass, for various bioenergy feedstocks produced 

by a range of forest management options. The first metric is referred to as the 

‘quotient of carbon losses from forests’. The second metric is GHG emissions 

payback time. Reference is made to results for payback times reported in the JRC 

technical report (see Section 5.3) supplemented by results generated using the 

EFISCEN model. Implications for accounting for forest bioenergy in regulatory 

frameworks and for sustainability criteria for solid biomass are briefly considered.  
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Table 5.4 (continued) Analysis of PBL/Alterra note: 

Climate effect of wood used for bioenergy (Ros et al., 2013) 

Key findings, insights and conclusions 

Based on the consideration of results for quotient of carbon loses from forests, it is 

concluded that increased clear felling, increased thinning and increased extraction of 

harvest residues exclusively for production of forest bioenergy will lead to significant 

reductions of forest carbon stocks (compared to ‘business as usual’). It is also noted 

that an increased demand for forest bioenergy could stimulate forest management 

activities that would increase or at least sustain existing forest carbon stocks (e.g. 

establishment of trees at higher densities, selection of tree species to improve 

productive potential and forest fire suppression). It is noted that such a conclusion is 

also reached by Trømberg et al. (2011), Jonker et al. (2013) and in the JRC 

technical report. Salvage logging is assessed as involving a balance of positive and 

negative potential impacts on GHG emissions. The creation of new forests is 

identified as generally achieving net GHG emissions reductions, provided that an 

indirect land use change is avoided. However, caution is expressed concerning the 

option of replacing biologically mature forest stands with fast growing plantations 

dedicated to biomass production. With regard to waste wood, the principle of 

‘biomass cascading’ is advocated, whilst noting challenges for implementation. 

Estimates of GHG emissions payback time produced using the EFISCEN model are 

broadly consistent with those presented in the JRC technical report (see Section 5.3 

and Appendix 4). These results are considered further in Section 5.5.3 of this current 

report. 

A potential loophole is noted for GHG emissions from harvested wood under the 

Kyoto protocol (see Section 3.14 of this current report). Two options are proposed 

for addressing this loophole which may also have wider application. It is noted that 

existing criteria forming part of certification schemes for sustainable forest 

management already indirectly address issues relevant to forest carbon stocks (e.g. 

forest management in general, control of extraction of forest residues, avoidance of 

loss of forest quality).  

The conclusions stress the importance of allowing for contributions to biogenic 

carbon (arising from forest carbon stock changes) when estimating GHG emissions 

of forest bioenergy. The varying impacts of different forest bioenergy feedstocks 

produced by different forest management interventions are distinguished in the 

conclusions. It is pointed out that good forest management is essential for 

sustainable wood production and the role of more general wood mobilisation is 

mentioned as a requirement for increasing the supply of forest bioenergy. It is 

recommended that additional harvesting of wood (more specifically clear felling) 

exclusively for the production of bioenergy should be avoided. 
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Table 5.4 (continued) Analysis of PBL/Alterra note: 

Climate effect of wood used for bioenergy (Ros et al., 2013) 

Points requiring clarification 

Probably most importantly, the note would benefit from further clarification of the 

actual scenarios considered, i.e. whether these are concerned with additional 

production of wood from forests for a mix of products (i.e. a general mobilisation of 

the resource for solid wood products and bioenergy), or with scenarios in which 

additional production is exclusively to increase the supply of bioenergy. From much 

of the discussion, it is apparent that the main focus is on scenarios involving 

increased extraction of wood for forest bioenergy only. As with the JRC technical 

report, scenarios involving a general mobilisation of wood resources for co-

production of solid wood products and bioenergy receive almost no attention.  

 

Table 5.5 Analysis of SUPERGEN Bioenergy Hub report: Understanding 

greenhouse gas balances of bioenergy systems (Adams et al., 2013) 

Objectives and Scope 

The report aims to inform stake holders with wider energy and environmental policy 

or research interests on issues relating to GHG emissions of bioenergy systems. 

The scope is primarily concerned with bioenergy sources that may contribute to 

meeting energy demand in the UK. A wide range of bioenergy systems are 

considered including annual crops, perennial crops, forests, agricultural wastes and 

residues and algal systems. The emphasis is on discussion of methodological 

systems in LCA and to offer guidance on approaches for making assessments of GHG 

emissions of bioenergy sources. There is very limited consideration of actual results 

for GHG emissions. 

Key findings, insights and conclusions 

In terms of factors determining GHG emissions, the report concludes that different 

issues are important for different bioenergy sources. For forestry systems it is 

concluded that key issues are carbon stock changes that take place in forests due to 

bioenergy production, and the role of co-production of solid wood products alongside 

bioenergy production (see Table 1 in the SUPERGEN report). Potential biomass 

productivity is recognised as generally important for all bioenergy systems.  

The report emphasises the need to adopt an approach based on ‘supply chain 

accounting’ rather than ‘territorial’ (or sectoral) accounting when making 

assessments of GHG emissions of bioenergy systems, and the importance of 

representing associated land-use change (including changes to forest management), 

and comparison with an appropriate reference or baseline scenario.  

When considering variability for results for GHG emissions of bioenergy sources, the 

report makes a critical distinction between sources of systematic variation and 

sources of uncertainty. The report also stresses that variations in LCA methodology 

can be important in determining results. A number of factors are identified, and the 

conclusions are consistent with those reached in Sections 3.17 and 4.11 of this 

current report. The report stresses the crucial importance of clearly defining the goal 

and research question to be addressed by any LCA study.  
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Table 5.5 (continued) Analysis of SUPERGEN Bioenergy Hub report: 

Understanding greenhouse gas balances of bioenergy systems  

(Adams et al., 2013) 

Points requiring clarification 

Although the report clearly explains that the question posed is crucial in determining 

the results produced by an LCA study (and, potentially, the differences in results of 

studies), it does not describe an approach for proper construction of goals and 

research questions. There is an implicit assumption that standard LCA methodologies 

define these questions; rather, the goal and research question need to define the 

LCA methodology. 

Some of the critiques of LCA methodology included in the conclusions are not wholly 

justified. It is claimed that LCA cannot inherently accommodate temporal effects; in 

fact LCA methodologies can accommodate such effects but most examples of LCA 

studies do not do this. It is also claimed that LCA cannot accommodate ‘top-down 

effects’ (macro-scale impacts), and is essentially a static tool that cannot represent 

dynamic changes. In fact there are ‘statistical’ LCA approaches that are analogous to 

input-output analysis, relevant to the capture of top-down effects. Also, LCA does 

not have to be a ‘static’ tool, although many studies adopt a static approach to 

analysis.  

 

Table 5.6 Analysis of EEA report:  

EU bioenergy potential from a resource-efficiency perspective (EEA, 2013) 

Objectives and Scope 

The aim is to provide an analytical summary of the results of a more substantial 

report by the EEA European Topic Centre on Spatial Integration and Analysis, which 

re evaluated the bioenergy potential and aimed to provide insights into: 

 The potential GHG emissions achievable by different technologies for biomass 

conversion. 

 How to bring resource efficiency perspective into consideration of bioenergy 

development. 

 Concerns about changes in carbon stocks in forests associated with the increased 

production of forest bioenergy. 

 The implications of current trends in bioenergy cropping from an environmental 

perspective. 

Additional qualitative analysis is included concerning indirect land use change issues 

associated with bioenergy crops and potential carbon stock changes in forests 

associated with the production of forest bioenergy. The focus is therefore on a range 

of possible sources of bioenergy including those based on agricultural wastes. The 

time horizon of greatest interest is 2020, reflecting existing targets for bioenergy 

consumption and GHG emissions reduction in the EU. In fact, forest bioenergy 

receives relatively little attention in the report. 

A major part of the report is concerned with large scale analysis of three scenarios 

for future development of bioenergy consumption in the EU, which all aim to meet 

existing targets for bioenergy consumption, but involve varying levels of constraints 

in terms of targets of GHG emissions and other environmental factors.  
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Table 5.6 Analysis of EEA report:  

EU bioenergy potential from a resource-efficiency perspective (EEA, 2013) 

Key findings, insights and conclusions 

Varying the environmental constraints on bioenergy consumption should not 

significantly affect the potential for total bioenergy supply. However, it is likely to 

have a strong affect on the mix of bioenergy feedstocks involved in meeting the total 

supply. This is mainly achieved through optimising on the most efficient bioenergy 

production and conversion pathways in more constrained scenarios, involving a shift 

away from first generation bioenergy sources towards perennial crops and relatively 

more use for generation of heat, electricity and biogas.  

Different bioenergy pathways vary significantly in terms of GHG emissions and other 

environmental impacts. Use of agricultural wastes and residues can involve low GHG 

emissions and wider environmental impacts. Conversely, for biomass produced from 

energy crops, some feedstocks and conversion pathways can involve increased GHG 

emissions and detrimental effects on the wider environment. Efficiency and low GHG 

emissions for bioenergy need to be achieved by considering all the steps in specific 

process chains and potential interactions between them. Bioenergy produced from 

harvest residues of forests are assessed favourably in terms of resource efficiency, 

but uncertainty is expressed concerning GHG emissions payback times. 

Points requiring clarification 

It is recognised that the resource efficiency and GHG emissions associated with 

production and consumption of forest bioenergy require further research and 

clarification, particularly with regard to biogenic carbon emissions due to potential 

changes in forest carbon stocks. 

 

Table 5.7 Analysis of Biofuels, bioproducts and biorefining perspective:  

The ‘debt’ is in the detail: a synthesis of recent temporal forest carbon 

analyses on woody biomass for energy (Lamers and Junginger, 2013) 

Objectives and Scope 

This article aims to review the state of the art in ‘temporal forest carbon modelling’, 

particularly with regard to the assessment of GHG emissions of forest bioenergy. 

Comparison is made of studies in the scientific literature, highlighting differences in 

approaches to methodology, notably concerning the representation of biogenic 

carbon and forest carbon stock changes. Implications for policies related to forest 

bioenergy are considered.  

The scope deals primarily with the EU but, in this context, it is recognised as 

critically important to understand the potential contributions of imported forest 

bioenergy. Therefore, the scope also includes North America and, to the limited 

extent possible, other regions of the world that may be involved in supplying forest 

bioenergy to the EU. Interactions within the forest and wood processing sectors at 

international scale are also considered. Non-GHG climate drivers are acknowledged 

as potentially important but regarded as out of scope. The review of approaches to 

methodology covers methodological choices (modelling framework), scenario 

assumptions and model parameterisation. Relationships between systems studied, 

approaches to calculation to GHG emissions and ultimate results are explored. 
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Table 5.7 (continued) Analysis of Biofuels, bioproducts and biorefining 

perspective: The ‘debt’ is in the detail: a synthesis of recent temporal forest 

carbon analyses on woody biomass for energy (Lamers and Junginger, 2013) 

Key findings, insights and conclusions 

Many of the findings, insights and conclusions drawn in the article show strong 

consistency with those arrived at in the JRC technical report (see Section 5.3) and 

Sections 2, 3 and 4 of this current report. A meta-analysis of GHG emissions 

payback times reported in the scientific literature for forest bioenergy sources 

exhibits clear consistency with results presented in the JRC technical report and 

strong similarities with the interpretation presented in Appendix 4 and Table 5.1 of 

this current report. These results are considered further in Section 5.5.3.  

The selection and construction of a reference or baseline scenario is identified as a 

key influencing factor in determining the GHG emissions payback time of a particular 

studied scenario for production and use of forest bioenergy. This is highlighted by a 

meta-analysis of published studies (Table 1 in the article) which identifies the range 

of assumptions made about baseline scenarios in individual studies. It is considered 

that such baseline assumptions are inevitably specific to circumstances in different 

geographical regions and the details of the scenario being modelled (effectively, the 

goal and research question being studied). The heavy dependence of LCA studies of 

forest bioenergy on forest sector models, and in particular forest carbon accounting 

models is noted, recognising that these are not always in agreement with field 

assessments of GHG dynamics in forest areas. Individual LCA studies are identified 

as varying in the detail in which they represent carbon flows and GHG emissions 

associated with harvested wood. The reliance of majority of the LCA studies on 

presenting results in terms of GHG emissions, rather than translating these into 

estimates of potential climate warming, is considered to be an important 

shortcoming in existing research. The importance of linking forest carbon accounting 

models with economic models representing marketing dynamics under different 

bioenergy scenarios is emphasised. In particular, it is noted that, “the global forest 

sector experiences long-term autonomous trends, such as the decade long shift of 

pulp production away from traditional suppliers in the Northern Hemisphere toward 

countries in Latin America and South-East Asia”. 

It is suggested that variations between studies are not necessarily shortcomings or 

substantive methodological conflicts. Rather, these variations reflect the large range 

of possible scenarios for forest bioenergy use that can be studied (e.g. types of 

biomass feedstock, tree species, growing conditions, forest management etc.). The 

importance of comprehensive representation of all processes involved in forest 

bioenergy production and use is emphasised. It is recognised that results for GHG 

emissions of forest bioenergy can be very sensitive to detailed assumptions about 

GHG emissions associated with individual process steps. The possibility that 

additional supply of forest bioenergy may not displace an equivalent quantity of 

fossil energy is noted and viewed as requiring representation in future research. 

LCA studies are identified as tending to employ one or both of two possible scenarios 

to represent a baseline or reference scenario when calculating GHG emissions, 

particularly those due to biogenic carbon. The first of these is a ‘business as usual’ 

scenario, prior to introduction of changes involving production of additional forest 

bioenergy. The second most common scenario referred to as a baseline involves 

forest protection or ‘no use’. The potential validity of both baselines is acknowledged 

but important qualifying remarks are made regarding the ‘no use’ scenario. 
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Table 5.7 (continued) Analysis of Biofuels, bioproducts and biorefining 

perspective:  The ‘debt’ is in the detail: a synthesis of recent temporal forest 

carbon analyses on woody biomass for energy (Lamers and Junginger, 2013) 

Key findings, insights and conclusions (continued) 

Specifically, the ‘no use’ scenario is acknowledged as entirely valid in some 

situations, but its relevance is questioned in some cases, e.g. where existing 

“intensive even-aged forestry, i.e. plantations” are being studied. It is noted that in 

reality, conversion of such systems to agriculture or industrial development may be 

more likely in the absence of demand for wood fibre or bioenergy. Issues concerning 

potential risks of disturbance are also mentioned but identified as uncertain and a 

subject requiring further study.  

A number of factors are identified as representing the main sources of uncertainty in 

LCA studies of GHG emissions of forest bioenergy. These include soil carbon 

dynamics, the reliable definition of counterfactuals and the representation of market 

dynamics/responses in scenarios. It is argued that a coherent approach is required 

when choosing reference fossil energy systems and three options are suggested, i.e. 

explicit substitution for a specific fossil energy source, replacement of an average 

energy mix, and substitution for a specific energy production technology identified as 

marginal (in that it would be deployed in the absence of availability of the forest 

bioenergy).  

A number of policy relevant points are identified : 

 Policies supporting the use of forest bioenergy to meet targets for renewable 

energy consumption in 2020 will have effects on the climate beyond this 

timescale. It is important to decide the priority for forest bioenergy in making 

short-term and long-term contributions towards reducing GHG emissions. 

 There are forest bioenergy feedstock options that can provide immediate benefits 

in terms of reduced GHG emissions when displacing fossil energy sources, 

including harvesting residues, solid wood industry co-products, salvage logging 

(in some contexts) and creation of new forest areas. However, it is stressed that 

some options should not be viewed as a ‘silver bullet’, noting strong dependence 

on the effectiveness with which they displace fossil energy sources. It is therefore 

considered inappropriate to adopt measures aimed simply at including or 

excluding different types of forest biomass feedstock for use as bioenergy.  

 It is noted that a significant body of LCA studies of forest bioenergy focus on 

production scenarios involving utilisation of stemwood or whole trees but, under 

current conditions, such scenarios are not common. 

Assessment of policies towards consumption of forest bioenergy sources needs to be 

set in the context of existing market trends, e.g. the steady downturn in some solid 

wood product sectors, potential over supply of forest biomass from associated forest 

areas, and interactions with other industrial sectors, e.g. non-wood construction 

materials.   
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Table 5.7 (continued) Analysis of Biofuels, bioproducts and biorefining 

perspective:  The ‘debt’ is in the detail: a synthesis of recent temporal forest 

carbon analyses on woody biomass for energy (Lamers and Junginger, 2013) 

Points requiring clarification 

Like other reviews and commentaries, the article starts by considering the current 

situation regarding accounting for GHG emissions associated with harvested wood 

and forest bioenergy, particularly those referred to in international commitments and 

EU regulations. However, most of the discussion in the paper appears to be more 

concerned with how to correctly assess the potential GHG emissions associated with 

increased production and use of bioenergy. It is important to clarify that 

methodologies to account for GHG emissions within international commitments and 

regulatory frameworks generally need to be designed differently to methodologies 

for assessing potential GHG emissions associated with future scenarios for forest 

bioenergy consumption.  

 

Table 5.8 Analysis of GCB Bioenergy invited editorial: 

Large-scale bioenergy from additional harvest of forest biomass is neither 

sustainable nor greenhouse gas neutral (Schulze et al., 2012) 

Objectives and Scope 

The objective is to assess the potential impacts of a significant increase in global 

consumption of bioenergy on GHG emissions and the integrity of terrestrial 

ecosystems.  

The focus is strongly on carbon stocks in terrestrial vegetation systems, most 

specifically associated with forests. There is limited consideration of full life cycle 

assessment of bioenergy consumption. The analysis is restricted to assessing the 

impacts of potential increases in bioenergy consumption, rather than scenarios 

involving more general mobilisation of forest resources for co-production of solid 

wood products and bioenergy.  

Key findings, insights and conclusions 

The discussion emphasises that a significant increase in harvesting of biomass, 

particularly forest biomass, for use as bioenergy, will lead to significant increases in 

GHG emissions. It is also argued that subsidies for forest bioenergy will cause 

diversion of woody biomass from use for solid wood products, for consumption as 

bioenergy instead. The view is expressed that there will also be significant negative 

consequences for biodiversity and other ecosystem services if production of woody 

biomass from forests is intensified. An important trade-off is emphasised between 

maximising biomass productivity and maximising carbon stocks of land-based 

vegetation.  
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Table 5.8 (continued) Analysis of GCB Bioenergy invited editorial: 

Large-scale bioenergy from additional harvest of forest biomass is neither 

sustainable nor greenhouse gas neutral (Schulze et al., 2012) 

Points requiring clarification 

It should be clarified that the assessment is from a narrow ‘natural science’ 

perspective with principal focus on potential negative impacts on terrestrial 

vegetation systems. This is emphasised by the statement included in the paper, also 

given high profile in the abstract, that, “humans would appropriate ca. 60% of the 

global increment of woody biomass if forest biomass were to produce 20% of current 

global primary energy supply” (emphasis in italics added). The assessment would 

benefit from more comprehensive treatment, particularly with regard to 

consideration of LCA studies of forest management and wood production.  

The paper appears to support the view that a ‘no use’ scenario should be referred to 

as a baseline when assessing the contribution of forest carbon stock changes to GHG 

emissions of forest bioenergy. As discussed in Section 4.10 of this current report, 

the use of a ‘no use’ baseline is sometimes, but certainly not always, appropriate, 

depending on the goal and research question being addressed by an assessment, 

and the details of the system being studied.  

 

Table 5.9 Analysis of Journal of forestry article: 

Carbon cycle effects of different strategies of utilisation of forest resources – 

a review (Trømberg et al., 2011) 

Objectives and Scope 

This paper sets out to review a number of studies with relevance to Norwegian 

forestry to assess the global warming impacts of the use of forest biomass to 

substitute for fossil fuels and fossil fuel intensive products, and the impacts of a 

number of forest management options. 

This study specifically addresses forest management and usage of forest resources 

in Norway. It attempts to assess those factors that will impact the carbon cycle and 

also the non-GHG effects.  It also mentions non-climate impacts such as economic 

and environmental impacts and attempts to identify in what areas more knowledge 

is required. 

The report reviews studies into carbon flows in forestry systems, the impacts of 

forest management on these flows, and the impacts of product and commodity 

substitution by forest products. 

 



Biogenic Carbon  

and Forest Bioenergy 

156    |    Final report on Task 1    |    Robert Matthews   |    15th May 2014 

Table 5.9 (continued) Analysis of Journal of forestry article: 

Carbon cycle effects of different strategies of utilisation of forest resources – 

a review (Trømberg et al., 2011) 

Key findings, insights and conclusions 

Use of forest harvesting residues can give GHG benefits in the short, medium and 

long term.  However increased demand for biomass to replace fossil fuel will give 

increased GHG emissions in the short to medium term, but benefits in the long term 

based on current Norwegian forest management practice and increased harvesting.  

For maximum GHG benefits it is important that wood is used to replace the most 

GHG intensive commodities.  This will influence the timescale on which GHG benefits 

become positive. 

It is concluded that it is inappropriate to consider just one country in isolation as 

increased usage and/or harvesting in one country will impact harvesting levels in 

other countries and imports/exports. 

It is also necessary to consider total global climate effects, not just GHG emissions.  

Consideration of changes in factors such as albedo could have implications on 

optimum forestry strategy. 

Although changes in forestry practice can have an impact on carbon sequestration, 

most of these effects are only felt in the medium to long term with the exception of 

forest fertilizer application and use of forestry residues and allocation of harvest 

which can have relatively rapid benefits. 

It is pointed out that the current age structure of the Norwegian forest means that 

gross growth will gradually decline and that understanding of the carbon impacts of 

old forest stands is incomplete. 

Points requiring clarification 

This is essentially a qualitative, rather than quantitative analysis.  Although there are 

a number of references to numerical results and specific timescales, e.g. for 

recovery of forest carbon stocks following harvesting, and for different wood 

products, there is no attempt to combine carbon stocks in the forest with those in 

timber products.  All final discussion and conclusions are therefore of necessity 

qualitative rather than quantitative.  Without including wood products in the analysis 

of carbon stocks, it is difficult to see how some of the conclusions can be justified. 

A few individual, more minor points that require clarification: 

In discussing soil carbon stocks following forest harvesting, results are highlighted 

which suggest initial reductions in soil carbon. It is acknowledged that the overall 

effect is uncertain, but there appears to be no comment on particular, longer term 

results which show soil carbon stocks significantly higher than before harvesting. 

There are a number of places in the discussion of carbon stock changes and flows 

where statements are made without it being clear whether they are based on the 

review of papers or their own modelling or analysis. 

 

Table 3 refers to CO2 savings by substitution of steel (and concrete) by wood 

products of 250 tonnes CO2-eq m-3 of wood, whereas the text refers to (more 

realistic) figures of a few hundred kg CO2-eq m-3. 
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Points requiring clarification (continued) 

Although the use of pulpwood for paper and board manufacture is mentioned at a 

number of points in the report, owing to the assumed short lifetime of these 

products there appears to be no attempt to incorporate them into consideration of 

carbon stocks, and no mention is made of the impact of recycling. 

This report makes it clear that there are a number of uncertainties which still require 

clarification and further analysis, including albedo effects associated with different 

levels of harvesting, the effects of ageing forests on carbon sequestration and the 

substitution effects of wood products. 

 

5.4.1. Conclusions on other existing reviews and commentaries 

In large part, the reviews and commentaries considered in Tables 5.4 to 5.9 present a 

consistent story and frequently echo points raised in the JRC technical report (see 

Section 5.3). Some apparent diversity in viewpoints may arise from particular 

perspectives or scopes taken in individual reviews, e.g. a focus on natural science (see 

for example Table 5.8). Some useful additional insights may be drawn from the various 

reviews. Notably, several reviews stress the importance of assessing GHG emissions in 

the context of socio-economic and techno-economic developments and trends that are 

already taking place (see for example Table 5.7). The critical link between the goal and 

research question to be addressed and the detailed methodology to be applied in an LCA 

study of forest bioenergy is also strongly emphasised (see for example Tables 5.5 and 

5.7). The observation that variations between studies are not necessarily shortcomings 

or substantive methodological conflicts, but reflect the large range of possible scenarios 

for forest bioenergy use that can be studied (see Table 5.7), is particularly pertinent to 

any attempt to review and interpret the diverse results presented in the literature. 

However, this may imply that results of existing studies may be of relatively little value if 

the goal and research question they address are not relevant to the objectives of a new 

study. 

Particularly noteworthy points commonly expressed in the reviews, including the JRC 

review report include: 

 It is necessary to include biogenic carbon when assessing the GHG emissions due to 

the consumption of forest bioenergy. This point, although already evident from the 

discussion in this report, is unanimously expressed by existing reviews. Furthermore, 

all but one of the reviews comment on the risks of potentially detrimental impacts on 

forest carbon stocks, if high pressure were to be placed on forest resources. 

 The majority of studies observe that an increase in levels of harvesting in forest areas 

to produce bioenergy will involve a permanent, one-off reduction in forest carbon 

stocks. 

 Three studies also note the possibility of actions being taken in the forest sector in 

response to increased demand for forest bioenergy that could potentially also sustain 
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or enhance forest carbon stocks, e.g. regeneration or planting of stands at high tree 

densities, afforestation. The importance of avoiding iLUC in the case of afforestation is 

also commented on. 

 Two studies stress the importance of assessing the impacts of forest bioenergy on 

climate comprehensively, i.e. including non-GHG effects on climate such as albedo. 

In discussing the methodologies needed to assess the climate effects of changes in 

consumption of forest bioenergy: 

 All of the studies particularly concerned with commenting on methodology state that 

LCA is the appropriate tool for making such an assessment, but also stress that results 

are very sensitive to variations in LCA methods. 

 The majority of the reviews note that a major source of variation in reported results of 

LCA studies of forest bioenergy is due to the particular bioenergy feedstocks being 

assessed in the different studies. 

 In terms of sensitivity of results to LCA methodology and assumptions, the reviews 

identify many factors as important. Assumptions about bioenergy conversion 

technology, counterfactual land use and counterfactual energy source are particularly 

prominent. In this context, one review emphasises the distinction between systematic 

variation and sources of uncertainty (Table 5.5). 

The reviews also present a fairly consistent view on the GHG emissions associated with 

the consumption of different types of bioenergy feedstocks and associated forest 

management changes: 

 The majority emphasise that, typically, additional consumption of forest bioenergy 

involves increased GHG emissions for an initial period, followed by reduced GHG 

emissions compared with fossil energy sources. Two studies identify a potential 

exception in the case where additional harvesting involves co-production of bioenergy 

alongside material/fire wood products, for which GHG emissions can be reduced very 

quickly. However, it is also stressed that the outcome is extremely sensitive to the 

counterfactuals for the material/fibre products. In this context, one study emphasises 

the importance of ensuring that wood replaces the most GHG-intensive commodities 

(Table 5.9). 

 Those reviews which present their own analysis and/or meta-analyses arrive at 

conclusions broadly consistent with the JRC review (Tables 5.4 and 5.7). 

 The majority of reviews also highlight the extraction of harvest residues as a 

‘moderate risk’ case for production of additional forest bioenergy. 

 Two studies identify the utilisation of waste wood and/or sawmill co-products as 

potentially ‘low risk’, particularly in the case of ‘biomass cascading’. 

 Two studies emphasise the case of diverting wood feedstock from the manufacture of 

material/fibre products to use as bioenergy as ‘very high risk’. 

 The growth rate of forest areas is highlighted by three reviews as important in 

determining outcome for GHG emissions of additional harvesting of forest bioenergy, 

although the details are very context-specific. 
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In considering all of the above points, potentially very important specific conclusions 

reported by two reviews should also be highlighted. On the one hand, the review of EEA 

(2013) concludes that varying the environmental constraints on bioenergy consumption 

should not significantly affect the potential for total bioenergy supply. However, it is 

likely to have a strong effect on the mix of bioenergy feedstocks involved in meeting the 

total supply (see Table 5.7). This suggests that, in principle, consumption of forest 

bioenergy from ‘low risk’ sources could be prioritised, without limiting the potential for 

overall supply of bioenergy. However, on the other hand, Lamers and Junginger (2013, 

see Table 5.7) warn that it would be inappropriate to adopt measures aimed simply at 

including or excluding different types of forest biomass feedstock for use as bioenergy, 

because it would be too simplistic to identify specific types of feedstocks and/or 

associated forest management systems as a ‘silver bullet’ (see Table 5.7). 

5.5. Case studies of GHG emissions associated with forest bioenergy 

The consideration of individual published case studies of GHG emissions associated with 

forest bioenergy builds on the existing discussions presented in Sections 2 to 4 of this 

report and on the extensive reviews of case studies already carried out as discussed in 

Sections 5.3 and 5.4, notably as reported by Marelli et al. (2013) and Lamers and 

Junginger (2013). Against this background, a further exhaustive treatment of relevant 

literature would be duplicative and unlikely to provide new insights. This current review 

of case studies therefore focuses on three issues, directly following from the research 

questions posed in the introduction to this report.  

A first step in carrying out the review of individual case studies involved identifying and 

bringing together an essential collection of contemporary scientific research papers and 

technical reports on the subject. A total of 31 published studies were identified19.  It 

should be noted that some of these papers have already received attention in the 

discussion of existing reviews and commentaries. In addition, results presented in the 

review of Ros et al. (2013) were included. 

A meta-analysis of the case studies was then carried out, consisting of a set of 

assessments (Appendices 5 to 11). The purpose of the meta-analysis is to review and 

interpret the methods and results in the various case studies. The emphasis in the meta-

analysis is on eliciting information and insights that add to those already arrived at 

earlier in this report and by previous reviews. To begin with, brief summary descriptions 

are provided in Appendix 5 for all 31 published case studies (avoiding duplicate entries 

for papers which are very similar). A detailed meta-analysis of the published case 

                                       
19

 Mitchell et al. (2009); Walker et al. (2010); Werner et al. (2010); Cherubini et al. (2011ab); 

Hudiburg et al. (2011); Kilpeläinen et al. (2011); Lecocq et al. (2011); McKechnie et al. (2011); 

Repo et al. (2011, 2012); Ter-Mikaelian et al. (2011); UN-ECE (2011); Zanchi et al. (2011); 
Böttcher et al. (2012); Colnes et al. (2012); Galik and Abt (2012); Holtsmark (2012a); Krug et al. 
(2012); Mitchell et al. (2012); Nepal et al. (2012); Poudel et al. (2012); Routa et al. (2012); 
Stewart and Nakamura (2012); Bernier and Paré (2013); Eliassson et al. (2013); Fiorese and 
Guariso (2013); Jonker et al. (2013); Kallio et al. (2013); Lamers et al. (2014); Matthews et al. 
(2014). 
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studies, against a large set of criteria was also carried out and a summary for the most 

relevant criteria can be found in Appendix 6. 

It is notable that the various case studies use a variety of metrics and functional units for 

reporting GHG emissions and seemingly adopt every conceivable approach to the 

presentation of results, in graphical or tabular form. This lack of standardisation 

significantly frustrates attempts to review and compare the results of the various studies. 

5.5.1. Transparency of case studies 

An assessment in Appendix 7 is concerned with the specific issue of the transparency of 

published case studies. This is regarded as an important point that must be considered 

when working with previously published results and comparing different case studies. 

Adequate transparency is needed to be able to understand what results for GHG 

emissions associated with forest bioenergy actually represent, to understand how they 

were calculated, and to ensure correct interpretation and use. The assessment of 

transparency is based on seven tests: 

1 A broad description is given of calculation methods, and of data, results and 

parameters used in calculations. 

2 Citations are given for all data, results and parameters used in calculations.  

3 All data results and parameters used in calculations are presented, with original 

sources and references cited where appropriate. 

4 Citations are given for published statements of methods, models and approaches 

which set out the general principles adopted in calculations. 

5 In addition to Test 4, it is stated that the published statements describe in detail the 

methods, models and calculation steps used. 

6 Aspects of the detailed calculation methods and data, results and parameters used in 

calculations are described.  

7 The calculation methods employed and the data, results and parameters referred to in 

calculations are fully described, so that it is possible to replicate the calculations and 

results. 

Ideally, all published case studies, indeed all published scientific reports should pass Test 

7, since this represents a fundamental principle of the scientific method. However, it is 

fully accepted that there are significant practical constraints on the description of 

methods that can be supplied within the framework of a published journal article, 

particularly for the analysis and modelling of complex systems. The seven transparency 

tests listed above are thus intended to provide an indication of the extent to which the 

description of systems and calculations in published case studies approach the ideal.  

All studies have been found to adequately present a broad description of calculation 

methods and of data, results and parameters used in calculations (Test 1). The majority 

of published studies also give citations for all data, results and parameters used in 

calculations, and for published statements of methods, models and approaches which set 

out the general principles adopted in calculations (Tests 2 and 4). Often, they also 
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describe in detail calculation methods, and data, results and parameters (Test 6). It is 

perhaps surprising that a small number of published studies actually fail these tests. A 

minority of studies present all data, results and parameters used in calculations, with 

original sources and references cited where appropriate (Test 3), and state that they 

refer to published statements that describe in detail the methods, models and calculation 

steps used. Only two papers fully describe the calculation methods employed and the 

data, results and parameters referred to in calculations, so that it is possible to replicate 

the calculations and results. However, this reflects the fact that these papers are actually 

intended as methodology statements (Cherubini et al., 2011ab), and must be regarded 

as exceptions that are less relevant to the current exercise. 

The efforts of the authors of published case studies towards achieving adequate 

transparency in methodologies used for assessment of GHG emissions must be 

applauded. At the same time, it must be acknowledged that published studies generally 

lack complete transparency. This can sometimes be a barrier to the interpretation and 

use of the results of studies, for example when attempting to establish the sensitivity of 

GHG emissions of forest bioenergy in terms of specific feedstocks and associated forest 

management. It also limits the use of existing literature for informing the development of 

appropriate and robust methodologies for the assessment of GHG emissions associated 

with forest bioenergy, e.g. for the purposes of establishing a methodology for policy 

evaluation with regard to forest bioenergy or accounting of the GHG emissions of forest 

bioenergy within a regulatory framework. 

5.5.2. Methodologies applied in case studies 

An assessment in Appendix 8 builds on the meta-analysis presented in Lamers and 

Junginger (2013), which compares the methodological choices, scenario assumptions and 

model parameterisations adopted in individual case studies (see Table 1 in Lamers and 

Junginger, 2013). Most of the criteria referred to in Appendix 8 derive directly from 

Lamers and Junginger, where they are described and discussed. In addition, Table A8.1 

in Appendix 8 lists the time horizons adopted in individual case studies.  

The results in Appendix 8 confirm the previous meta-analysis of Lamers and Junginger 

(2013). There is considerable variation in methodological choices, which practically 

reflect the scoping of individual analyses and the scenario assumptions. Holtsmark 

(2012b, 2013b) has demonstrated that detailed variations in calculation methods can be 

the prime cause of significant differences in results for GHG emissions of forest bioenergy 

reported by different published studies. As noted previously, these variations do not 

necessarily imply shortcomings or substantive methodological differences. Rather, these 

may reflect variations in the goal and research question addressed by specific case 

studies, as well as the details of the particular bioenergy system being studied. Whilst 

these variations in methodologies can create problems for comparing or combining the 

results of different studies, this is something that has to be accepted, so that meta-
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analyses, as attempted in previous reviews and in this review, must be undertaken with 

appropriate caution.  

Further insights concerning variation in published results of case studies can be drawn 

from the detailed meta-analysis against criteria undertaken as part of this review (see 

Appendix 6). Key points are summarised in Table 5.10. These consider details of the 

particular forest bioenergy systems studied as well as associated calculation methods. 

Table 5.10 reveals considerable variation in the forest bioenergy systems being studied 

and the calculation methods used for assessment. These will cause significant variations 

in reported results for GHG emissions. Based on the summary assessments in Table 5.10 

and Appendix 8, important sources of variations in results can be identified in a tentative 

descending order of significance: 

 Forest bioenergy feedstock and forest management scenario. 

 Bioenergy conversion system. 

 Counterfactual land use and counterfactual energy source(s). 

 LCA approach. 

 Spatial scale. 

It is notable that the main sources of variation in results for GHG emissions of forest 

bioenergy seem to be related to variations in the type of forest management, feedstock 

and conversion system considered in different studies. Assumptions about counterfactual 

land use and counterfactual energy sources are clearly also very influential, and arguably 

are also part of the definition of the systems being studied. Important and influential 

details of calculation methodology include the approach to LCA and the spatial scale with 

which forest systems are represented. Earlier cautionary observations concerning the 

sensitivity of results for GHG emissions to detailed calculation methods must be recalled. 
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Table 5.10 Summary of key points from analysis of published case studies  

of forest bioenergy against criteria (see Appendix 6) 

Criterion Summary assessment 

Geographical 

location 

Roughly half of the case studies consider forestry systems located in 

Europe whilst the rest consider locations in North America. One case 

study is theoretical and does not represent a specific geographic location.  

Scale (spatial) 

The majority of studies adopt a spatial scale of a forest holding or 

landscape, a region of a country or larger scale. This should be adequate 

to represent carbon stock dynamics across the population of stands of 

trees forming forests. However, eight studies use a spatial scale of an 

individual stand.  

Forest bioenergy 

feedstock 

A diverse range of feedstocks is represented in the case studies but the 

majority consider cases in which all additional harvested forest biomass is 

used for bioenergy, or there is additional extraction of harvest residues. 

Small numbers of studies consider other types of feedstock such as raw 

sawlogs, sawlog co-products and small roundwood. Recycled and waste 

wood are not represented in the case studies. For a few studies, the type 

of feedstock considered is not entirely clear.  

Bioenergy 

conversion 

system 

The majority of studies consider power only generation or district heating 

based on combustion. Six studies consider combined heat and power, 

only three studies consider small scale heating, and there is just one 

study of co-firing of biomass with coal for power generation. Quite a large 

number of studies do not specify a clearly defined conversion system.  

Forest 

management 

scenario 

The majority of the studies are concerned with assessments of additional 

extraction of biomass on harvesting or additional harvesting in general. 

However, a great diversity of scenarios are represented to a lesser extent 

including business as usual harvesting of bioenergy, shortened rotations, 

conversion of semi-natural forest to plantations, enrichment of growing 

stock and afforestation. For a few studies, the forest management 

scenario considered is not entirely clear. 

Wood utilisation 

scenario 

Many studies are concerned with the utilisation of ‘low value wood’ for 

bioenergy. However, in general, studies consider a diversity of possible 

wood utilisation scenarios. For example, large-scale scenario 

assessments may consider complex changes in patterns of wood use 

across the wood processing sector. 

Counterfactual 

land use 

Most studies assume a counterfactual land use of business as usual, 

whilst a significant number assume ‘no harvest’. It should be noted that a 

‘no harvest’ counterfactual land use will be equivalent to business as 

usual for some case studies. Studies of afforestation assume a ‘no forest’ 

counterfactual. Three studies do not represent a counterfactual land use. 

For one study, the counterfactual land use is not entirely clear.  

Counterfactual 

energy source(s) 

Most studies assume a counterfactual energy source of coal. However, a 

number consider oil or natural gas. Some studies refer to a generic fossil 

energy displacement factor or (in the case of some large scale 

assessments) detailed changes in energy use. Six studies do not 

represent a counterfactual energy source.  

LCA approach 

The vast majority of studies fail to clearly state the LCA approach and 

some might strictly be regarded as not LCA studies. However, 22 of the 

studies can be interpreted as applying a consequential LCA approach. 

Just four studies apply attributional LCA methods, whilst three should be 

regarded as employing other methods.   
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5.5.3. Meta-analysis of reported results of case studies 

In Appendix 9, results relating to the GHG emissions associated with the production and 

consumption of forest bioenergy are collated and listed along with essential information 

about the type of forest management, production scenario, conversion technology and 

details of any baseline scenario referred to in an individual case study. The format in 

Appendix 9 is based on the approach adopted in Tables 1 and 3 of the JRC technical 

report (Marelli et al., 2013), with certain elaborations, e.g. to accommodate results for 

GHG emissions expressed in different units. An attempt has also been made to clarify 

details of forest management, production and baseline scenarios where this may assist 

with interpretation. Wherever possible, results included in Appendix 9 are expressed as 

GHG emissions payback times (see Section 5.2.1). This has involved some interpretation 

and manipulation of results actually presented in some individual case studies.  

It is very important to understand that results for GHG emissions payback times reported 

in Appendix 9 have not always been calculated consistently. Rather, the details of 

calculation may be context-specific. For examples where harvesting is introduced in 

forests that were not previously in management for production, the payback time most 

likely relates to the period required to recoup the loss of forest carbon stocks as a result 

of the introduction of harvesting. For examples where forests are already in management 

for production (i.e. this is the business as usual scenario), but changes are made to 

existing management, the payback time is likely to represent the period required to 

achieve net GHG emissions reductions, compared to a business as usual reference case.  

The results in Appendix 9 display the same wide variation, as seen in Tables 1 and 3 of 

the original meta-analysis of the JRC technical report (Marelli et al., 2013). Quite a large 

number of results are available from the various published case studies considered. 

However, as already noted, these are reported using a range of metrics, functional units 

and time horizons. For most of the studies, it has been possible to translate the reported 

results into GHG emissions payback times. Some studies must be eliminated from further 

assessment at this stage because, for example, results may not be expressed in a 

suitable form or calculation methods used in the study are inappropriate. This is 

particularly the case for studies which have applied attributional LCA.  

Selected results from Appendix 9 can be further interpreted, as already presented above 

based on the results covered by the JRC technical report, to look for structure with 

respect to the types of forest bioenergy system being assessed. The results of this 

tentative investigation are given in Appendix 10. The assessment is generally limited to 

consideration of results for bioenergy systems concerned with power or heat, as there 

are too few values reported for transport fuels. (It should be noted, however, that the 

results reported for transport fuels derived from forest bioenergy appear unpromising in 

terms of associated GHG emissions.) 

The results in Appendix 10 largely confirm but also expand on the previous analysis 

based on the results reviewed in the JRC technical report. As with this earlier analysis, 
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the results suggest a classification of forest management and bioenergy production 

scenarios as typically ‘low risk’, ‘moderate risk’, ‘high risk’ and ‘very high risk’, as shown 

in Table 5.11. The analysis in Table 5.11 is consistent with and slightly elaborates on the 

version already presented in Table 5.3, Section 5.3.2. Table 5.11 also includes a 

provisional qualitative assessment of the relevance of various forest management and 

bioenergy production scenarios in contributing towards increased bioenergy consumption 

in the EU (see Appendix 11 for more information). 

Two scenarios in Table 5.11 are very similar, but are assessed differently as ‘very high 

risk’ and ‘low to moderate risk’. These scenarios represent two extremes of a case 

involving co-production of bioenergy in combination with wood material/fibre products 

(otherwise referred to as solid-wood products), through additional thinning and felling in 

forest areas. The outcomes of such scenarios in terms of risk of adverse effects on GHG 

emissions are very sensitive to the types of material/fibre products manufactured along 

with the bioenergy, and on the counterfactual materials that would be consumed in the 

absence of additional wood supply. Depending on these details, the outcomes can range 

from increased GHG emissions to very significant decreases in GHG emissions, as 

illustrated in the study of Matthews et al. (2014). It follows that scenarios involving 

increased harvesting of wood for co-production of bioenergy and material/fibre products 

can potentially be very important for contributing towards reduced GHG emissions, but 

could also have adverse effects, depending on the details of particular scenarios.  

Although it is possible to identify and distinguish forest bioenergy sources in terms of 

associated risk of adverse outcomes for GHG emissions, it is accepted that the diversity 

of possible outcomes presents significant challenges for the development of policies 

providing incentives for the use of forest bioenergy. It is important to determine the 

types of bioenergy system, forest bioenergy feedstock and forest management that are 

more or less likely to occur in response to incentives for increased consumption of forest 

bioenergy. A full answer to this question is beyond the scope of this report and may be 

addressed by subsequent tasks in this project. However, a provisional qualitative 

assessment would appear to suggest that: 

 A range of possible energy conversion systems, forest bioenergy feedstocks and 

associated changes in forest management could potentially be involved in meeting EU 

targets for consumption of bioenergy in 2020. Some cases are more relevant as 

activities that may occur in the EU, whilst others are more relevant for other regions 

likely to be involved in supplying forest bioenergy to the EU (the Russian Federation, 

Eastern Europe, Canada and the USA). 

 This range encompasses some of the cases described and assessed in Table 5.11, and 

includes cases involving ‘low’, ‘moderate’, ‘high’ and ‘very high’ risks of adverse 

outcomes for GHG emissions (as defined in Section 5.2.1 and Table 5.2).  

 The risks for certain cases are highly sensitive to details, such as conversion systems, 

the involvement of particular material/fibre co-products, and counterfactuals. 
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 The above observations also apply for consumption of bioenergy above the levels of 

2020 targets, but potentially involving a wider range of energy conversion systems, 

forest bioenergy feedstocks and associated changes in forest management. There is 

increased possibility of cases involving high and very high risks of adverse outcomes 

for GHG emissions. 

 Some cases in Table 5.11 are assessed as ‘less relevant’ to meeting EU targets for 

consumption of bioenergy in 2020 (or greater levels of consumption). Some of these 

cases are potentially important as involving low risk, but are likely to require 

complementary incentives, e.g. in support of forest practices.  

The qualitative assessment presented above seems to be broadly supported by the 

discussion in Section 2.5 of the JRC review report (Marelli et al., 2013), which suggests 

that increased biomass supply to meet EU 2020 targets is likely to be achieved through 

forest management activities involving, “additional fellings, harvest residues, 

complementary fellings, salvage loggings etc.” However, it should also be noted that, 

following wide consultation with forest sector researchers and experts, the JRC review 

concluded that, “most of the forest feedstocks used for bioenergy, as of today, are 

industrial residues, waste wood, residual wood (thinnings, harvest residues, salvage 

loggings, landscape care wood etc.) for which, in the short to medium term, GHG savings 

may be achieved”. This may be considered in conjunction with the findings of the 

EUwood study (Mantau et al., 2010) and the EFSOS II study, as already reviewed in 

Section 2.6. These studies conclude that very high efforts would be required to mobilise 

wood resources in the EU in order to meet 2020 targets for bioenergy consumption and 

projected levels of consumption in 2030, if all the additional wood supply were to be met 

from within the EU forest sector. The EFSOS II study also indicated that increased 

demand for bioenergy in the EU would involve a rise in imported wood and increased 

prices for wood raw materials, suggesting some pressure on potential for wood supply. It 

is therefore difficult to clarify whether increased consumption of forest bioenergy in the 

EU is likely to be achieved through ‘low risk’ and ‘moderate risk’ scenarios for forest 

management and bioenergy production, such as increased extraction of harvest residues, 

or whether a wider range of scenarios with varying risk may be involved.  
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Table 5.11 Classification of forest management/bioenergy production 

scenarios in terms of risk based on Appendix 10 

Risk1 
Forest management/bioenergy production 

scenario2 
Comments 

Scenarios potentially relevant to 2020 targets for bioenergy consumption 

‘Very high’ 

and ‘high’ 

Co-production of solid wood products and 

bioenergy through additional thinning and/or 

felling in forest areas with low potential for 

displacement of GHG emissions associated with 

solid wood products3. 

Very sensitive to 

counterfactuals for 

forest bioenergy and 

material/fibre 

products3. 

Salvage logging and restoration of forests on 

rotational management for production of 

bioenergy only. 

 

Diversion of harvested wood from solid wood 

products to bioenergy, leaving harvesting 

intensity unchanged. 

Very sensitive to 

counterfactuals for 

forest bioenergy and 

solid wood products. 

‘Moderate’ 

Salvage logging for co-production of solid wood 

products and bioenergy followed by restoration of 

forest areas with moderate harvesting intensity, 

also for co-production. 

 

Extraction of harvest residues4. 

Sensitive to harvesting 

of stumps, and to fossil 

energy counterfactual. 

Extraction of pre-commercial thinnings. 
Sensitive to fossil 

energy counterfactual. 

‘Moderate’ 

to ‘low’ 

Co-production of solid wood products and 

bioenergy through additional thinning and/or 

felling in forest areas with high potential to 

displace GHG emissions associated with solid 

wood products5. 

Very sensitive to 

counterfactuals for 

forest bioenergy and 

material/fibre 

products5. 

Notes to Table 5.11: 
1. It is very important to understand how risk of adverse effects on GHG emissions has been 

defined. This has been discussed in detail in Section 5.2.1 and levels of risk are defined in 
Table 5.2. 

2. Scenarios for forest management and bioenergy production have been classified using 
background shading in the table to indicate their potential relevance to increased consumption 
of bioenergy in the EU. See Appendix 11 for details. 

3. The risk is extremely sensitive to the types of material/fibre co-products associated with the 
bioenergy production and their counterfactuals. 

4. Moderate risk has been assigned on the assumption that harvesting of stumps would not 
increase significantly. A high risk would be assigned in the case of stump harvesting. 

5. The risk is extremely sensitive to the types of material/fibre co-products associated with the 
bioenergy production and their counterfactuals. 
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Table 5.11 (continued) Classification of forest management/bioenergy 

production scenarios in terms of risk based on Appendix 10 

Risk6 
Forest management/bioenergy production 

scenario7 
Comments 

Additional scenarios potentially relevant to bioenergy consumption  

above 2020 targets 

‘Very high’ 

and ‘high’ 

Additional harvesting of stemwood and ‘residual 

wood’ for bioenergy only in forest stands for fire 

prevention. 

 

Additional harvesting of stemwood in forest areas 

already under management for production, for 

bioenergy only. 

Sensitive to fossil 

energy counterfactual. 

Scenarios less relevant to increased bioenergy consumption 

‘Very high’ 

and ‘high’ 

Harvesting of forest with high carbon stocks and 

replacement with rotational forest management 

for production of bioenergy only. 

 

Harvesting forests with high carbon stocks for 

bioenergy only, followed by restoration of forest 

areas with low productivity plantation for 

bioenergy only.  

 

‘Moderate’ 

Harvesting of forest with high carbon stocks and 

replacement with high-productivity short rotation 

plantations for production of bioenergy only. 

Sensitive to the 

assumption that short 

rotation plantations 

have much faster 

growth rates than 

previous forest 

‘Moderate’ 

to ‘low’ 

Diversion of harvested wood from solid wood 

products to bioenergy, combined with reduced 

harvesting intensity. 

Requires reduced 

harvesting intensity to 

fully compensate for 

possible impacts of 

diverting wood 

‘Low’ 

Enrichment of growing stock in existing forest 

areas as part of enhancement of bioenergy 

production. 

Important to avoid 

negative impacts on 

soil carbon stocks, 

where these could 

occur 

Creation of new forests for bioenergy only on 

marginal agricultural land with low initial carbon 

stock8. 

Sensitive to risks of 

iLUC. 

Notes to Table 5.11: 
6. It is very important to understand how risk of adverse effects on GHG emissions has been 

defined. This has been discussed in detail in Section 5.2.1 and levels of risk are defined in 

Table 5.2. 

7. Scenarios for forest management and bioenergy production have been classified using 
background shading in the table to indicate their potential relevance to increased consumption 
of bioenergy in the EU. See Appendix 11 for details. 

8. It must be stressed that these activities have been classified as low risk on the assumption that 

risks of iLUC would be mitigated, e.g. by restricting the activities to marginal/low productivity 

agricultural land. 
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It is very important to stress that the identification of a scenario in Table 5.11 as 

‘relevant’ indicates the possibility that the scenario ‘could be’ involved in contributing 

towards increased bioenergy consumption in the EU. A full systematic analytical 

assessment is required to determine whether scenarios are more or less likely to actually 

be involved in meeting increased demands for bioenergy, which is a subject for further 

research. 

As already stressed, further research is required to clarify the detailed responses which 

may occur in the forest and energy sectors, depending on future levels of bioenergy 

consumption in the EU. This forms the basis for subsequent tasks in this project. 

5.6. Conclusions on assessment of literature on GHG emissions of 

bioenergy 

Existing literature on GHG emissions associated with forest bioenergy and their 

assessment consists of a number of significant review reports and articles, numerous 

published case studies presenting actual assessments, and a range of published 

statements on aspects of methodology. This rich literature exhibits considerable diversity 

and, superficially, may be seen as supporting a quite widely held view that GHG 

emissions of forest bioenergy are complex and uncertain.  

A meta-analysis of case studies has revealed considerable diversity in methods applied 

for the estimation of GHG emissions associated with forest bioenergy. As noted earlier, 

variations in methodology do not necessarily imply shortcomings or substantive 

methodological differences, but can reflect variations in the goal and research question 

addressed by specific case studies. However, this can present difficulties for the 

interpretation and application of results from published studies, whilst a general lack of 

transparency limits the usefulness of previous studies for informing methodological 

choices and for other purposes.  

A conclusion emerges from contemporary literature that the ‘closed cycle’ of carbon flows 

suggested by Figure 1.1 (Section 1.2) is accurate in some situations, but strictly only 

applies in other situations if long timescales are considered, and it is accepted that 

carbon sequestration in the living vegetation of trees, and the emission of carbon 

resulting in the burning of wood, do not occur simultaneously. If emissions from the 

burning of biomass and related sequestration of carbon take place with significant delay 

involved, the GHG emissions the atmosphere actually ‘sees’ will resemble those implied 

by the biogenic carbon content of wood and will be comparable to or greater than GHG 

emissions of fossil energy sources (Table 1.1, Section 1.2). Consequently, contemporary 

literature on GHG emissions of forest bioenergy places considerable emphasis on what 

Lamers and Junginger (2013) have referred to as, ‘the temporal imbalance between the 

release and sequestration of forest carbon’. It is for this reason that a large number of 

case studies focus on the estimation of GHG emissions payback times associated with 

different types of forest bioenergy feedstock, the forest management involved in 
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producing the bioenergy, and the energy conversion systems involved in utilising the 

forest biomass.  

The analysis of published case studies presented in Section 5.5.3 indicates that forest 

bioenergy sources potentially contributing towards levels of consumption in 2030 and 

beyond may involve widely varying risks of adverse outcomes for GHG emissions. 

However, it is very important to stress that this variability does not imply that outcomes 

are uncertain. Rather, these analyses of published research strongly indicate that there is 

systematic variation with respect to identifiable factors, as illustrated in Table 5.11. This 

implies that, potentially, increased consumption of forest bioenergy in the EU could make 

a contribution towards achieving reductions in GHG emissions, if ‘low risk’ and ‘moderate 

risk’ sources are used (see Table 5.11). Conversely, if ‘high risk’ or ‘very high risk’ 

sources are used, increased consumption of forest bioenergy could make a negligible 

contribution or could seriously frustrate the achievement of GHG emissions reductions. 

Whilst the analysis of scientific literature suggests it is possible to identify ‘low risk’ and 

‘high risk’ sources of forest bioenergy, encouraging the consumption of ‘low risk’ sources 

and discouraging ‘high risk’ sources could be complicated for a number of reasons. For 

example, as shown in Table 5.11, the same feedstocks can be involved in ‘low risk’ and 

‘high risk’ scenarios. As a consequence, it is not possible to limit or remove risk of 

adverse GHG emissions due to consumption of forest bioenergy by favouring particular 

feedstocks and discouraging the use of others.  

The most obvious approach to supporting positive outcomes for GHG emissions when 

consuming forest bioenergy would involve commitments by large consumers in the EU to 

demonstrate that genuine and significant GHG emissions reductions are being achieved, 

when GHG emissions due to biogenic carbon are considered. It is important to clarify that 

what needs to be demonstrated is that significant reductions in GHG emissions are 

achieved as the overall result of the management of forest areas, to supply bioenergy 

and potentially to meet other objectives. This means, for example, that where additional 

forest bioenergy is being produced as a co-product along with material/fibre products, it 

is the overall impact of these activities on GHG emissions that is of interest. The specific 

contribution of the forest bioenergy to the overall result is of less concern. Similarly, it is 

more relevant to focus on the overall impacts of forest bioenergy consumption on forest 

carbon stocks for the complete area of forests involved in supply. This is because the 

atmosphere will ‘see’ net changes in forest carbon stocks across the whole forest area 

due to the harvesting of biomass. Outcomes for individual stands are thus of less 

relevance for overall impact, although may be important to consider when making 

operational decisions about forest management at the stand scale. 

The possibilities could be considered for complementary approaches (i.e. ‘flanking 

measures’) to support positive management of carbon stocks in forests, or more 

generally in terrestrial vegetation and soil. In principle, if the extraction of additional 

biomass in forest areas involves reductions in forest carbon stocks, this could be 
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compensated for by enhancement of vegetation and soil carbon stocks in other parts of 

the landscape, with the aim of achieving an overall positive impact on carbon stocks at 

the landscape and/or regional scale. (Note that as such, individual stands of trees would 

be managed to contribute towards the overall result, rather than to achieve fixed 

outcomes for carbon stocks of individual stands or small forest holdings. At the same 

time, it would be very important to ensure that any such measures do not lead to 

unintended adverse impacts on forest or vegetation carbon stocks as a result of iLUC, for 

example, if the reservation of land areas for conservation and enhancement of carbon 

stocks were to result in greater importation of biomass or other resources.) Such action 

would indirectly support a positive contribution by forest bioenergy to achieving 

reductions in GHG emissions, but would not be explicitly linked to bioenergy 

consumption. In this context, it should be noted that existing EU Decisions and 

Regulations on monitoring and accounting for GHG emissions in the Land Use, Land-Use 

Change and Forestry sector (EU, 2013ab) effectively provide an appropriate accounting 

framework at national scale within the EU.  

A thorough consideration of the policy implications of the preceding discussion could be 

considered as an area for further research. 

5.6.1. Key messages from review of literature 

Careful examination of existing scientific literature suggests a consistent story 

To sum up the assessment presented in this section, a superficial consideration of the 

scientific literature on GHG emissions associated with forest bioenergy would most likely 

arrive at the impression that the outcomes and conclusions of different publications are 

highly variable and that the overall picture of forest bioenergy is confused and sometimes 

contradictory. However, on closer examination, it becomes evident that there is a certain 

level of fundamental agreement or at least consensus on some basic phenomena. 

Biogenic carbon needs to be included in strategic assessments of GHG 

emissions arising from consumption of forest bioenergy 

Fundamentally, it is undeniable that the status of forest bioenergy as an energy source 

with either low or high associated GHG emissions is inextricably linked to the property of 

wood as a reservoir of biogenic carbon and, crucially, how the source of that biogenic 

carbon, i.e. the carbon stocks in forests, is managed to produce bioenergy. 

It is particularly important to allow for biogenic carbon when making strategic 

assessments of GHG emissions due to policies, plans or decisions involving changes in 

activities that will lead to increased consumption of forest bioenergy. It is important to 

clarify that what needs to be demonstrated is the achievement of significant reductions in 

GHG emissions, as the ‘global consequence’ of any changes to the management of forest 

areas involved in the supply of forest bioenergy, implying the application of consequential 

LCA for the purposes of assessment. 
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GHG emissions of forest bioenergy display systematic variation more than 

uncertainty 

An analysis of published case studies indicates that forest bioenergy sources may involve 

widely varying outcomes in terms of impacts on GHG emissions. However, it is very 

important to stress that this variability does not imply that outcomes are uncertain. 

Rather, much of the variation is systematic and can be related to clearly identifiable 

factors. 

Many factors can influence the GHG emissions of forest bioenergy 

The variability in reported results for GHG emissions of forest bioenergy reflects many 

factors related to the forest bioenergy systems being studied and the methodologies 

applied in calculations. However, a meta-analysis of published studies would appear to 

indicate that a major reason why different studies have arrived at different results and 

conclusions is simply down to the fact that they have looked at different types of forest 

bioenergy source. 

Forest bioenergy systems can vary considerably with respect to a number of factors 

including: 

 Geographical location and spatial scale. 

 Characteristics of pre-existing growing stock of forest areas. 

 Productive potential of forests. 

 Types of forest management intervention involved in producing additional forest 

bioenergy, e.g. any or all of additional thinning, additional felling, increased extraction 

of harvest residues, enrichment of growing stock for increased production. 

 Whether additional harvesting in forest areas is for forest bioenergy as the sole 

product or as a co-product alongside material/fibre products. 

 The types of feedstocks used for forest bioenergy, e.g. any or all of harvest residues, 

poor quality trees, small roundwood, stemwood, sawlog co-products, recovered waste 

wood. 

 Energy conversion systems, e.g. small-scale heat, district heat or combined heat and 

power, power-only, co-firing with coal for power generation, and associated 

efficiencies of conversion systems. 

 Counterfactuals for forest bioenergy sources, e.g. fossil energy sources such as 

natural gas, oil or coal, and for any material/fibre co-products. 

 Counterfactuals for forest management, i.e. how forest areas would have been 

managed if bioenergy consumption had not been increased, and what this would mean 

for the development of forest carbon stocks.  

The impacts on GHG emissions due to the increased consumption of forest bioenergy 

depend very strongly on variations in these factors. It follows that forest bioenergy 

cannot be regarded as an energy source with ‘homogenous properties’ such as a 

characteristic value or range for a GHG emissions factor. Rather, such properties need to 

be assessed for specific types of forest bioenergy sources. 
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Results for GHG emissions also depend on the methodology applied for 

assessment 

Results reported by published studies for GHG emissions of forest bioenergy also vary 

because different studies have used different methodologies, often because studies have 

different goals and address different research questions. For example, most studies apply 

methods consistent with consequential LCA, with the aim of assessing the impacts of 

decisions to increase consumption of certain types of forest bioenergy sources. However, 

a few studies apply attributional LCA as part of the ‘operational’ assessment of (typically 

absolute) GHG emissions of specific forest bioenergy sources. These two types of study 

will, inevitably, arrive at very different results for the GHG emissions of forest bioenergy 

sources. Clearly, only the former type of study is relevant to the assessment of the 

potential impacts of policies encouraging the consumption of forest bioenergy. At the 

same time, it should be stressed that such variations between studies are not necessarily 

shortcomings or substantive methodological conflicts. Rather, these variations reflect the 

large range of possible scenarios for forest bioenergy use that can be studied, and the 

diversity in the specific objectives and questions addressed by different studies. 

Increased harvesting typically involves reductions in forest carbon stocks 

There is widespread recognition in the research literature that increasing the levels of 

wood harvesting in existing forest areas will, in most cases, lead to reductions in the 

overall levels of forest carbon stocks compared with the carbon stocks in the forests 

under previous levels of harvesting. Where the additional harvesting is used to supply 

bioenergy as the sole product, then such forest bioenergy will typically involve high 

associated GHG emissions (i.e. compared with fossil energy sources) for many decades. 

Increased biomass production sometimes involves increased forest carbon 

stocks 

There is also recognition that there exist some specific cases where forest management 

interventions to increase biomass production may involve increased forest carbon stocks. 

These include situations in which rotations applied to forest stands are extended as part 

of optimising biomass productivity, or the growing stock of existing degraded or relatively 

unproductive forests is enriched to enhance productive potential. It is also possible to 

create new forest areas with the specific purpose of managing them for wood production, 

provided that forest carbon stocks on the land are increased as part of the conversion of 

non-forest land to forest stands, and that there are no associated detrimental indirect 

land-use changes. 

There is reasonable consistency in outcomes for particular forest bioenergy 

sources 

There is reasonable consistency in the research literature on outcomes for particular 

forest bioenergy sources with regard to impacts on GHG emissions. The meta-analyses of 

published studies by the JRC review, Lamers and Junginger (2013) and in this report, list 

a number of specific examples of forest bioenergy sources, which can be categorised in 

terms of associated impacts on GHG emissions, as summarised in Table 5.11. 
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GHG emissions of forest bioenergy very sensitive to assumptions 

The outcomes of GHG assessment of forest bioenergy are very sensitive to the 

counterfactual scenario for land use. The development of forest carbon stocks in the 

counterfactual land-use scenario, which considers the case in which increased 

consumption of forest bioenergy does not occur, requires assumptions to be made which 

can be highly uncertain. The projected development of forest carbon stocks under the 

counterfactual scenario will depend on the assumed forest management, the potential of 

the growing stock forming forest areas (tree species, age distribution, climatic conditions, 

soil quality, nutrient regime etc.), and on the likelihood of natural disturbances.  

Similarly, outcomes are very sensitive to the counterfactual scenario for energy systems, 

which also involve assumptions which may be very uncertain, e.g. because of unforeseen 

market-mediated effects or future policy developments. 

Uncertainties in counterfactual scenarios are inherent due to the fact that the 

counterfactual scenario is, by definition, a path that characteristically is not followed. It is 

thus never possible to verify what would have actually happened. Long time horizons 

related to forest carbon cycles and lifetimes of energy systems increase the inherent 

uncertainty. 

GHG emissions of forest bioenergy sources vary over time 

The GHG emissions due to the use of forest bioenergy generally vary over time. As a 

consequence, different results are obtained for GHG emissions when calculated over 

different periods (or ‘time horizons’), e.g. 1 year, 10 years or 100 years. This complicates 

the characterisation of forest bioenergy sources, particularly with regard to their potential 

to contribute to reductions in GHG emissions. There are many examples involving an 

initial period of increased GHG emissions, compared to the alternative of using fossil 

energy sources, followed eventually by reductions in GHG emissions. The initial period of 

increased GHG emissions can vary from less than one year to hundreds of years, 

depending on the type of forest bioenergy. 

There is no obvious scientific basis for selecting a standard time horizon – essentially this 

is a politically-related decision. The choice of time horizon is thus a critical issue in the 

assessment of GHG emissions associated with the use of forest bioenergy. 

Forest bioenergy sources can be assessed in terms of risk 

It is possible to categorise different forest bioenergy sources according to their suitability 

for achieving overall GHG emissions reductions over a time horizon up to a specified 

target year. In this report, a target year of 2050 was identified as a policy-relevant time 

horizon (see Section 5.2.1), and forest bioenergy sources were characterised as ‘low 

risk’, ‘moderate risk’, ‘high risk’ or ‘very high risk’, according to the likelihood of adverse 

impacts on GHG emissions reductions over the period to 2050 (see Table 5.11, Section 

5.5.3). 
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Forest bioenergy sources likely to contribute to levels of consumption in 2030 

vary in risk 

A provisional qualitative assessment was made of the likelihood of particular forest 

bioenergy sources being involved in meeting levels of consumption in 2030. These 

various forest bioenergy sources varied from ‘low risk’ to ‘very high risk’, according to the 

likelihood of adverse impacts on GHG emissions reductions over the period to 2050. 

This implies that, potentially, increased consumption of forest bioenergy in the EU could 

make a significant contribution towards achieving reductions in GHG emissions, if ‘low 

risk’ and ‘moderate risk’ sources are used. Conversely, if ‘high risk’ or ‘very high risk’ 

sources are used, increased consumption of forest bioenergy could make a negligible 

contribution or could seriously frustrate the achievement of GHG emissions reductions. 

As part of this qualitative assessment, it is difficult to clarify whether increased 

consumption of forest bioenergy in the EU is likely to be achieved through ‘low risk’ and 

‘moderate risk’ scenarios for forest management and bioenergy production, such as 

increased extraction of harvest residues, or whether a wider range of scenarios with 

varying risk may be involved. A full systematic analytical assessment is required to 

determine whether scenarios are more or less likely to actually be involved in meeting 

increased demands for bioenergy, which is a subject for further research. 

Low/high-risk cannot be determined simply in terms of feedstocks 

The analysis of scientific literature suggests it is possible to identify ‘low risk’ and ‘high 

risk’ sources of forest bioenergy. However, the same feedstocks can be involved in ‘low 

risk’ and ‘high risk’ scenarios. As a consequence, it is not possible to limit or remove risk 

of adverse GHG emissions due to consumption of forest bioenergy by favouring particular 

feedstocks and discouraging the use of others. 

In this context, it is also important to recognise that, as part of sustainable forest 

management and wood utilisation (Sections 2.3 and 2.5): 

 Different types and sizes of trees and quantities of wood are harvested at different 

points in the cycle of forest management. Trees harvested at different ages (and 

hence of particular dimensions and physical characteristics) will be suitable for 

different applications and end uses.   

 At any one time across a whole forest, a broad mix of trees will be harvested which 

will be variously suitable for a range of end uses, even though particular types of trees 

may be harvested from individual stands for specific uses, depending on their stage of 

development. Collectively, the broad mix of trees harvested from a forest meets a 

range of demands. 

 The wood processing sector is complex, with outputs from the forest providing 

feedstocks for the manufacture of structural sawn timber, plywood, pallets and fence 

posts, particleboard and fibreboard, paper and other products including bioenergy. 
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 The complexity of the wood processing sector can present challenges when attempting 

to track flows of wood from the forest through to ultimate end use. 

For these reasons, there are likely to be very serious obstacles to regulating the 

consumption of forest bioenergy based on individual consignments of forest bioenergy or 

based on specific types of forest bioenergy feedstock. 

Significant initiatives involving increased consumption of forest bioenergy could 

be subjected to strategic assessment for impacts on GHG emissions 

One possible step towards managing risk associated with increased consumption of forest 

bioenergy could involve commitments by proponents of significant new forest bioenergy 

projects in the EU to demonstrate that genuine and significant GHG emissions reductions 

should be achieved, when GHG emissions due to biogenic carbon are considered. This 

would require strategic assessment, as already identified earlier in this discussion as 

appropriate for assessment of GHG emissions due to policies, plans or decisions involving 

changes in activities that will lead to increased consumption of forest bioenergy. 

It must be stressed that such assessment of new activities involving consumption of 

forest bioenergy would be undertaken before a decision is taken to proceed with the 

activities. Such an approach is not suggested for ongoing monitoring of GHG emissions, 

for example at bioenergy installations to demonstrate compliance with regulations, such 

as targets for net GHG emissions savings. Further research is needed to assess the 

implications of the findings of this report for the development of robust methodologies for 

monitoring of GHG emissions for such regulatory purposes. 

Increased use of forest bioenergy might be integrated with wider measures to 

support forest carbon stock management 

The possibilities could be considered for complementary approaches (i.e. ‘flanking 

measures’) to support positive management of carbon stocks in forests, or more 

generally in terrestrial vegetation and soil. In principle, if the extraction of additional 

biomass in forest areas involves reductions in forest carbon stocks, this could be 

compensated for by enhancement of vegetation and soil carbon stocks in other parts of 

the landscape, with the aim of achieving an overall positive impact on carbon stocks at 

the landscape and/or regional scale. (Note that as such, individual stands of trees would 

be managed to contribute towards the overall result, rather than to achieve fixed 

outcomes for carbon stocks of individual stands or small forest holdings. At the same 

time, it would be very important to ensure that any such measures do not lead to 

unintended adverse impacts on forest or vegetation carbon stocks as a result of iLUC, for 

example, if the reservation of land areas for conservation and enhancement of carbon 

stocks were to result in greater importation of biomass or other resources.) Such action 

would indirectly support a positive contribution by forest bioenergy to achieving 

reductions in GHG emissions but would not be explicitly linked to bioenergy consumption. 

In this context, it should be noted that existing EU Decisions and Regulations on 

monitoring and accounting for GHG emissions in the Land Use, Land-Use Change and 
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Forestry sector (EU, 2013ab) effectively provide an appropriate accounting framework at 

national scale within the EU.  

The suitability of metrics for assessing GHG emissions depends on the question 

Metrics used for assessing the potential of forest bioenergy need to be relevant to the 

goal, scope and policy or research question being addressed. For example, if there is 

interest in achieving a significant level of GHG emissions reductions, say 50% to 95%, by 

a target year such as 2020 or 2050, then results expressed as GHG emissions payback 

times may be useful for initially sifting out high risk scenarios for forest bioenergy 

consumption, but are not appropriate for assessing whether target levels of emissions 

reductions are likely to be met. In this context, a metric such as cumulative reduction in 

GHG emissions is more appropriate. Furthermore, if there is interest in understanding the 

effects of various scenarios for forest bioenergy consumption on cumulative radiative 

(climate) forcing, then a metric should be used which directly expresses such effects. 
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Appendix 1. Glossary of terms and units 

There are many terms used in the evaluation and reporting of greenhouse gas emissions 

associated with the production and utilisation of forestry products that have apparently 

specialised meanings. In some instances, these terms have strict definitions that are 

broadly accepted and used. However, in other instances, there are terms which are less 

well-defined and often have ambiguous or unclear meanings. This situation has 

considerable potential for creating confusion for those engaged in this area of work and 

in subsequent debates over the interpretation of the results of such work. This is 

particularly relevant in reviewing existing reports and studies. It is not the purpose of 

this glossary to impose strict definitions on such literature retrospectively or to re-

interpret the meaning of such literature. Instead, the glossary is intended to reasonably 

establish precise terms as used in this project and, where necessary, to point out 

discrepancies in their former, less defined usage. Given the context of this project, all 

terms are explained here in the context of the evaluation of the global consequences of 

policies for the greenhouse gas dynamics of utilising biomass in general, and in forests, 

in particular, by means of life cycle assessment. The glossary of terms is presented in 

Section A1.2 whilst units of measurement are also defined in Section A1.2. 

 

A1.1 Glossary of terms 

Absolute GHG 

emissions 

In the context of this report absolute GHG emissions can be defined 

as the total GHG emissions occurring in association with a clearly 

defined activity. Absolute GHG emissions are calculated as the sum of 

all GHG emissions crossing a system boundary, as described in 

Section 4.4. It must be stressed that, strictly, calculations of absolute 

GHG emissions are not made in comparison with some other possible 

activity and do not involve calculating GHG emissions compared with 

any sort of reference/baseline value or reference/baseline projection 

for GHG emissions. See Section 4.5.2. 

Additionality 

Additionality refers to the positive net benefits in terms of climate 

change mitigation directly attributable to a mitigation activity or 

project. The concept generally refers to net greenhouse gas emissions 

reductions over and above that which would have occurred anyway in 

the absence of a given mitigation activity or project. 

Afforestation 

The direct human-induced conversion of land that has not been 

forested in the recent past to forested land through planting, seeding 

and/or the human-induced promotion of natural seed sources. 

Albedo 

Albedo refers to the reflectivity or reflection coefficient of the Earth’s 

surface, which is measured as the ratio between solar radiation 

reflected back from the surface, and the original solar radiation 

incident upon it. 

Anthropogenic 

climate change 
Climate change attributable to human activity. 
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Attributed GHG 

emissions 

In the context of this report attributed GHG emissions are defined as 

GHG emissions calculated and reported as part of an attributional LCA 

study.  Results for GHG emissions may be ‘attributed’ to a single 

product or service, or may be allocated amongst two or more co-

products or services (depending on the details of the system being 

studied). Attributional GHG emissions are defined to distinguish them 

from absolute GHG emissions and consequential GHG emissions (see 

Sections 4.5.2 and 4.5.4). 

Attributional life 

cycle assessment  

An approach to life cycle assessment in which natural resource and 

environmental impacts, such as greenhouse gas emissions, are 

assigned to functional units under consideration.  The purpose 

intended, the approach adopted and the results obtained are different 

from those of consequential life cycle assessment. This subject is 

discussed in detail in Section 4.3. 

Baseline 

In order to estimate the benefits of a climate change mitigation 

activity in terms of ‘additional’ greenhouse gas emissions reductions, 

it is necessary to compare the levels of emissions and removals 

estimated for the mitigation activity with those estimated assuming 

the mitigation activity is not carried out. The reference estimate or 

trajectory referred to in such a comparison is known as a baseline. 

Bioenergy 

feedstock 

Biomass which is used to generate energy, in the context of this 

report, generally in the form of heat or power. 

Biofuel 

These are liquid and gaseous fuels obtained from feedstocks sourced 

from organic material. It is a term used by the European Commission 

specifically to refer to biomass-derived fuels that are predominantly 

used in transport.  This term is sometimes used interchangeably and 

confusingly with bioenergy (see above) which the European 

Commission specify as heating, cooling and electricity generated from 

biomass. 

Biogenic carbon 

Carbon contained in or derived from recently living organic material, 

as distinct from fossil carbon. This includes carbon in the living and 

dead biomass of vegetation, including the woody biomass of trees. 

Biologically 

mature forest 

 

Areas of forest where the trees have reached an age where net 

growth in volume has effectively ceased and further growth, without 

some form of environmental change or regeneration, will not occur. 

Such forest may or may not have high carbon stocks, depending in 

certain factors, e.g. the extent of natural disturbances. 

Biomass 

Biological material derived from living, or recently living organisms. In 

the context of this report, this is taken to mean the biomass of 

vegetation. 

Biomass 

cascading 

The active management of harvested wood through a sequence of 

uses, with ultimate disposal through burning with energy recovery. A 

‘classic’ example might involve the use of wood in sawn timber 

products, then re-use or recycling as a feedstock for wood-based 

panels, and burning as a source of energy only ultimately after 

repeated use in solid products. 

Boreal forests 
Broadly defines forests found to the south of the Arctic, but north of 

the temperate regions, including Taiga in northern Russia. 

Branchwood 

Generally considered to be the portion of above ground woody 

biomass of a tree which is not defined as stemwood. May contain 

branches and stem tops below a certain diameter. 
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‘Business as 

usual’ scenario 

A scenario describing specified activities, services and processes, and 

associated flows, e.g. of energy and GHG emissions, intended to 

represent the current and future situation in the absence of policy 

interventions other than those already being implemented.  

Calorific value, 

net calorific 

value 

The quantity of heat produced by the complete combustion of a given 

amount (i.e. mass) of a substance. Calorific values are typically 

expressed in units of joules per gram or megajoules per kilogram (MJ 

kg-1). The net calorific value of an energy source is sometimes also 

referred to as the lower heating value. Net calorific value represents 

the quantity of heat produced by the complete combustion of a given 

amount of a substance, allowing for any moisture content, such as in 

the case of air-dry wood.  

Carbon content The proportion of the dry mass of a material composed of carbon. 

Carbon debt 

 

This term is not favoured in this report and generally is not referred 

to. The term is used with different meanings by different authors. 

Broadly speaking, it refers to reductions in carbon stocks or loss of 

potential carbon sequestration in forest areas, which occur as a result 

of management interventions such as harvesting. 

Carbon 

neutrality 

 

This term is not favoured in this report and generally is not referred 

to. Broadly speaking, the concept is concerned with the achievement 

of zero net carbon emissions by compensating for GHG emissions with 

an equivalent amount of sequestration or offsetting.  

Carbon 

sequestration 

In the context of forestry and forest bioenergy, this is the process by 

which carbon dioxide is removed from the atmosphere by the growth 

of trees and carbon is retained in the living and dead biomass of 

trees, litter and soil organic matter. For sequestration to be said to 

have occurred, there must have been a reservoir which has increased 

in carbon stocks. For example, suppose a stand of trees grows by X 

tonnes of carbon per year, through removal of atmospheric carbon 

dioxide, but this is balanced by reductions in carbon stocks due to 

harvesting in another stand, so that the total quantity of carbon 

stocks in the forest stands does not change. Sequestration is not 

occurring because there is no increase in carbon stocks. In order to 

focus on changes of lasting consequence, most commentators would 

ignore sequestration that takes place on a daily, seasonal or even 

annual basis, and consider only activities that show a trend over 

longer time intervals. 

Carbon sink 

Any process, activity or mechanism which removes carbon dioxide 

from the atmosphere and retains the carbon in a reservoir. See 

carbon sequestration. 

Carbon stock 

In the context of forestry and forest bioenergy, a carbon stock is an 

amount of carbon sequestered in the living and dead biomass of 

trees, litter and soil organic matter comprising a forest stand of whole 

forest. 

Carbon dioxide 

equivalent (CO2 

equivalent) 

A unit used to express GHG emissions in terms of the equivalent 

amount of CO2. Since each non-CO2 GHG gas has a different warming 

effect on the atmosphere, the weightings, also called Global Warmng 

Potentials (GWPs) reflect this. The latest GWP values published by the 

IPCC in 2007, based on a 100 year time horizon, are 25 for methane 

and 298 for nitrous oxide. For example, this means that 1 tonne of 

methane would be expressed as 25 tonnes CO2-equivalent. 
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Complementary 

felling 

In the context of this report, complementary felling is a term used by 

some commentators to refer to a type of additional tree harvesting in 

forest areas in order to increase the supply of forest bioenergy. 

Specifically, when certain types of forest stand are clear felled for 

timber production, some trees unsuitable for use as timber may be 

retained on site. Complementary felling involves the additional felling 

of some or all of the otherwise unsuitable trees for utilisation as 

bioenergy. 

Consequential 

GHG emissions 

In the context of this report consequential GHG emissions can be 

defined as the total change in GHG emissions that occurs (or would 

occur) as a consequence of a change (or possible/proposed change) 

to an existing activity. As such, consequential GHG emissions are 

typically calculated and reported as part of a consequential LCA study. 

See Section 4.5.4. 

Consequential 

life cycle 

assessment 

This is a form of life cycle assessment in which the complete natural 

resource and environmental impacts, such as greenhouse gas 

emissions, are determined for a given proposed action, decision or 

policy. The purpose intended, the approach adopted and the results 

obtained are different from those of “attributional life cycle 

assessment”. This subject is discussed in detail in Section 4.3. 

Counterfactual  

 

For assessments of GHG emissions of forest bioenergy involving 

changes to the management of forests and/or changes to patterns in 

the use of harvested wood, it is essential to characterise realistic and 

justifiable ‘counterfactuals’. For land use (generally involving forest 

management in this context), the counterfactual describes how forest 

areas would be managed if the forest management were not to be 

changed (typically, a ‘business as usual’ scenario). For harvested 

wood products, counterfactuals involve the ‘business as usual’ 

patterns for wood use, and also a set of assumptions about what 

energy sources and materials might be used instead of forest 

bioenergy and harvested wood products. When defining such 

counterfactuals, it is important to recognise that the use of wood for 

material and fibre products, and as a feedstock for chemicals, may be 

as or more important as forest bioenergy in the future. 

Direct GHG 

emissions 

The term ‘direct GHG emissions’ is not of central importance to this 

project. However, ‘direct GHG emissions’ is a term which has been 

used variously to refer to: 

 GHG emissions directly due to the use (i.e. combustion) of an 

energy source, e.g. coal, oil, natural gas or biomass. 

 GHG emissions that occur in a specific part of an activity or 

process that is under consideration, e.g. when considering a 

specific forest operation, the GHG emissions due to consumption 

of fossil fuels in machinery carrying out the forest operation. 

 Possibly, the sum of the quantities described in the previous two 

points (where relevant).  

See Section 4.5.1. 

Edaphic factors 

 

Factors related to the physical and chemical properties of the site on 

which plants or trees are growing, particularly associated with the 

soil. In the context of this report, edaphic factors include the soil 

quality and characteristics limiting tree growth, as opposed to climatic 

factors. 
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End of Life 
This is the final phase in the life of a product which may consist of 

disposal or recycling. 

EU Effort Sharing 

Decision (ESD) 

Decision No 406/2009/EC of the European Parliament and of the 

Council of 23 April 2009 on the effort of Member States to reduce 

their greenhouse gas emissions to meet the Community's greenhouse 

gas emission reduction commitments up to 2020. This Decision is 

sometimes referred to as the Effort Sharing Decision or ESD. Under 

the Decision, EU Member States are committed to limiting GHG 

emissions from certain economic sectors (e.g. transport, agriculture) 

to specified target levels over the period 2013 to 2020.  

EU Member 

States 

States that are party to treaties of the European Union (EU). The 

member states are thereby subject to obligations and privileges of EU 

membership.  As of 1 July 2013, there are 28 member states: 

Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, 

Denmark, Estonia, Finland, France, Germany, Greece, Hungary, 

Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, The Netherlands, 

Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden and 

the United Kingdom. 

EU Renewable 

Energy Directive 

(RED) 

The EU Renewables Directive (2009/28/EC) mandates levels of 

renewable energy use within the European Union. The directive 

requires Member States to produce 20% of energy consumption 

(across the EU) from renewable sources by 2020. 

EU15 

The 15 Member States of the European Union consisting of: Austria, 

Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, 

Luxembourg, The Netherlands, Portugal, Spain, Sweden and the 

United Kingdom. Collectively the EU15 as a body is a signatory to the 

Kyoto Protocol. 

EU27 

The 27 Member States of the European Union consisting of: Austria, 

Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, 

Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, 

Lithuania, Luxembourg, Malta, The Netherlands, Poland, Portugal, 

Romania, Slovakia, Slovenia, Spain, Sweden and the United Kingdom. 

Feedstocks 

In the context of this report, feedstocks are fuel inputs to energy 

generation processes, for example, coal, oil or woody biomass. In the 

case of woody biomass, it is possible to distinguish different types of 

feedstock depending on how they are derived from harvested trees, 

e.g. branchwood, stemwood, small roundwood, off cuts and co-

products from production of sawn timber, and waste wood at end of 

life. Wood energy feedstocks may also take processed form such as 

wood chips, pellets and briquettes. This subject is discussed in detail 

in Sections 2.3 and 2.5. 

 

It should be noted that the term ‘feedstock’ is sometimes used to 

refer to inputs of materials or chemicals to industrial manufacturing 

processes.  

Finished wood 

products 

The products made from wood as a result of processing of raw 

harvested wood. Examples include sawn wood and wood-based 

panels. 
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Forest bioenergy 

Any biomass extracted from forests that is used to produce energy in 

the form of heat and power (i.e. not including liquid transport fuels). 

The biomass may be harvested directly from forests, or may be 

supplied as a by-product of the manufacture of solid wood products 

(e.g. offcuts from sawmilling) or may be derived from waste wood 

sources (e.g. solid wood products disposed of at end of life). 

Forest biomass 
Biomass contained in, or extracted from, forests, typically in the form 

of woody material. 

Forest carbon 
A general term referring to carbon stocks and carbon dynamics 

associated with forest systems. 

Forest carbon 

dynamics 

The flows of carbon within a forestry system due to processes such as 

growth and decay and effects due to management operations, e.g. 

planting, thinning and felling. 

Forest 

designation 

A classification referred to in FAO (2010), which indicates the primary 

function or management objective assigned to areas of forest, 

examples being ‘Production’ and ‘Protection of soil and water’. It must 

be stressed that the primary function designated for a forest area 

may not be a sufficient indicator of forest management for reasons 

explained in Section 2.3.  

Forest 

ecosystem 

In a forest, the communities of different organisms in conjunction 

with the wider environment when interacting as a system. 

Forest growing 

stock 

The population of trees forming an area of forest. Growing stock is 

sometimes expressed as the number of trees per hectare or standing 

stem volume per hectare of different tree species forming a forest 

area. Standing biomass and carbon stocks may also be referred to 

when considering growing stock.  

Forest 

harvesting 

Any activity involving the felling of trees for the purposes of 

extraction of timber and/or biomass. Harvesting is often differentiated 

into thinning and clear felling (or clear cutting). Thinning involves 

felling small proportions of the trees in an area during the growth of 

the stand to give the remaining trees more resources. Clear-felling or 

clear-cutting involves felling an entire stand when the trees have 

reached a particular target, e.g. maximum average volume growth or 

mean diameter. This subject is discussed in detail in Section 2.3. 

Forest 

management 

The process of managing a forest, usually to a plan detailing the 

areas and programmes for tree establishment, tending and prescribed 

forest harvesting events, along with wider management of the 

biodiversity and social aspects of a forest. 

Forest scrub 

The term scrub does not have a standardised meaning. In the context 

of this report, scrub refers to areas of land with some bush and shrub 

cover but limited or no tree cover, or including small trees with 

limited productivity. In some cases such land may derive from the 

degradation of forest areas. 

Forestry systems 

A general term used to refer to the range of possible land based 

vegetation systems involving trees and their associated management. 

Such systems would include high forest, short rotation forestry and 

coppice systems. 

Fossil carbon 

Carbon contained in mineral sources, such as fossil fuels, in which it 

has been stored for geologically-long periods of time, as distinct from 

biogenic carbon (see separate definition). 
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Fossil energy 
Energy derived from the combustion of mineral sources (fossil fuels 

such as oil, natural gas and coal). 

Gasification and 

pyrolysis 

conversion 

technologies 

Processes which convert carbon-based material into synthetic 

combustable products.  Pyrolysis is a process, which uses heat to 

thermally decompose carbon‐based material in the absence of air or 

oxygen (ie. not combustion).  It produces volatile gases including 

synthetic combustible gas (syngas), together with a carbon-rich solid 

residue, for example char.  Gasification is a process by which the 

majority of carbon in solid fuel is converted into carbon monoxide and 

hydrogen in the presence of oxygen. The synthesised gases produced 

by pyrolysis or gasification can be used in electricity or heat 

generation, or as a feedstock in the production of transport fuels or 

other chemicals. 

Geological 

carbon 
See fossil carbon. 

GHG, 

greenhouse gas 

All gases which absorb infra-red radiation in the atmosphere of any 

planet, thereby inducing a so-called greenhouse effect which results 

in trapping heat which would otherwise escape into space.  Due to 

their ubiquity and magnitude, the prominent greenhouse gases are 

carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Other 

minor gases are included such as ozone and CFCs 

(Chlorofluorocarbons), however the latter two are often not included 

as usually production is small, and the effect of these gases in small 

quantities has little perceived effect on climate change. 

GHG emissions, 

greenhouse gas 

emissions 

The production of greenhouse gases as part of natural, domestic, 

commercial or industrial processes and, usually, their release to the 

atmosphere. See also absolute GHG emissions, attributed GHG 

emissions, consequential GHG emissions, direct GHG emissions and 

indirect GHG emissions. 

GHG emissions 

payback time 

A metric for the performance of a bioenergy source, often based on 

forest bioenergy. The concept of GHG emissions payback time is 

derived from the observation that, for a number of possible sources of 

additional forest bioenergy, there must be an initial period during 

which associated GHG emissions are increased, relative to the 

alternative of using fossil energy, after which there is a ‘switch-over’ 

to net decreases in GHG emissions. In broad terms, the GHG 

emissions payback time represents the period to the switch-over in 

GHG emissions.  It should also be noted that the term ‘GHG emissions 

payback time’ is not particularly favoured by the authors of this 

report, since it is related to the term ‘carbon debt’ and presents 

similar problems for understanding and interpreting results. 

Growth rate 

(forest) 

In the context of this report, the growth rate of forests is usually 

defined in terms of the potential production of stem volume 

expressed in terms of cubic metres of volume per hectare, i.e. m3 ha-1 

yr-1. It is sometimes expressed in terms of potential biomass 

production. This subject is discussed in detail in Section 2.4.2 and 

Appendix 2. See also Section 3.6.1. 
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Harvest 

residues, 

harvesting 

residues (or 

felling or forest 

residues) 

The biomass material remaining in forests that have been harvested 

for timber. Because only timber of a certain quality can be used by 

sawmills, boardmills and other processing facilities, components of 

woody biomass material – harvesting residues – are often left in 

forests during harvesting operations. Harvesting residues can include 

very poorly formed trees, stem tips of small diameter, branches and 

offcuts from the butts of stems of large trees, or from other parts of 

the stems of trees where there are defects. Harvesting residues may 

also include dead trees and rough or rotten dead wood. Often, such 

residues are left to decay in the forest or burned on site as part of 

forest management and, in particular, as part of preparation for the 

establishment of new trees. Harvesting residues could be collected as 

part of harvesting operations and used as a feedstock for forest 

bioenergy, and currently there is growing interest in this option. 

High forest 

A very common forest type where the individual trees are allowed to 

grow as single stems over the life of the stand, often becoming very 

tall and mature. This may be contrasted with coppice systems where 

individual trees may be cut at close to ground level on short rotations 

to encourage regrowth in the form of multiple shoots for the same 

stump/stool in suitable species.  

iLUC (indirect 

Land Use 

Change) 

Land use change that occurs generally as a result of market mediated 

responses to changes in existing patterns of land use or land 

management. For example, if a large area of existing agricultural land 

is converted to the production of bioenergy, this may limit the 

potential to produce food, resulting in other land areas being 

converted to agricultural production to meet the requirements for 

food. iLUC may operate locally, nationally, or trans-nationally.  

Indirect GHG 

emissions 

The term ‘indirect GHG emissions’ is not of central importance to this 

project. However, ‘Indirect GHG emissions’ is a term that has been 

used variously (but not exhaustively) to refer to: 

 GHG emissions that occur as part of the provisioning and 

processing of an energy source, such as coal, oil, natural gas, 

biomass or electricity (i.e. the construction, maintenance and 

operation of the infrastructure and associated activities and 

processes involved in the supply and use of an energy source). 

 GHG emissions from wider activities or processes, ‘connected to’ a 

specific part of an activity or process that is under consideration, 

e.g. when considering a specific forest operation, the GHG 

emissions associated with the construction and maintenance of 

the machinery carrying out the forest operation. 

 GHG emissions that are not themselves GHGs, but which may be 

precursors of atmospheric GHGs, e.g. carbon monoxide, which can 

be a precursor of carbon dioxide. 

 GHG emissions associated with bioenergy use due to the effects of 

indirect land use change.  

See Section 4.5.1. 

Industrial 

roundwood 

This report refers to statistics on production of industrial roundwood, 

as originally reported by the FAO and interpreted by the GB Forestry 

Commission (2012). In this context, the FAO defines industrial 

roundwood literally ‘by exception’, i.e. as ‘all roundwood except 

woodfuel’. 
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Land occupation 

A term used by some commentators to refer to any act by humankind 

involving moving into an area of land and interfering with natural 

ecosystem processes, e.g. for the purposes of settlement, industry, 

agricultural production or timber production. Some commentators 

argue that, unperturbed, vegetation would adapt so as to optimise 

the ecological capacity of land (e.g. to support vegetation growth and 

stocks of biomass and carbon). It is argued that human interventions 

generally result in the sub-optimal utilisation of the ecological 

capacity of the land. 

Land Use, Land-

Use Change and 

Forestry 

(LULUCF) 

Under the United Nations Framework Convention on Climate Change 

(UNFCCC, 1992), countries are required to report inventories of GHG 

emissions to (and removals from) the atmosphere due to human 

activity. These national GHG inventories are broken down into a 

number of sectors, each dealing with a distinct aspect of human 

activity as defined by the IPCC, consisting of Energy (which includes 

transport), Industrial processes, Solvent and other product use, 

Agriculture, Waste and ‘Land use, land use-change and forestry’. 

 

Land use, land-use change and forestry (LULUCF) is an inventory 

sector defined by the Intergovernmental Panel on Climate Change 

(IPCC) that covers anthropogenic emissions and removals of GHGs 

resulting from changes in terrestrial carbon stocks.  It covers the 

carbon pools of living biomass (above and below ground), dead 

organic matter (dead wood and litter) and organic soil carbon for 

specified land categories (forest land, cropland, grassland, wetland, 

urban land and other land).   

Land 

transformation 

A term used by some commentators to refer to any act by humankind 

involving changes to the existing management of land, involving land-

use change, such as when an area of pasture is converted to a 

managed forest by planting trees. See also ‘land occupation’. 

LCA, life cycle 

assessment 

The evaluation of the total environmental and natural resource 

impacts of a product or service over its complete life cycle of creation, 

use and disposal.  However, evaluation can be restricted to certain 

environmental impacts, such as greenhouse gas emissions and to 

certain parts of the life cycle depending on the goal and scope of the 

assessment.  

Life cycle impact 

assessment 

(LCIA) 

LCIA is the “phase of life cycle assessment aimed at understanding 

and evaluating the magnitude and significance of the potential 

environmental impacts of a product system” (ISO 14044:2006). 

 

Life cycle 

inventory (LCI) 

LCI is the phase of the life cycle assessment involving the compilation 

and quantification of inputs and outputs. It comprises data collection 

and data calculation. Data collection consists of the identification and 

quantification of the relevant input and output flows for the whole life 

cycle of a product. 

Mobilising the 

wood resource 

A term used by some commentators to describe a set of possible 

policies and actions which may be taken to increase the supply of 

harvested timber and biomass. This may involve more intensive 

management and harvesting of forest areas and also more efficient 

use and recycling of wood products. See for example Section 2.7. 
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National 

Renewable 

Energy Action 

Plans (NREAPs) 

Plans published by all EU Member States in 2010. The plans provide 

details of how each Member State expects to reach the legally binding 

target for the share of renewable energy in their total energy 

consumption, as determined by the EU Renewable Energy Directive. 

The plans include targets, the technology mix they expect to use, and 

the measures and reforms they will undertake to overcome the 

barriers to developing renewable energy. 

Policy scenario 

A scenario detailing how a policy or set of related policies will be 

implemented and developed. The scenario includes specified 

activities, services and processes relevant to the policy or policies, 

and associated flows, e.g. of energy and GHG emissions, intended to 

represent the future situation following enactment of the policy or 

policies. See also ‘business as usual scenario’.  

Primary forest 

FAO (2010) defines ‘primary forest’ as ‘naturally regenerated forest of 

native species, where there are no clearly visible indications of human 

activities and the ecological processes are not significantly disturbed’.   

Primary wood 

In the context of this report, primary wood refers to any wood 

harvested from a forest, either in raw state or processed into a 

finished product or forming a by-product of a finished product. 

Specifically, it does not include wood in the form of a finished product 

that has come to the end of its useful life and which may either be 

recycled or enter the waste wood stream. 

Pulpwood 

A type of small roundwood often (but not exclusively) used for pulp 

and paper production. It can also include wood chips made directly 

(i.e. in the forest) from small roundwood. Pulp wood may also be 

used in the manufacture of wood-based panels or for bioenergy. See 

‘small roundwood’. 

Recycled wood 

The term recycled wood is used to refer to any wood in the form of a 

finished product that has come to the end of its useful life and which 

is recycled into a new wood product (e.g. recovered sawn timber, 

paper, particleboard etc.). 

Removals 

The volume of all trees, living or dead, that are felled and removed 

from a forest. It includes natural losses that are recovered (i.e. 

harvested), removals during the year of wood felled during an earlier 

period, removals of non-stem wood such as stumps and branches 

(where these are harvested) and removal of trees killed or damaged 

by natural causes (i.e. natural losses), e.g. fire, windblown, insects 

and diseases. It excludes bark and other non-woody biomass and any 

wood that is not removed, e.g. stumps, branches and tree tops 

(where these are not harvested) and other unutilised harvesting 

residues. 

Roundwood 

In the context of this report, the term roundwood is based on the FAO 

definition, as all roundwood felled or otherwise harvested and 

removed. It includes all wood removed with or without bark, including 

wood removed in its round form, or split, roughly squared or in other 

form, e.g. branches, roots, stumps and burls (where these are 

harvested). 

Salvage logging 
Removal and harvesting of dead, weaker or damaged trees, usually 

following a natural disturbance (eg. fire, disease, storm). 
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Sawlog 

In the context of this report, the definition of the term sawlog is 

based on the FAO definition as roundwood that will be sawn (or 

chipped) lengthways for the manufacture of sawnwood or railway 

sleepers (ties) or used for the production of veneer (mainly by peeling 

or slicing). It includes roundwood (whether or not it is roughly 

squared) that will be used for these purposes and other special types 

of roundwood (e.g. burls and roots, etc.) used for veneer production. 

Secondary wood 

In the context of this report, secondary wood refers to any wood in 

the form of a finished product that has come to the end of its useful 

life and which may either be recycled or enter the waste wood 

stream. 

Small roundwood 

In the context of this report the term small roundwood refers to 

stemwood of small diameter that does not fall into the sawlog 

category (see above in this glossary). Small roundwood may typically 

be used to make fencing, or chipped to make wood-based panels or 

pulped to make paper. It may also be used for woodfuel. 

Stemwood or 

‘main stem’ 

There is no international standard definition for stemwood but, in 

practice, definitions used in different countries and for different types 

of trees are generally very similar. For example, in the UK (Forestry 

Commission, 2011), the definition of stemwood is given as, ‘The 

woody material forming the above ground main growing shoot(s) of a 

tree or stand of trees. The stem includes all woody volume above 

ground with a diameter greater than 7 cm over bark. Stem wood 

includes wood in major branches where there is at least 3 m of 

‘straight’ length to 7 cm top diameter’. 

Stoichiometric 

In the context of this report, the result of a calculation for a process 

(e.g. a manufacturing process) is stoichiometric if the inputs and 

outputs of substances follow exact proportions, such as in a balanced 

chemical reaction.  

Sustainable 

forest 

management 

The concept of managing forests in a way which does not reduce the 

ecological, social or economic capacity of the forest for future 

generations. Sustainable forest management is often codified into 

national and international standards for management. Examples 

include the UK Forestry Standard and the FSC certification standard. 

Sustainable yield 

management 

The concept of managing forests in a way which does not reduce the 

long-term capacity of the forest to sustain a particular (volume) yield. 

Top diameter 

The diameter at the narrowest end of a log or length of stemwood or 

roundwood. Top diameter is used in the specification of different 

types of primary wood product such as sawlogs and small roundwood. 

For example, a sawlog is normally specified as having a minimum 

value of top diameter. Top diameter may be specified over bark or 

under bark. 

Total tree 

biomass 

The mass of the tree parts, both above and below-ground (stem, 

bark, branches, twigs, stump and roots) of live and dead trees. May 

also include foliage, flowers and seeds. 

Tropical forests 

Forests in the countries situated between the Tropic of Cancer and the 

Tropic of Capricorn. The majority of tropical forests are broadleaved, 

i.e. not coniferous. 
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Waste wood 

In the context of this report, waste wood refers to any wood in the 

form of a finished product that has come to the end of its useful life 

and which would become waste, unless recovered for recycling or use 

as fuel. 

Woody biomass 
The mass of the woody parts (stem, bark, branches and twigs) of live 

and dead trees, excluding foliage, flowers and seeds. 

Woodfuel 

In the context of this report, the term woodfuel may be used to refer 

to a commodity or to reported statistics.  

When referred to in the sense of a commodity, wood fuel means any 

wood (of primary or secondary origin) which is burned to generate 

heat or power. 

When referring to statistics on production of woodfuel, these were 

originally reported by the FAO and interpreted by the GB Forestry 

Commission (2012). In this context, the FAO defines woodfuel as, 

‘Roundwood that will be used as fuel for purposes such as cooking, 

heating or power production. It includes wood harvested from main 

stems, branches and other parts of trees (where these are harvested 

for fuel) … It also includes wood chips to be used for fuel that are 

made directly (i.e. in the forest) from roundwood. It excludes wood 

charcoal’.  

Woodfuel 

briquettes 

Wood chips, sawdust, and waste and scrap wood, possibly bark, 

compressed at high temperature to form a homogenised mass of 

wood with uniform dimensions.  Most frequently used for domestic 

heating, some for food smoking. 

Woodfuel chips 

Solid wood, with or without bark, comminuted to make small to 

moderate size pieces of wood.  Often wood chips are made to 

specified dimensions.  Used for a range of applications including 

(relatively) small-scale power generation, domestic and small-scale 

commercial heating, food smoking.  Wood chips may also be used for 

non-fuel uses, notably animal bedding. 

Woodfuel logs 

Almost unprocessed raw harvested wood, possibly small stemwood, 

parts of large stemwood, often parts of branches, with or without 

bark.  Most frequently used for domestic heating, some for food 

smoking. 

Woodfuel pellets 

Wood which has been ground to sawdust and then compressed to 

form pellets of a size, shape and consistency.  Used in large quantities 

for large-scale power generation, including co-firing with coal, also 

used for domestic and commercial heating systems, particularly 

automated systems. 
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A1.2 Units of measurement 

gC 1 gC = 1 gram carbon or carbon equivalent. 

gCO2 1 gCO2 = 1 gram carbon dioxide or carbon dioxide equivalent. 

kgC  1 kgC = 1 kilogram (1000 grams) carbon or carbon equivalent. 

kgCO2 
1 kgCO2 = 1 kilogram (1000 grams) carbon dioxide or carbon dioxide 

equivalent. 

tC 1 tC = 1 tonne carbon or carbon equivalent. 

tCO2 1 tCO2 = 1 tonne carbon dioxide or carbon dioxide equivalent. 

GtC 
1 GtC = 1 gigatonne (1 thousand million metric tonnes) carbon or 

carbon equivalent. 

GtCO2 
1 GtCO2 = 1 gigatonne (1 thousand million metric tonnes) carbon 

dioxide or carbon dioxide equivalent. 

ha 1 ha = 1 hectare = 10,000 m2. 

Gha 1 giga-hectare (109 ha) = 1 thousand million hectares. 

m2 1 m2 = 1 square metre. 

m3 1 m3 = 1 cubic metre. 

MJ 1 megajoule = 1million (106) joules.  

odt 
1 odt = 1 oven dry tonne. In the case of wood, this is the mass of 

wood not allowing for any moisture content. 

tonne (t) 1 tonne = 1 thousand kilograms. 

kilotonne (kt) 1 kilotonne = 1 thousand (106) tonnes. 

megatonne (Mt) 1 megatonne = 1 million tonnes. 

odt 
1 odt = 1 oven dry tonne. In the case of wood, this is the mass of 

wood not allowing for any moisture content. 

MWh 1 megawatt hour = 1 million (106) watt hours. 
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Appendix 2. Measurement of forest growth and productive 
potential 

Typically in commercial forestry, the productive potential of forest stands is assessed in 

terms of potential stem volume productivity and, in particular, cumulative volume 

production and the related parameter of maximum mean annual increment (MAImax). In 

particular, maximum mean annual increment represents one of the most important 

parameters for making decisions about forest management. This section describes these 

measures of stand productivity and how they are calculated. 

A2.1 Cumulative volume production 

An important measure of volume productivity in forestry is cumulative volume 

production.  Cumulative timber volume production is the standing stem volume per 

hectare attained by a forest stand in a given year plus the sum of per hectare stem 

volumes removed as thinnings up to that year.  Cumulative volume production 

represents the total production of timber volume from a stand up to a given year in the 

stand’s development. 

An example of cumulative volume production as measured in a permanent sample plot of 

even-aged Sitka spruce is given in Table A2.1.  As an illustration of how cumulative 

volume production is calculated, in Table A2.1 cumulative production up to age 44 years 

is: 

369 + 34 + 33 + 49 + 24 + 35 + 61 + 53 = 658 cubic metres per hectare. 

 

Table A2.1 Standing volume and production in an even-aged stand of Sitka 

spruce in Britain (Forestry Commission permanent mensuration sample plot 

1222, Brendon, Somerset, established 1948, felled 1986 at age 57). 

Year 

Stand 

age 

(years) 

Top 

height 

(m) 

Volume per hectare (m3 ha−1) Mean 

annual 

increment 

(m3 ha−1 

yr−1) 

Volume 

standing 

after 

thinning 

Volume 

removed as 

thinnings 

Cumulative 

volume 

1948 19 8.6 103 34 137 7.2 

1951 22 10.0 - 33 - - 

1953 24 11.1 121 49 237 9.9 

1958 29 14.5 - 24 - - 

1963 34 16.0 262 35 437 12.9 

1967 38 17.8 272 61 508 13.3 

1973 44 21.3 369 53 658 15.0 

1978 49 23.4 396 59 744 15.2 

1986 57 - 531 - 879 15.4 
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Strictly speaking, cumulative volume production is not a meaningful physical or biological 

variable. The main applications of cumulative volume production are in economic analysis 

and in support of practical forest management. In essence, cumulative volume 

production represents the out-turn of commercial stem volume from a stand up to a 

given year in the stand’s development. 

A2.2 Current annual increment 

Current annual increment (CAI) is strictly the rate of cumulative volume production for a 

given year.  For example, suppose the cumulative volume production of a 35 year old 

stand of trees is 500 cubic metres per hectare, and that by the time the stand is 36 years 

old the cumulative volume production has risen to 520 cubic metres per hectare. The CAI 

of the stand at age 36 is then calculated as 520 – 500 = 20 cubic metres per hectare per 

year. 

For ease of calculation and for practical reasons, CAI is frequently approximated from two 

measurements of cumulative volume production taken more than one year apart. For 

example, the CAI of the Sitka spruce stand in Table A2.1 at age 22 years could be 

approximated as (237−137 cubic metres) ÷ 5 years = 100 ÷ 5 = 10.0 cubic metres per 

hectare per year.  It is important to note that, because of the way it is calculated, 

strictly, this example of an estimate of current annual increment applies ‘on average’ for 

the stand between the ages of 19 and 24 years. 

A2.3 Mean annual increment 

Mean annual increment (MAI) is the average rate of cumulative volume production up to 

a given year. In even-aged stands, MAI is calculated by dividing cumulative volume 

production by age. For example, for the Sitka spruce stand in Table A2.1, the mean 

annual increment up to age 44 years is 658 ÷ 44 = 15.0 cubic metres per hectare per 

year. 

A2.4 Development of MAI and CAI over time 

For an even-aged stand of trees, both MAI and CAI follow a characteristic pattern of 

development with respect to stand age, as shown in Figure A2.1.  In the early years of 

stand development, both CAI and MAI rise steadily from zero to reach maximum values 

before declining again.  The annual volume increment (CAI) reaches a peak earlier, and 

always achieves a higher maximum value, than MAI.  Maximum MAI is reached at the 

age (tmax) where the descending CAI curve crosses the MAI curve (see Figure A2.1).  For 

typical even-aged conifer stands grown under temperate or boreal conditions, maximum 

MAI is usually reached after several decades, perhaps more than a century. (The 

maximum is reached much more quickly in the tropics, perhaps within 15 to 30 years.) 

From this point on MAI declines steadily, although the rate of decline may be slight in the 

years immediately following attainment of maximum MAI. The existence of a stand age 

tmax for which MAI takes a maximum value MAImax may be regarded as being of great 

commercial significance in the management of even-aged stands particularly if the aim is 
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to maximise sustainable volume production. Specifically, if MAImax occurs at a predictable 

stand age tmax then a forest manager may choose to clearfell the stand at this age. The 

average rate of volume production over the rotation period tmax, will then be MAImax. The 

forest manager can then replant or regenerate a new stand on the clearfelled site and, if 

this new stand is also grown over a rotation period tmax then average rate of volume 

production of the new stand will again be MAImax provided that the fertility of the site has 

not been depleted and environmental conditions have not changed. Clearly, managing a 

stand on this site using any rotation period other than tmax will result in a lower average 

rate of volume production, because the MAI achieved by an even-aged stand on this site 

must be lower for a stand age other than tmax. 

It is very important to stress that MAImax represents the maximum rate of stem volume 

production that can be achieved if the stand is even-aged and managed for production of 

maximum raw stem volume (i.e. with no consideration of any requirement for stemwood 

of particular dimensions, form or quality). In practice, it is very rare for forest stands to 

be managed in this way. It is more common for stands to be managed on rotations 

significantly longer than tmax, with the result that the overall level of volume production 

achieved over a rotation is significantly less than MAImax. Long rotations are applied to 

forest stands for a number of reasons, often to meet wider forest management objectives 

(see Section 2.3 of this report), but also to enable the development of individual trees 

with large diameters, from which higher value products such as sawlogs can be 

produced. Nevertheless, even in these circumstances, MAImax remains a principal 

parameter referred to in determining the management of forest stands, particularly in 

terms of setting (the longer) rotations and determining levels of thinning during 

rotations. 

Figure A2.1 clearly illustrates that, for a typical even-aged stand of Sitka spruce growing 

in upland Britain, a rotation length based on the age at which MAImax for total stem 

volume is reached is not necessarily optimal if seeking to produce high-value, larger 

diameter timber which can potentially be turned into long-lived products. In the example 

illustrated in Figure A2.1, the MAImax for sawlogs with a minimum top diameter, under 

bark, of 16 centimetres occurs at a stand age of 69 years; 15 years later than the 

equivalent age of MAImax for total stem volume (age tmax). The situation is further 

complicated by the fact that prevailing market and economic factors may also have an 

influence on the planned rotation length. For example, the application of a discount factor 

in financial calculations will often have the effect of shortening the length of the rotation 

from that which would be required to maximise raw volume production. 
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Figure A2.1. Trajectories of mean annual increment (MAI) of cumulative volume production, 

current annual increment (CAI) and sawlog mean annual increment (Sawlog MAI) for an even-aged 

stand of unthinned Sitka spruce.  In this example, the curves are based on a yield model for Sitka 

spruce in Great Britain for which MAImax is 11 m3 ha-1 yr-1, occurring at a stand age of 54 years.  

The above curves clearly illustrate that the MAImax of sawlogs (i.e. roundwood with a minimum top 

diameter, under bark, of 16 cm) is lower, and occurs later than the equivalent MAImax for total 

volume production; in this example stand, the MAImax of sawlogs is 7.9 m3 ha-1 yr-1 and is reached 

at a stand age of 69 years. 
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Appendix 3. Assessment of literature on metrics for quantifying 
GHG emissions of forest bioenergy 

In this Appendix, a brief description is given of a range of metrics referred to in the 

scientific literature on GHG emissions of forest bioenergy, and an assessment is made of 

the major strengths and weaknesses of each metric. 

A3.1 Annual (absolute) net CO2 or GHG emission trajectories  

The most understandable way to measure GHG emissions is simply to sum the absolute 

CO2 emissions from the system to the atmosphere and absolute carbon sequestration 

from the atmosphere by the system, at the given point in time. In this way the evolution 

of net emissions over time can be portrayed. The most usual time unit for such purposes 

is a year, resulting in annual emission trajectories. This kind of indicator has been used 

for example by Poudel et al. (2012); Böttcher et al. (2012); Eliasson et al. (2013); Nepal 

et al. (2012); Fiorese and  Guariso (2013). The major advantage of this indicator is that 

no predefined assumptions of impacts of the emissions on global warming are required. 

Thus the indicator is transparent and easy to understand. On the other hand, the 

indicator handles emissions and sequestration with similar weight regardless of the 

timing. Thus, the indicator is unable to measure global warming potential or any other 

impact of the emissions. These are the major disadvantages related to the use of this 

particular indicator. 

The indicator measuring absolute net CO2 emissions may also be extended to include 

other GHGs such as methane and nitrous oxide. In such a case non-CO2 emissions are 

converted into CO2-eq by using global warming potential (GWP) factors within a given 

time horizon. Consequently, predefined assumptions on impacts of the emissions on 

global warming are to some extent used if such an indicator is applied. However, this 

kind of indicator is relevant in current international climate policy under the United 

Nations Framework Convention on Climate Change (UNFCCC), in which emissions are 

accounted, reported and limited by means of their absolute quantities and considering 

GWP factors within a 100-year time frame (Bird et al., 2010). This kind of indicator is 

used for example by Jonker et al. (2013). 

A3.2 Annual (relative) CO2 or GHG emission trajectories 

Instead of determining emissions in absolute terms, CO2 or CO2-eq emission trajectories 

may also be calculated in comparison with a predefined reference scenario over the 

studied time horizon. For example, Zanchi et al. (2011) and Werner et al. (2010) have 

used this kind of relative indicator in which the emissions and sequestration of a 

bioenergy system is compared to a predefined reference land use scenario. In contrast to 

absolute emission trajectories, this indicator reflects the land use change emissions of a 

bioenergy system in comparison with a given baseline in which the studied bioenergy 

system does not take place. As the land use related GHG emissions tend not to be 

constant but dynamic, this particular indicator is more appropriate to be applied in life 

cycle assessment of bioenergy systems compared to absolute emission trajectories. On 
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the other hand, predefined assumptions of a baseline are required which make the 

indicator less easy to understand. Also, this indicator is unable to measure global 

warming potential or any other impact of the emissions. 

A3.3 Cumulative or average (absolute) CO2 or GHG emissions 

Absolute net emissions may also be accounted for in cumulative terms over a longer time 

horizon (e.g. 20 or 100 years) instead of one year (Johnson & Tschudi 2012). This kind of 

indicator has been applied for example by Jonker et al. (2013), Perez-Garzia et al. 

(2005) and Kilpeläinen et al. (2011). This indicator has the advantage over annual 

emission trajectories in that it describes the net emissions over the given time horizon 

and not only the situation in a single year. Cumulative emissions may also be easily 

converted into average annual emissions. This indicator also handles emissions and 

sequestration with similar weight regardless of their timing. 

A3.4 Cumulative or average (relative) CO2 or GHG emissions 

Cumulative CO2 or CO2-eq emissions may also be determined in comparison with a 

predefined reference scenario over a time horizon studied, instead of in absolute terms 

(Holtsmark 2012a). For example, McKechnie et al. (2011), Walker et al. 2010, Lecocq. et 

al. (2011), Eliasson et al. (2013); Jonker et al. (2013); Repo et al. (2011) have used this 

kind of relative indicator in which the cumulative emissions and sequestration of a 

bioenergy system over a given time horizon are  compared to a predefined reference 

land use scenario. This indicator integrates the advantages of a relative indicator to 

describe the difference between the studied system and the baseline, and also the 

advantages of a cumulative indicator to describe the net emissions over the given time 

horizon and not only the situation in a single year. The other pros and cons are similar to 

the absolute cumulative emission indicator. 

A3.5 (Relative) cumulative radiative forcing (CRF) 

In order to show the timing and dynamics of emissions, sinks and slow removal of GHGs 

from the atmosphere, explicitly the changes in the atmospheric GHG concentrations due 

to the activities under consideration should be calculated (Helin et al. 2012; Cherubini et 

al. 2012). The total greenhouse effect of various gases can be shown if the changes in 

concentrations are converted to radiative forcing (RF) values, which can be seen to be 

additive in the case of well-mixed gases (IPCC, 2013). Positive RF leads to a global mean 

surface warming, and negative RF to a global mean surface cooling. In order to calculate 

the RF for the studied activity, the correlation between the atmospheric GHG 

concentrations and RF has to be determined. As emitted GHGs cause a RF which 

accumulates over time, a cumulative radiative forcing (CRF) integrated over a given time 

describes RF over that time period, instead of instantaneous RF.  

A3.6 Relative radiative forcing commitment (RRFC) 

Relative radiative forcing commitment (RRFC) is a ratio that accounts for the energy 

absorbed in the Earth system due to changes in greenhouse gas concentrations in 
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comparison to the energy released in the burning of fuel within a given time horizon 

(Kirkinen et al. 2008). The indicator makes comparisons with GHG emissions from fossil 

fuels relatively easy. Moreover, it takes into account the reference land-use emissions 

(i.e. emissions in the absence of  the studied bioenergy system). However, it requires 

predefined assumptions of the GWP of the emissions. The indicator makes it possible to 

study different time horizons separately in order to, for example, study the impact of 

climate policy on different time horizons (Kirkinen et al. 2008).  

A3.7 (Absolute) time correction factors (TCF) 

Time correction factor (TCF, Kendall et al. 2009) is calculated on the basis of the relative 

climate change impact of an emission occurring at the beginning of biofuel feedstock 

cultivation. Typically these emissions are amortized equally over an assumed time 

horizon in order to divide the burdens of land use change over several generations of 

crops. However, this approach overlooks the fact that the effect of greenhouse gas 

emissions increases with the time they stay in the atmosphere. TCF can be used to 

account for the relative effect of emissions occurring at different times. The downside of 

the indicator is that it does not consider the land use emissions in relation to a reference 

system in which the bioenergy system does not exist. Moreover, it requires predefined 

assumptions as to the global warming potential of the emissions studied.  

A3.8 (Absolute) GWPbio factor 

GWPbio factor (e.g. Cherubini et al. 2011ab; Cherubini et al. 2013) is calculated by 

approximating the atmospheric decay of carbon from long-rotation biomass with a forest 

growth equation. GWPbio factors are assessed for situations where the carbon in 

stemwood is released into the atmosphere within one year after harvest. As the indicator 

is analogous to the global warming factors derived for non-CO2 GHGs, it makes 

comparisons to fossil CO2 easy (Pingoud et al. 2012). However, it does not describe the 

land use related impacts in comparison to a reference land use scenario. 

A3.9 (Relative) GWPbio factor 

The relative GWPbio factor measures the cumulative radiative forcing of biomass carbon 

emission at time t0 in comparison to an equivalent carbon emission at time t0 (Pingoud 

et al. 2012). Furthermore, the emissions/sequestration in the biomass system is 

calculated in comparison to a predefined reference land-use scenario. The assessment 

can be conducted in the same way on both landscape and stand level. The indicator is 

based on a presumed development of the terrestrial C stock and it is therefore subject to 

uncertainties.  

A3.10 (Relative) GWPnetbio factor 

In the GWPnetbio factor cumulative displaced fossil GHG emissions due to biomass use 

are added to the biomass carbon balance in time, thus forming an indicator of the total 

carbon benefits of the studied biomass in relation to a fossil alternative (Pingoud et al. 

2012). The indicator enables comparison to the warming impacts of fossil CO2 emissions. 
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Moreover, it takes into account the impact of timing of emissions on their warming 

potential. In addition, a reference scenario in the absence of the studied bioenergy 

system is included in the assessment. A down side of the indicator is that it necessitates 

predefined assumptions on the displaced fossil fuels and can therefore be hard to 

understand and communicate.  

A3.11 (Relative) carbon neutrality factor  

Carbon neutrality (CN) factor can be used to take into account the time needed to re-

absorb the CO2 emitted into the atmosphere by the bioenergy used. The CN is defined as 

”the ratio between the net reduction/increase of carbon emissions in the bioenergy 

system and carbon emissions from the substituted reference energy system, over a 

certain period of time” (Zanchi et al. 2010). The indicator thus includes a built-in 

comparison with the emissions from the fossil fuel system. Moreover, it takes into 

account land use emissions in the absence of the bioenergy system studied, i.e. in 

comparison to a reference scenario (Holtsmark 2012a). However, unlike e.g. the GWPbio 

factors, this indicator does not consider the impact of timing of emissions on their 

warming potential. In addition, it includes assumptions of fossil fuel displacement and 

can therefore be problematic to understand or communicate.  

A3.12 (Relative) fossil combustion equivalent  

In this method, the mean lifetime of 1 tonne of carbon from fossil fuel combustion in the 

atmosphere is taken as the basis for converting 1 tonne of carbon emitted from biomass 

combustion to a ‘fossil fuel combustion equivalent’. A predefined land use reference 

scenario is also applied. The indicator enables comparisons with fossil carbon emissions 

fairly easily. However, the method does not take into account the effect of timing on the 

warming potential of the emission.  

A3.13 (Relative) warming payback time  

Warming payback time refers to the time needed for the biomass option to become 

greater than its functionally-equivalent fossil-based alternative (Pingoud et al. 2012). In 

the method presented by Pingoud et al. (2012), warming payback time is based on the 

cumulative radiative forcing. Thus, it takes into account the impact of timing of the 

emissions on the warming potential. A land use reference scenario in the absence of the 

studied bioenergy system is also considered in the indicator. However, predefined 

assumptions of fossil fuels displacement are needed, which can again make 

communication of the results difficult.  

A3.14 Assessment of metrics 

Table A3.1 summarises the various metrics used for GHG emissions or related global 

warming impacts of bioenergy. The metrics are categorised as ‘absolute’ or ‘relative’, 

depending on whether a predefined land use reference scenario has been applied 

(relative) or has not been allowed for (absolute).  
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Table A3.1 Summary description and assessment of metrics applied to GHG emissions of forest bioenergy 

Type of 
indicator 

Short description 
Examples of 

use 
Major advantages Major disadvantages 

Annual 
(absolute) 
CO2 or CO2-eq 
emission 
trajectories 

Measures the development of 
annual CO2 or CO2-eq 
emissions of a bioenergy 
system in absolute terms over 
a specified time horizon  

Poudel et al. 

(2012); 
Böttcher et al. 
(2012); Eliasson 
et al. (2013); 
Nepal et al. 
(2012); Fiorese 
& Guariso 

(2013) 

- Does not require predefined 
assumptions on impacts of the 
emissions 

- Easily understandable 
- Relevant for current climate 

policy 

- Emissions have similar weight 
regardless of the timing of the 
emissions 

- Does not measure global 
warming potential, or any 
other climate impact, of the 
emissions 

- Does not as such consider the 
land use change emissions or 
related impacts in the absence 

of the studied bioenergy 
system (in comparison with a 
predefined reference scenario) 

Annual 
(relative) CO2 
or CO2-eq 
emission 

trajectories 

Measures the development of 
annual CO2 or CO2-eq 
emissions of a bioenergy 
system in comparison to a 
predefined land use reference 

scenario over a specified time 
horizon 

Zanchi et al. 
(2011), Werner 
et al. 2010  

- Does not require predefined 
assumptions on impacts of the 

emissions 
- Considers the land use 

emissions in the absence of the 
studied bioenergy system (in 
relation to a predefined 
reference scenario) 

- Emissions have similar weight 
regardless of the timing of the 
emissions 

- Does not measure global 
warming potential, or any 

other climate impact, of the 
emissions  

Cumulative or 
average 

(absolute) 
CO2 or CO2-eq 
emissions 

Measures the cumulative or 
average CO2 or CO2-eq 

emissions of a bioenergy 
system over a given time 
horizon in absolute terms 

Jonker et al. 
(2013); Perez-
Garzia et al. 
2005; 
Kilpeläinen et 
al. (2011) 

- Does not require predefined 
assumptions on impacts of the 

emissions 
- Easily understandable 
- Describes the sum of the 

emissions within the studied 
period, and thus also the 
importance of variation in 
emissions in single years better 
than the annual emission 
trajectories 

- Emissions have similar weight 
regardless of the timing of the 
emissions 

- Does not measure global 
warming potential, or any 
other climate impact, of the 

emissions 
- Does not as such consider the 

land use emissions or related 
impacts in the absence of the 
studied bioenergy system (in 
comparison with a predefined 
reference scenario) 
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Table A3.1 (continued) Summary description and assessment of metrics applied to GHG emissions  

of forest bioenergy 

Type of 
indicator 

Short description 
Examples of 

use 
Major advantages Major disadvantages 

Cumulative or 
average 
(relative) CO2 
or CO2-eq 
emissions 

Measures the cumulative or 
average CO2 or CO2-eq  
emissions of a bioenergy 
system over a given time 
horizon in comparison with a 
predefined land use reference 

scenario 

McKechnie et al. 
(2011), Walker 
et al. (2010), 
Lecocq. et al. 
(2011), Eliasson 
et al. (2013); 
Jonker et al. 

(2013); Repo et 
al. (2011) 

- Does not require predefined 
assumptions on impacts of the 

emissions 

- Considers the land use change 
emissions in the absence of the 
studied bioenergy system (in 
comparison with a predefined 
reference scenario) 

- Describes the sum of the 
emissions within the studied 

period, and thus also the 
importance of variation in 

emissions in individual years 
better than the annual 
emission trajectories 

- Emissions have similar weight 
regardless of the timing of the 
emissions 

- Does not measure global 
warming potential of the 
emissions or any other climate 

impacts 

(Relative) 

cumulative 
radiative 
forcing (CRF) 

Measures cumulative radiative 
forcing of a bioenergy system 
over a given time horizon in 
comparison with a predefined 
land use reference scenario 

Repo et al. 
(2012) 

- Considers the impact of timing 
of emissions on the warming 
potential 

- Considers the land use related 
warming potential in the 
absence of the studied 
bioenergy system (in 

comparison to a predefined 
reference scenario) 

- Requires predefined 
assumptions of global warming 
potential of the emissions 
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Table A3.1 (continued) Summary description and assessment of metrics applied to GHG emissions  

of forest bioenergy 

Type of 
indicator 

Short description 
Examples of 

use 
Major advantages Major disadvantages 

(Relative) 
Relative 
radiative 
forcing 

commitment 
(RRFC) 

A ratio that accounts for the 
energy absorbed in the Earth 

system due to changes in 

atmospheric greenhouse gas 
concentrations (production 
and combustion of fuel 
compared to a predefined land 
use reference scenario) 
compared to the energy 
released in the combustion of 

fuel over a given time horizon 

Kirkinen et al. 
(2008, 2010) 

- Considers the impact of timing 

of emissions on the warming 

potential 
- Considers the land use related 

warming potential in the 
absence of the studied 
bioenergy system (in 
comparison to a predefined 
reference scenario) 

- Requires predefined 
assumptions of global 
warming potential of the 

emissions 

(Absolute) 
time 
correction 
factors (TCF) 

TCF is calculated based on the 

relative climate change effect 
of an emission (measured as 
cumulative radiative forcing) 

occurring at the outset of 
biofuel feedstock cultivation. 
Provides an equivalency factor 
for the relative impact of the 
emissions occurring at 
different times. The amortized 
(annualised) emissions are 

then multiplied by the TCF 

Kendall et al. 
(2011) 

- Considers the impact of timing 
of emissions on the warming 
potential  

- Does not consider the land use 

emissions or related impacts 
in the absence of the studied 
bioenergy system (in relation 

to a predefined reference 
scenario) 

- Requires predefined 
assumptions of global 
warming potential of the 
emissions 

- Only suitable for adjustment 

of  annualised pulse emissions 

(Absolute) 
GWPbio factor 

Measures the cumulative 
radiative forcing of a biomass 
carbon emission at time t0 with 

a land use 
emission/sequestration 
scenario in comparison with 
an equivalent fossil carbon 
emission at time t0 

Cherubini et al. 
(2011ab, 

2012); Guest et 
al. (2012abc); 
Michelsen et al. 
2011  

- Makes comparison with fossil 
CO2 emissions relatively easy  

- Considers the impact of timing 
of emissions on the warming 
potential 

- Requires predefined 
assumptions of global 
warming potential of the 
emissions 

- Does not as such describe the 
land use related impacts in the 
absence of the studied 
bioenergy system (in 
comparison to a predefined 
reference scenario) 
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Table A3.1 (continued) Summary description and assessment of metrics applied to GHG emissions  

of forest bioenergy 

Type of 
indicator 

Short description 
Examples of 

use 
Major advantages Major disadvantages 

(Relative) 

GWPbio factor 

Measures the cumulative 
radiative forcing of a biomass 

carbon emission at time t0 

with a land use 
emission/sequestration 
scenario (biomass system) 
compared to an equivalent 
fossil carbon emission at time 
t0.  The emissions/ 
sequestration in the biomass 

system are determined in 
comparison with a predefined 

land use reference scenario 

Pingoud et al. 

(2012) 

- Makes comparison with fossil 

CO2 emissions relatively easy  

- Considers the impact of timing 
of emissions on the warming 
potential 

- Considers the land use related 
warming potential in the 
absence of the studied 
bioenergy system (in 

comparison to a predefined 
reference scenario) 

- Requires predefined 
assumptions of global warming 
potential of the emissions 

(Relative) 
GWPnetbio  

Measures the cumulative 
radiative forcing of a biomass 

carbon emission at time t0 

with a land use 
emission/sequestration 
scenario (biomass system) 
and fossil fuel displacement in 
comparison with an equivalent 
fossil carbon emission at time 

t0. The 
emissions/sequestration in the 
biomass system are 
determined in comparison 
with a predefined land use 
reference scenario 

Pingoud et al. 
(2012)   

- Includes comparison with the 
warming impacts of fossil CO2 
emissions  

- Considers the impact of timing 

of emissions on the warming 
potential 

- Considers the land use related 
warming potential in the 

absence of the studied 
bioenergy system (in 
comparison to a predefined 

reference scenario) 

- Requires predefined 
assumptions of global warming 

potential of the emissions 
- Requires predefined 

assumptions of fossil fuel 
displacement, and thus can be 

difficult to understand and 
communicate 



 

 

2
1
9
    |

    F
in

a
l re

p
o
rt o

n
 T

a
s
k
 1

    |
    R

o
b
e
rt M

a
tth

e
w

s
   |

    1
5

th M
a
y
 2

0
1
4
 

B
io

g
e
n
ic

 C
a
rb

o
n
  

a
n
d
 F

o
re

s
t B

io
e
n
e
rg

y
 

Table A3.1 (continued) Summary description and assessment of metrics applied to GHG emissions  

of forest bioenergy 

Type of 
indicator 

Short description 
Examples of 

use 
Major advantages Major disadvantages 

(Relative) 

carbon 
neutrality 
factor 

Quantifies the extent to which 
use of biomass reduces 

emissions considering a 

predefined land use reference 
scenario and compared to a 
predefined replaced fossil fuel 
over a given time in terms of 
cumulative emissions 

Schlamadinger 

et al. (1995); 

Zanchi et al. 
(2010); 
Holtsmark 
(2012a) 

- Built-in comparison with the 
emissions from a fossil fuel 

system 

- Considers the land use 
emissions in the absence of 
the studied bioenergy system 
(in comparison to a predefined 
reference scenario) 

- Does not consider the impact 

of timing of emissions on the 
warming potential 

- Requires predefined 
assumptions of fossil fuel 
displacement, can be difficult 

to understand/explain 

(Relative) 

fossil 
combustion 
equivalent  

The mean lifetime in the 

atmosphere of 1 tonne of 
carbon from fossil fuel 
combustion is taken as a basis 

for converting 1 tonne of 
carbon released from biomass 
compared to a predefined land 

use reference scenario into 
‘fossil-combustion-equivalent’ 

Müller-Wenk & 

Brandao (2010); 
Kujanpää et al. 
(2010) 

- Makes comparison with the 

CO2 emissions from a fossil 
fuel system relatively easy 

- Considers the land use 

emissions in the absence of 
the studied bioenergy system 
(in comparison to a predefined 

reference scenario) 
 

- Does not consider the impact 

of timing of emissions on the 
warming potential 

(Relative) 

warming 
payback time  

Describes the time after which 

forest biomass use is superior 

to its functionally equivalent 
fossil fuel-based alternative 
considering cumulative 
radiative forcing 

Pingoud et al. 
(2012) 

- Built-in comparison to the 
warming impacts of fossil CO2 
emissions  

- Considers the impact of timing 

of emissions on the global 

warming potential 
- Considers the land use related 

warming potential in the 
absence of the studied 
bioenergy system (in 

comparison to a reference 
scenario) 

- Requires predefined 
assumptions of global warming 

potential of the emissions 

- Requires predefined 
assumptions of fossil fuel 
displacement, and thus can be 
difficult to understand and 
communicate 
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Appendix 4. Analysis of estimates for GHG emissions payback 
time associated with production of forest bioenergy as reported 
in Table 1 of the JRC review (Marelli et al., 2013) 

Table A4.1 in this appendix presents the results of an investigation of estimates reviewed 

by Marelli et al. (2013) for GHG emissions payback time associated with production of 

forest bioenergy. An attempt has been made to identify structure, principally whether 

results can be ranked as high or low GHG emissions, and whether such results are 

associated with particular types of forest management and/or bioenergy feedstock. Thus, 

the various estimates of GHG emissions payback time in Table A4 have been classified 

according to: 

 Forest management scenario and bioenergy production scenario (see Sections 3.6 and 

3.16). 

 Fossil energy scenario (i.e. fossil energy counterfactual, see Sections 3.8 and 3.16). 

The results reported in Table A4.1 based on Mitchell et al. (2012) are for representative 

cases involving: 

 ‘Moderate’ growth rate 

 ‘Moderate’ biomass longevity 

 For fossil energy system, a single value of ‘bioenergy conversion factor’ which the 

authors quote as an estimated average value (0.51). 
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Table A4.1 Analysis of estimates for GHG emissions payback time associated 

with production of forest bioenergy as reported in Table 1 of the JRC review 

(Marelli et al., 2013) 

Forest management 

/production scenario 

Fossil energy 

counterfactual1,2 
Source 

Coal Oil 
Natural 

Gas 

Harvesting of biologically mature 

forest with high carbon stocks for 

bioenergy only, followed by 

restoration of forest areas with high 

harvesting intensity for bioenergy 

only. 

~2000 

Mitchell et al. 

(2012) 

Salvage logging of recently 

disturbed forest, with all harvested 

biomass used for bioenergy only, 

followed by restoration of forest 

areas with high harvesting intensity 

for bioenergy only. 

~2000 

Diversion of harvested wood from 

solid wood products to bioenergy, 

combined with increased harvesting 

intensity for bioenergy only.  

1000 

Harvesting of biologically mature 

forest with high carbon stocks for 

bioenergy only, followed by 

restoration of forest areas with low 

harvesting intensity for bioenergy 

only. 

~400 

Mitchell et al. 

(2012) Salvage logging of recently 

disturbed forest, with all harvested 

biomass used for bioenergy only, 

restoration of harvested forest 

areas with low harvesting intensity 

for bioenergy only. 

~100 

Additional harvesting of stemwood 

and ‘residual wood’ for bioenergy 

only in forest stands for fire 

prevention. 

34 to 459 
Mitchell et al. 

(2009) 

Notes to Table A4.1: 

1. Mitchell et al. (2012) present results for a continuous range with respect to fossil fuel 

counterfactual, represented by a ‘bioenergy conversion factor’, similar to the ‘multiplier for 

efficiencies’ defined by Marland and Schlamadinger (1997; see discussion of Figure 1.2, Section 
1.2 in this current report). Results from Mitchell et al. (2012) are presented in this table for a 
single value of bioenergy conversion factor which the authors quote as an estimated average 
value (0.51). 

2. Results presented in Mitchell et al. (2009) are based on a fossil fuel counterfactual which 

represents ‘average fossil fuel’. 
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Table A4.1 (continued) Analysis of estimates for GHG emissions payback time 

associated with production of forest bioenergy as reported in Table 1 of the  

JRC review  (Marelli et al., 2013) 

Forest management 

/production scenario 

Fossil energy counterfactual3 

Source 
Coal Oil 

Natural 

Gas 

Diversion of harvested wood from 

solid wood products to bioenergy, 

leaving harvesting intensity 

unchanged. 

1 to 100 
Mitchell et al. 

(2012) 

Additional harvesting of stemwood 

in forest areas already under 

management for production, for 

bioenergy only. 

Min = 11 

Med = 38 

Max = 

230 

Min = 

25? 

Med = 

87? 

Max = 

295 

Min = 59 

Med = 

200 

Max = 

400 

Walker 

(2010), 

Jonker et al. 

(2013)4, 

McKechnie 

(2011), 

Zanchi et 

al.(2011) 

Harvesting of biologically mature 

forest with high carbon stocks for 

bioenergy only, followed by 

restoration of forest areas with high 

productivity plantation forest for 

bioenergy only. 

17 20 25 
Zanchi et al. 

(2011) 

Additional harvesting of stumps for 

bioenergy only.5 
15? 22 35 

Repo et al. 

(2012) 

Additional harvesting of pre 

commercial thinnings for bioenergy 

only.5 

5? 12 20 
Repo et al. 

(2012)  

Additional harvesting of residues for 

bioenergy only. 
0 7 16 

Zanchi et al. 

(2011) 

Additional harvesting of branch 

wood for bioenergy only.5 
0? 5 8 

Repo et al. 

(2012) 

Harvesting of biologically mature 

forest with high carbon stocks for 

50% bioenergy and 50% additional 

solid wood products, followed by 

restoration of forest areas with high 

productivity plantation forest for 

50% bioenergy and 50% additional 

solid wood products.6 

0 3? 8 
Zanchi et al. 

(2011) 

 
Notes to Table A4.1: 

3. See note 1 to Table A4.1. 
4. Result from Jonker et al. (2013) is for ‘medium intensity’ forest management and a fossil 

energy counterfactual involving coal fired power generation with 41% efficiency.  
5. Estimate for fossil energy scenario of coal produced by extrapolation from other results. 
6. Estimate for fossil energy scenario of oil produced by interpolation from other results. 
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Table A4.1 (continued) Analysis of estimates for GHG emissions payback time 

associated with production of forest bioenergy as reported in Table 1 of the  

JRC review  (Marelli et al., 2013) 

Forest management 

/production scenario 

Fossil energy counterfactual7 

Source 
Coal Oil 

Natural 

Gas 

Diversion of harvested wood from 

solid wood products to bioenergy, 

combined with reduced harvesting 

intensity. 

0 
Mitchell et al. 

(2012) 

Creation of new forests for 

bioenergy only on marginal 

agricultural land with low initial 

carbon stock. 

0 0 0 
Zanchi et al. 

(2011) 

0 
Mitchell et al. 

(2012) 
Notes to Table A4.1: 
7. See note 1 to Table A4.1. 
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Appendix 5. Summary descriptions 

 

Title and source of the study:  

Mitchell, S.R., Harmon, M.E. & O’Connell Kari E.B. 2009. Forest fuel reduction alters fire 

severity and long-term carbon storage in three Pacific Northwest ecosystems. Ecological 

Applications 19(3): 643-655.  

Aims and Objectives:  

The paper studies the trade-offs between managing forests for fuel reduction and carbon 

storage. These management options involve a balance between fire restoration and 

carbon sequestration.  

Summary of the study: 

The paper looks at the trade-off between fire restoration and carbon sequestration, and 

its implications for the resulting long-term carbon dynamics in three U.S. Pacific 

Northwest ecosystems (the east Cascades ponderosa pine forests, the west cascades 

western hemlock-Douglas-fir forests and the Coast Range western hemlock-Sitka spruce 

forests). The trade-offs between these two management strategies are studied using a 

forest ecosystem simulation model, STANDCARB.  

According to the results, fuel reduction treatments in all of these ecosystems reduced fire 

severity. However, in order to reduce the fraction by which C is lost in a wildfire, a much 

greater amount of C is removed because most of the C stored in forest biomass remains 

untouched even in the most severe wildfires. Thus, in almost all of the areas studied, fuel 

reduction treatments led to reduced mean stand C storage. It was also analysed whether 

these losses could be compensated by utilising harvested wood as biofuel. However, the 

analysis implies that this won’t be an effective strategy in the west Cascades or the Coast 

Range ecosystems over the next 100 years. Thus, the authors conclude that policies 

aimed solely at reducing CO2 emissions, should not apply fuel reduction treatments in the 

studied areas, except for some east Cascade ponderosa pine stands with exceptionally 

high amount of understory fuel accumulation.  

Main strength 

Thorough analysis, long time period analysed. 

Main weaknesses 

Not clear what has been assumed about the fuels substituted with fire wood (reliance on 

generic emissions displacement factor).  

Transparency  

Moderate  

Reported indicators  

Mt C/ha  
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Title and source of the study:  

Walker, T., Cardellichio, P., Colnes, A., Gunn, J., Kittler, B., Perschel, B., Rechhia, C. & 

Saah, D. 2010. Biomass Sustainability and Carbon Policy Study. Natural Capital Initiative 

at Manomet Report. Massachusetts, USA:  Manomet Center for Conservation Studies. 

Aims and Objectives:  

The aim of the report is to assess what are the atmospheric greenhouse gas impacts of 

shifting energy production from fossil fuels to forest biomass. In addition, the report 

analyses how much wood is available from forests for bioenergy in Massachusetts and 

what are the potential ecological impacts of increased biomass and their policy 

implications. 

Summary of the study:  

The timeframe of the analysis is 2010-2100. The paper looks at the stand-level response 

of following a single harvest event at time 0 (=2010). The carbon accumulation over time 

following this harvest is compared to the BAU scenario. The time period of the 

assessment is 90 years. An average of 88 different stands located in the state of 

Massachusetts in the USA is used in the assessment. Modelling is conducted with the 4 

different energy scenarios assessed: utility scale electric (50 MW electric plant); thermal 

chips; thermal pellets and a CHP plant. Each of these is compared to different reference 

fossil fuel system.  

In the assessment, one-time biomass harvest for bioenergy is compared to the BAU 

where wood is only harvested for timber and no harvesting for energy wood takes place. 

The carbon pools covered include above-ground biomass, deadwood and litter. Soil 

carbon is excluded from the assessment. Walker et al. introduce the term carbon 

dividend, which reflects the additional reductions in emissions beyond what would have 

occurred if only fossil fuel had been used to generate energy.  

According to the results, technology choices or replacement of fossil fuels play an 

important role in determining the carbon cycle implications of biofuel use. Replacement 

of oil-fired thermal systems typically leads to relatively low carbon debts. Carbon debts 

payoff times for large-scale electricity generation are higher, varying between >90 and 

45 years, depending on the replaced fossil fuel. CHP facilities on the other hand have low 

carbon debts. A further key finding of the study is that the carbon recovery times are 

also very sensitive to the forest management practices adopted by the landowners. 

Sensitivity analysis is conducted through a set of scenarios classified as sensitivity 

analysis harvests. These have been designed to elucidate the C dynamics associated with 

retaining versus removing tops and limbs in biomass harvests. Also different silvicultural 

practices are studied. 

Main strengths 

The paper is thorough and fairly transparent in the reporting of the findings. Several 

different scenarios are used and also the amount of forest plots used as the basis of the 

assessment is wide.  
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Summary continued - Title and source of the study:  

Walker, T., Cardellichio, P., Colnes, A., Gunn, J., Kittler, B., Perschel, B., Rechhia, C. & 

Saah, D. 2010. Biomass Sustainability and Carbon Policy Study. Natural Capital Initiative 

at Manomet Report. Massachusetts, USA:  Manomet Center for Conservation Studies. 

Main weaknesses 

In some aspects the paper perhaps over-simplifies matters. Only carbon accumulated 

through tree growth is assessed, not the climate impacts of the different scenarios.  

Transparency  

Moderate / good 

Reported indicators  

Carbon accumulated by tree growth over 100 years. 
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Title and source of the study:  

Werner, F., Taverna, R., Hofer, P., Thurig, E., Kaufmann, E. 2010. National and global 

greenhouse gas dynamics of different forest management and wood use scenarios: a 

model-based assessment. Environmental Science and Policy 13: 72-85. 

Aims and Objectives:   

The stated aim of the paper is to assess all relevant GHG effects of different forest 

management and wood use scenarios while also distinguishing between national effects 

and effects occurring abroad. The paper attempts to demonstrate the connections of 

these GHG effects over a strategically relevant time scale.  

Summary of the study:   

In the paper, an integral model-based approach is presented and applied to assess the 

GHG impacts of different forest management and wood use scenarios in Switzerland. The 

results are intended to provide a basis for demonstrating the possible utility of the 

forestry and timber industry in relation to reduction of CO2 emissions in Switzerland over 

long term.  

The carbon pools studied include above-ground and below-ground biomass, deadwood 

and litter and soil carbon. The time horizon of the assessment is 100 years. Four different 

scenarios are assessed: Construction (increased use of wood in construction); energy 

(increased use of bioenergy); Kyoto-optimized (construction use of long-living wood 

products and subsequent energetic use) and Reduced forest management (significant 

reduction in wood use for construction and energy). These scenarios are compared to a 

baseline scenario consisting of ‘business as usual’ (extrapolation of the current, i.e. year 

2000, consumption patterns). In the modelling of the forest carbon flows, the study uses 

the forest model MASSIMO and the YASSO soil model.  

On the basis of the results, the scenarios Construction, Energy and Kyoto-optimized 

present the best global C balance in the long term. However, due to the sink effect, in 

the short term, the Reduced Forest Maintanence scenario displays the largest CO2 

savings. However, in the long-term this scenario is found to be the worst because the 

high stand volumes and growing stocks in the forest result in a considerable increase in 

natural mortality. In addition, there is a reduced substitution effect. The Energy scenario 

gives clearly poorer results than the Construction and Kyoto-optimized scenarios. Overall, 

the comparison between the different scenarios shows that the short and long term 

effects can be very different from one another. The BAU scenario performs worst in the 

short and medium term and the second worst in the long-term. The authors conclude 

that in the long-term the best improvement in the CO2 balance can be achieved by the 

highest utilisation of the maximum increment, the processing of the resulting wood in 

long-lived products and end utilization for energy generation in cascade use. 

Main strengths 

The study also considers impacts taking place abroad. Several different scenarios are 

compared and also a baseline scenario is included.  

Main weaknesses 

Only CO2 emissions over time are assessed, not the actual warming impacts.  

 



Biogenic Carbon  

and Forest Bioenergy 

228    |    Final report on Task 1    |    Robert Matthews   |    15th May 2014 

Summary continued - Title and source of the study:  

Werner, F., Taverna, R., Hofer, P., Thurig, E., Kaufmann, E. 2010. National and global 

greenhouse gas dynamics of different forest management and wood use scenarios: a 

model-based assessment. Environmental Science and Policy 13: 72-85. 

Transparency  

Moderate 

Reported indicators  

mt CO2-eq./year 
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Title and source of the study:  

Cherubini, F., Stromman, A.H. & Hertwich, E. 2011b. Effects of boreal forest 

management practices on the climate impact of CO2 emissions from bioenergy. Ecological 

Modelling 223: 59-66.  

Note: this summary is also relevant to the related paper by Cherubini, Peters, G.P., 

Berntsen, Stromman, and Hertwich. Published in GCB Bioenergy 3(5). 

Aims and Objectives:  

The paper presents a methodology, and characterisation factors to be applied in LCA for 

assessing the climate impacts of the use of boreal forest biomass as bioenergy.  

Summary of the study: 

The aim of the paper is to include the dynamic time dimension in unit-based impact 

analysis, using a boreal forest stand as an example. The forest growth in a typical boreal 

forest is approximated with the simple ‘Schnute’ growth equation. The study builds upon 

a related paper published by the same team (Cherubini et al. 2011a). The biomass 

carbon is released to the atmosphere in one time step through combustion. Thus, the 

resulting CO2 emission is modelled as a single pulse. The biomass harvest comes from an 

even-aged vegetation stand, which is immediately re-vegetated after the harvest (clear-

cut). The atmospheric decay of CO2 is predicted as an Impulse Response Function (IRF).  

The paper is not really a case-study but rather a methodological statement. It presents 

GWPbio factors for the typical boreal forest for three different time horizons and different 

rotation periods. The GWPbio factors can be used in a regular LCA study as 

characterisation factors in the life cycle impact assessment phase to estimate the climate 

impacts of forest bioenergy use.  

The assessment shows that the selected time horizon and growth rate play a key role for 

the resulting GWPbio factors. If the time horizon assessed is only 25 years, the climate 

impact of biogenic carbon from boreal forest stand is very close to that of fossil carbon. 

However, with a horizon of 100 years, the GWPbio factors range between 0.28-0.82. For 

the time horizon of 500 years, the GWPbio factors can be negative, depending on the 

rotation period and growth rate, indicating a net carbon sink.  

Reference:  

Cherubini, F., Peters, G.P., Berntsen, Stromman, A.T. and Hertwich, E. 2011. CO2 

emissions from biomass combustion for bioenergy: atmospheric decay and contribution 

to global warming. GCB Bioenergy 3(5): 413-426. 

Main strengths  

Presents characterisation factors that can be easily applied in life cycle impact 

assessment. Different time horizons (20, 100 and 500 years), growth rates and rotation 

periods are considered (30-130 years).  

Main weaknesses 

No baseline scenario is applied. Only the use of above-ground biomass is assessed. 

Changes in other carbon pools (such as dead-wood and soil carbon) are not included in 

the assessment. Only clear-cut is considered.  
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Summary continued - Title and source of the study:  

Cherubini, F., Stromman, A.H. & Hertwich, E. 2011b. Effects of boreal forest 

management practices on the climate impact of CO2 emissions from bioenergy. Ecological 

Modelling 223: 59-66.  

Transparency  

Good 

Reported indicators  

GWPbio factors  
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Title and source of the study:  

Hudiburg, T., Law, B.E., Wirth, C. and Luyssaert, S. 2011. Regional carbon dioxide 

implications of forest bioenergy production. Nature Climate Change. 

Aims and Objectives:  

The aim of the paper was to study the implication of fire prevention measures and large-

scale bioenergy harvest on regional carbon dioxide.  

Summary of the study: 

In Northern America there is increasing interest to meeting some of the bioenergy 

demands through large-scale forest thinning, with the added benefit of preventing 

catastrophic wildfire and carbon loss. The study aims to show whether such a strategy 

can satisfy both the aims of preventing wildfire and reducing regional carbon dioxide 

emissions.  

Three different scenarios are studied: ‘Fire prevention’ (forest fire prevention through 

removal of fuel ladders in fire-prone areas); ‘Economically feasible’ (making fuel ladder 

removal economically feasible through focusing on removal of additional marketable 

wood in fire-prone areas); ‘Bioenergy production’ (thinning all forestlands regardless of 

fire risk to support energy production and contribute to fire prevention). These are 

compared to the business as usual management, which is characterized by current 

preventive thinning and harvest levels. The timeframe of the study is 20 years.  

According to the results, large scale bioenergy harvest in the US West Coast forests leads 

to 2-14% higher emissions compared to the current management practices over the next 

20 years. 19 ecoregions were studied and it was found that in 16 of these regions the 

carbon sink is so strong that it cannot be matched or exceeded through substitution of 

fossil fuels by forest bioenergy. If the sink drops below its current levels by 30-60 g C 

m2/year as a result of insect damage, fire emissions or reduced primary production, 

management schemes including bioenergy production could become successful in 

reducing both fire risk and carbon emissions.  

Main strength 

The analysis methods are thoroughly explained in the very long appendix material. The 

study covers all ecoregions of the area.  

Main weaknesses 

The assessment only covers 20 years. 

Transparency  

Good 

Reported indicators  

Tg C / year  
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Title and source of the study:  

Kilpeläinen, A., Alam, A., Strandman, H., Kellomäki, S., 2011. Life cycle assessment tool 

for estimating net CO2 exchange of forest production. GCB Bioenergy 3(6): 461-471. 

Aims and Objectives:  

Introduction and demonstration of an LCA tool that can be used for studying the carbon 

exchanges of forest bioenergy production.  

Summary of the study: 

Describes an LCA tool for studying the net carbon exchange of forest production. The aim 

is to calculate and allocate the emissions due to changes in biogenic carbon balances for 

all the raw material streams from forest: energy wood, fibre wood and timber. In 

addition, both current climate and changed climate (based on the A2 IPCC 2007 

scenario) were assessed. The emissions were calculated over the 80 yr rotation and 

allocated to the amount of energy or timber produced. There was no comparison to a no-

use reference. According to the results, the emissions allocated for the energy from 

biomass were 172 and 188 kg CO2/MWh in the current climate and in a changed climate, 

respectively in Southern Finland. In Northern Finland they were 199 and 157 kg 

CO2/MWh, respectively. Thus, in Southern Finland the probable increased biomass 

growth obtained under the changed climate could not compensate for decomposition and 

biomass combustion related carbon loss. 

Main strengths  

Different scenarios assessed. The potential impacts of climate change on forest growth 

are taken into account.  

Main weaknesses 

There is no comparison to an appropriate baseline forest management/wood use 

scenario.  

Transparency  

Moderate 

Reported indicators  

g CO2/m
2/a 
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Title and source of the study:  

Lecocq, F., S. Caurla, P. Delacote, A. Barkaoui and A. Sauquet 2011. Paying for forest 

carbon or stimulating fuelwood demand? Insights from the French Forest Sector Model. 

Journal of Forest Economics 17(2): 157-168. 

Aims and Objectives:  

The aim of the paper is to compare the environmental (carbon) and economic 

implications of three different policies (stock, substitution and a combination of these) for 

the French forest sector. These three policies are compared to the business-as-usual.  

Summary of the study: 

The paper compares the environmental (carbon) and economic implications of three 

different policies (stock, substitution and a combination of these) for the French forest 

sector. These three policies are compared to the business-as-usual. According to the 

simulations over 2010-2020, the stock policy is the only one that performs better than 

business-as-usual in terms of carbon. In the substitution policy, cumulative substitution 

benefits are not high enough to offset carbon losses in standing trees over this 

biologically fairly short time. However, the authors emphasise that the results are 

contingent on three factors: the energy-mix of France is much less C-intensive than that 

of other countries and the substitution benefits therefore are low in terms of carbon; the 

substitution policy tested only concerns carbon and the assessed time-period is very 

short. Thus, the ranking would probably change in the long run. 

Main strength 

Interesting comparison of the economic and carbon implications of different forest 

policies.  

Main weaknesses 

The time period assessed is very short, covering only 10 years. The paper is not an LCA 

study.  

Transparency  

Moderate  

Reported indicators  

MtCO2 

 



Biogenic Carbon  

and Forest Bioenergy 

234    |    Final report on Task 1    |    Robert Matthews   |    15th May 2014 

 
Title and source of the study:  

McKechnie, J.; Colombo, S.; Chen, J.; Mabee, W.& MacLean, H.L. 2011. Forest Bioenergy 

or Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based 

Fuels. Environ.Sci.Technol. 45: 789-795. 

Aims and Objectives:  

The paper combines LCA with forest carbon analysis in order to assess the total GHG 

emissions of the use of forest bioenergy over time. The method is applied to case studies 

in which wood pellets or ethanol are produced from forest biomass. 

Summary of the study: 

In the paper, LCA is combined with forest carbon analysis in order to assess the total 

GHG emissions of the use of forest bioenergy over time. The method is applied to case 

studies where wood pellets or ethanol are produced from forest biomass. The different 

production pathways considered in the study are: (1) electricity generation: (a) 

production of electricity from coal at an existing generation station (GS) in Ontario, 

Canada; (b) Pellet cofiring from harvest residues, production of electricity at 20% cofiring 

rate at a retrofit coal GS; (c) same as (b) but pellets made from standing trees; (2) 

Transportation: (a) reference gasoline use in LDV; (b) E85 ethanol/gasoline blended fuel 

use in LDV, ethanol produced from harvest residues; (c) same as (b) but ethanol 

produced from standing trees.  

The paper takes into account all the carbon flows in the forest, including living trees, soil, 

standing dead trees, down dead wood, forest floor and understory vegetation pools. 

Forest carbon flows are calculated using the FORCARB-ON forest model, which is an 

Ontario specific adaptation of the FORCARB2 model. 

Cumulative emissions are compared between different scenarios and a reference 

scenario. The reference land use scenario is posed by “current harvest baseline” where 

biomass is not collected for bioenergy production but timber is harvested only for the 

current demand of (traditional) wood products. The difference in carbon stocks between 

the reference and “the bioenergy harvest scenario” is allocated to the bioenergy 

products.  

According to the results, harvest-related forest carbon emissions initially exceeded the 

avoided fossil fuel related emissions, thereby temporarily increasing overall emissions for 

all the cases studied. In the long run, electricity production from pellets reduced overall 

emissions relative to coal, although forest carbon losses delayed net GHG mitigation by 

16-38 years, depending on the biomass source (harvest residues / standing trees). 

Ethanol from standing trees increased emissions throughout the 100 years of continuous 

production, while ethanol from residues achieved reductions after 74 years of production. 

A sensitivity analysis of the key sources of uncertainty / variability in the LCI and forest 

carbon model parameters is conducted.  

Main strengths  

Attempts to include the forest dynamics in LCA. Contains several different scenarios. A 

sensitivity analysis is included.  
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Summary continued - Title and source of the study:  

McKechnie, J.; Colombo, S.; Chen, J.; Mabee, W.& MacLean, H.L. 2011. Forest Bioenergy 

or Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based 

Fuels. Environ.Sci.Technol. 45: 789-795. 

Main weaknesses 

GWP factors used in the calculation of GHG emissions are not explained. Principles of the 

FORCARB-ON model are not explained transparently.  Possible ILUC impacts are not 

taken into account. 

Transparency  

Moderate / good  

Reported indicators  

Cumulative GHG emissions (MtCO2-eq.); forest carbon stock change over time (MtCO2-

eq.)  
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Title and source of the study:  

Repo, A., Tuomi, M., Liski, J., 2011. Indirect carbon dioxide emissions from producing 

bioenergy from forest harvest residues. GCB Bioenergy (2011) 3: 107–115. doi: 

10.1111/j.1757-1707.2010.01065.x 

Aims and Objectives:  

The aim of the paper is to estimate the indirect emissions from using logging residues for 

bioenergy production.  

Summary of the study: 

The purpose of the paper is to introduce an approach for estimating the indirect CO2 

emissions caused by the use of forest residues for bioenergy production. Moreover, such 

emissions are estimated in a forested boreal landscape during the first 100 years after 

beginning of the activity. In the paper, Yasso07 model is used to estimate the indirect 

emissions from using logging residues for bioenergy production. The total CO2 emissions 

per unit of bioenergy produced are compared to the total emissions caused by using 

other fuels (coal, oil, diesel and natural gas). The Yasso07 is used to estimate the 

emissions. The indicator presented is kg CO2 eq./MWh. All changes in carbon emissions 

due to forest residue collection are allocated to forest residues.  

According to the results, the indirect emissions per unit of energy produced decreased 

with time since starting to collect the harvest residues due to decomposition at older 

harvest sites. The removal of stumps caused a larger indirect emission per unit of energy 

produced than the removal of branches. This results from the lower decomposition rate 

of the stumps. Over the 100 years of conducting the activity, the indirect emissions from 

average-sized branches decreased from 340 to 70 kg CO2-eq. / MWh, and those from 

stumps from 340 to 160 kg CO2-eq. / MWh. The removal of harvest residues had to be 

continued for 22 (stumps) or 4 (branches) years before the total emissions were lower 

than the emissions from natural gas. 

Main strength 

The paper uses a dynamic approach and includes a comparison to a reference case where 

the logging residues are not used at all. Both branches and stumps are analysed 

separately, which gives one an understanding of the differences in the impacts of their 

utilisation.  

Main weaknesses 

The paper focuses on logging residues only, and does not look at the complete utilisation 

of harvested trees. Such a perspective would, however, have been interesting for 

understanding of the overall climate impacts of wood utilisation.  

Transparency  

Moderate / good  

Reported indicators  

kg CO2 eq./MWh 
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Title and source of the study:  

Ter-Mikaelian, M., McKechnie, J., Colombo, S., Chen, J. and MacLean, H. (2011) The 

carbon neutrality assumption for forest bioenergy: A case study for northwestern 

Ontario. Forest Chron 87(05):644-652. 

Aims and Objectives:  

The paper builds on a previous study by McKechnie et al. (2011). It assesses whether the 

delay in achieving net GHG reductions through forest bioenergy use could be shortened if 

more intensive post-harvesting silvicultural regimes were applied, or if new forest stands 

could be used as potential biomass source.  

Summary of the study: 

The paper builds on a previous study by McKechnie et al. (2011). It assesses whether the 

delay in achieving net GHG reductions through forest bioenergy use could be shortened if 

more intensive post-harvesting silvicultural regimes were applied, or if new forest stands 

could be used as potential biomass source. A case study from Ontario, Canada, is studied 

where coal is displaced with wood pellets in the Atikokan generating station.  

Total GHG emissions related to the forest biomass use are assessed with the framework 

developed by McKechnie et al. (2011). In the framework life cycle inventory analysis 

(assessing the GHG emissions related to bioenergy production) is combined with forest 

carbon modelling (quantifying the effect of biomass harvest on forest carbon stocks over 

time).  

Break-even and carbon-neutral periods are assessed. Break-even period refers to the 

time since harvest after which the total greenhouse-gas benefits of displacing coal with 

wood pellets, and the amount of carbon in the regenerating forest are equal to the 

amount of carbon in the reference scenario (i.e. the same forest with no harvest for wood 

pellets). Carbon neutral period refers to the time since harvest after which the amount of 

carbon in the forest is equal to the amount of carbon in the reference scenario (i.e. the 

same forest with no harvest for bioenergy). Theoretically achievable minimum carbon 

neutral and break-even periods were estimated to be 28 and 18 years, respectively. The 

minimum carbon neutral periods across all the scenarios studied varied between 28-122 

years. The minimum break-even periods ranged between 18-89 years. Thus, the authors 

emphasize that the 28 and 18 years should be treated as optimistic because it was 

assumed that all forest in the studied areas would be available for wood pellet 

production, and the best post-harvest silvicultural regimes would be applied. 

Main strengths  

Several different harvest ages assessed. A no-use reference scenario is applied. All the 

carbon pools, including soil carbon are taken into account.  

Main weaknesses 

The actual warming impacts are not assessed, only cumulative carbon flows. 

Transparency  

Moderate  

Reported indicators  

t C/ha; break even period for greenhouse gas emissions (years); carbon neutral period 

(years) 
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Title and source of the study:  

UN-ECE and FAO 2011. The European Forest Sector Outlook Study II. United Nations. 

Geneva, UN-ECE, FAO. http://www.fao.org/docrep/016/ap406e/ap406e00.pdf 

Aims and Objectives:   

The aim of the study is to address and discuss the long-term environmental 

consequences of possible policy choices related to forest management in Europe. 

Summary of the study:   

In this study, four different policy scenarios and a baseline scenario are presented for the 

European forest sector. The calculations are carried out by the EFISCEN model. The study 

has been conducted at the country level but the results are presented as aggregates. To 

maximise the forest sector's contribution to climate change mitigation, the best strategy 

is to combine forest management focused on carbon accumulation in the forest (longer 

rotations and a greater share of thinnings) with a steady flow of wood for products and 

energy (Maximising biomass carbon scenario). Considering the energy substitution 

effects, also 'Promoting wood energy' scenario result in higher GHG benefits compared to 

the reference scenario. However, the impacts of the changed material demand between 

the particular scenarios were not considered. Furthermore compared to Maximising 

biomass carbon scenario, Promoting wood energy scenario results in lower GHG benefits 

indicating that GHG emissions are not reduced (considering the substitution credits) if the 

energy wood harvesting is increased from the baseline scenario level.  

Main strengths 

Relevant for the EU in that it covers all Europe.  

Main weaknesses 

The results of the study cannot be directly used when analysing the impacts of increasing 

bioenergy production on forest carbon stocks, as the wood demand for energy (and 

materials) is equal in all the scenarios except in Promoting wood energy scenario, in 

which the material use is to some extent lower compared to the other scenarios. 

Relatively short time period considered. Carbon emissions considered only on an annual 

basis and the results are given only for the year 2030. Parameter uncertainty only 

discussed qualitatively. Substitution credits only considered through a rough aggregate 

value. 

Transparency  

Moderate  

Reported indicators  

Tg C / a 
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Title and source of the study:  

Zanchi, G., N. Pena and N. Bird 2011. Is woody bioenergy carbon neutral? A comparative 

assessment of emissions from consumption of woody bioenergy and fossil fuel. GCB 

Bioenergy 4(6): 761-772. 

Aims and Objectives:  

The aim of the study is to compare time-dependent emission benefits from different 

wood sources and to thereby help identify which bioenergy sources would be more 

beneficial to achieve near-term emission reduction targets.  

Summary of the study: 

The paper compares the greenhouse gas emissions of different energy supply options 

based on either bioenergy or fossil fuels. Selective examples are used to show the 

greenhouse gas benefits of using wood from residues, additional fellings or new 

plantations. The study is based on the findings of previous studies, which show that 

climate impacts of wood bioenergy are time-dependent and can thus be different on a 

short to medium term compared with a long term. The method applied in the study can 

be used to identify time-dependent emission reductions for alternative bioenergy 

sources. Three different forest management scenarios are studied:  increased takeoff 

(removal of residues); increased harvest; establishment of a new plantation (3 sub-

scenarios: land with a low C stock and 2 cases of replacing an existing forest with a 

plantation). In addition, each scenario is compared to a baseline scenario where the 

forest is not harvested for bioenergy or the land is not converted to a plantation. An 

individual stand of 90 ha situated in the Austrian Alps is studied. One ha of the stand is 

cut every year. Bioenergy use is compared to three different sources of fossil fuel: coal, 

oil and natural gas.  

According to the results, in the additional harvest scenario, bioenergy begins to provide 

carbon benefits after 175-230 (depending on the harvest level) if coal is substituted or 

after 300-400 if natural gas is substituted. In the scenario where only residues are 

considered, it takes 0 (coal) to 16 (natural gas) years for the bioenergy to start 

producing carbon benefits. Establishing bioenergy plantation on lands with low initial C 

stocks produces clearest C benefits. If the plantation is established on an existing forest, 

the situation is different. In the cases assessed, it is assumed that either high (case B) or 

low (case C) productivitity forest is grown on the plantation. In case B, the initial C loss is 

repaid within 17-25 years. Within case C it takes 114-197 to repay the initial C loss. The 

study concludes that the GHG benefits achieved by using woody biomass for energy can 

vary a lot depending on the source of biomass and the considered time-horizon. 

Main strength 

The paper is clearly and transparently written. Several different scenarios for both 

bioenergy and fossil fuel use are studied. In addition, each bioenergy scenario is 

compared to a counterfactual land-use scenario.  

Main weaknesses 

Only an individual stand is considered. Natural disturbances are not taken into account.  

Transparency  

Good 

Reported indicators  

1000 t C, t CO2  
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Title and source of the study:  

Böttcher H, Verkerk PJ, Gusti M, Havlík P, Grassi G (2012) Projection of the future EU 

forest CO2 sink as affected by recent bioenergy policies using two advanced forest 

management models. 

Aims and Objectives:   

The aim of the paper is to assess tradeoffs in bioenergy use and carbon sequestration on 

a large scale covering the whole EU (except for Greece, Cyprus and Malta). In addition, 

two advanced forest management models are compared.  

Summary of the study:   

In the paper, tradeoffs of bioenergy use and carbon sequestration in the EU are 

assessed. Two scenarios are compared: baseline and reference scenario. The modelling is 

conducted with two different forest models, EFISCEN and G4M, and the results are 

compared. The time horizon of the study is 20-30 years (ranging from 2000 or 2010 to 

2030, the exact time frame is not exactly clear). Two different scenarios are compared: 

baseline and reference scenarios. The baseline scenario describes the development of the 

EU energy demand under trends and policies implemented by April 2009. In the 

reference scenario, i.e. increased harvest (for bioenergy) scenario, everything is 

otherwise the same as in the baseline scenario, but national targets for renewable energy 

set in the Renewable Energy Directive and the GHG effort Sharing Decision 

(2009/406/EC) are assumed to be achieved by 2020. 

According to the results, in the baseline scenario the net CO2 sink of the EU forests is 

expected to decline by 25-40% by 2030 compared to 2010. The shift arises on the one 

hand from the increasing demand for wood for material and energy use, and the ageing 

of the EU forests on the other. The reference scenario results in a further decrease in the 

forest carbon sink of 4-11% compared to the baseline scenario. The authors point out 

that this sink is presently not accounted for as the emission reduction target of 2020 

excludes land use emissions and removals. Use of the wood and substitution of reduced 

wood material consumption seem not to have been taken into account. Neither have 

impacts on forests outside the EU been included in the study.  

Main strengths 

Relevant for the EU in that it covers all EU. Fairly comprehensive in that it uses two 

different models. Uncertainty is assessed by a sensitivity analysis.  

Main weaknesses 

The paper is partly unclear with many of the central assumptions, concerning for 

example forest rotation time, not being stated. The difference between the two scenarios 

seems to originate from imported biomass. Considering this, it seems odd that imports 

and the possible direct or indirect land use change related to them have not been taken 

into account.  

Transparency  

Poor / moderate  

Reported indicators  

Mt CO2 per year 



Biogenic Carbon  

and Forest Bioenergy 

241    |    Final report on Task 1    |    Robert Matthews   |    15th May 2014 

 
Title and source of the study: 

Colnes, A., K. Doshi, H. Emick, A. Evans, R. Perschel, T. Robards, D. Saah and A. 

Sherman (2012) Biomass Supply and Carbon Accounting for Southeastern Forests, 

Biomass Energy Resource Center, Forest Guild, Spatial Informatics Group. 

Aims and Objectives:  

The report aims to consider the atmospheric GHG impacts of an increase in the use of 

forest biomass for electric power generation in the South Eastern US.  

Summary of the study: 

Compares cumulative atmospheric CO2eq for two different levels of biomass power 

generation in the south eastern US, including 7 states, and looks at GHG impacts over 

time.  Includes forest carbon.  Concludes that (17) existing biomass power stations in the 

region give better GHG performance than fossil fuel alternative, but that increasing by 22 

additional power stations give short term carbon debt with net atmospheric carbon 

benefits from about 35-50 years, depending on power generation efficiency.  Accepts 

that heat generation would show far better performance.  Also considers varying 

parameters including different proportions of pellets exported to Europe, which shows 

little effect. 

Main strengths  

Sensitivity analysis to several criteria is included. Considers biomass switching from 

pulpwood to fuel and other variables including increased export of pellets to Europe. 

Main weaknesses 

Almost no details on LCA model. 

Transparency  

Low 

Reported indicators  

Cumulative atmospheric GHG emissions (MtCO2-eq.); forest carbon stock change over 

time (MtCO2-eq.)  
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Title and source of the study: 

Galik CS and Abt RC (2012) The effect of assessment scale and metric selection on the 

greenhouse gas benefits of woody biomass. Biomass and Bioenergy 44, 1-7 

Aims and Objectives:  

An attempt to evaluate the extent to which the choice of scale (boundaries) and metrics 

used to assess net GHG impact in woody biomass energy project analysis impact the 

results obtained.  In particular, consideration whether the inclusion of market effects of 

increased biomass demand tend to give rise to a more or less favourable GHG balance. 

Summary of the study: 

This study attempts to investigate whether changing the geographical boundaries when 

considering the GHG impact of bioenergy has a significant impact on the conclusions 

reached and the magnitude of the net GHG implications.  It also compares four different 

GHG metrics: Average annual GHG balance; Average annual GHG flux; Net present value 

of GHG flux; Annual annuity value of GHG flux. 

It uses the SubRegional Timber Supply (SRTS) model (developed by one of the authors) 

of forest inventory, growth, harvesting and timber supply and demand.  It then uses the 

same model of bioenergy demand: maximum co-firing with coal for the state of Virginia, 

and then compares the calculated GHG impacts in MgC/ha. 

It concludes that in general, calculating GHG balances at the scale of state, procurement 

area, or landowner all give consistent net benefits each year, using cumulative GHG 

balance, and also initially at the forest scale (though this subsequently falls off); whereas 

at the plot scale it is slightly negative for the managed plot, but very highly negative for 

a previously unmanaged plot. 

The benefits appear to be less pronounced for Annual annuity GHG flux and Average 

annual GHG flux, and the authors consider the Annual annuity to be the most 

appropriate. 

Main strengths  

Compares the results obtained for the same demand conditions.  Shows the importance 

of choice of geographical scale boundaries and GHG impact metrics to conclusions drawn. 

Main weaknesses 

Only directly relevant to Virginia and situation modelled.  As a comparative study there is 

little detail on assumptions.  Not a full LCA study. 

Transparency  

Low/moderate.  Unclear how readily available the model used (SRTS) is. 

Reported indicators 

Multiple metrics compared: Average annual GHG balance; Average annual GHG flux; Net 

present value of GHG flux; Annual annuity value of GHG flux. 

Tonnes CO2eq 
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Title and source of the study:  

Holtsmark, B. 2012a. Harvesting in boreal forests and the biofuel carbon debt. Climatic 

Change 112: 415-428. 

Aims and Objectives:  

Aims to assess the extent to which woody biomass sourced from boreal forest can be 

regarded as carbon neutral, owing to the time taken for a forest stand to achieve 

maturity.  Studies the effect of a 30% increase in harvesting of Norwegian forest on net 

CO2 release to atmosphere.  Considers two models: using the biomass as feedstock for 

wood pellet manufacture for power generation, displacing coal, and as feedstock for 

manufacture of second generation liquid biofuel. 

Summary of the study: 

This study only considers the situation where woody biomass is sourced from boreal 

(Norwegian) forest by increasing harvesting, and using the entire harvest for either wood 

pellet manufacture to replace coal in large scale power generation, or as feedstock for 

manufacture of second generation liquid biofuel.  It explicitly does not consider the use of 

forest residues alongside the production of sawn timber. It considers carbon stocks in 

75,000 individual 1 km2 parcels of woodland, of uneven age structure, chosen to reflect 

that of typical Norwegian forest.  Both living and dead wood are included, however the 

impact of harvesting on soil carbon is ignored. Concludes that for a forest with an even 

aged structure, shortening the rotation cycle from 250 to 90 years reduces the carbon 

stock by 50%. When the harvested timber is used to manufacture pellets to replace coal 

in electricity generation he concludes that it takes 190 years to repay the carbon debt, 

and that if used to manufacture liquid biofuels it would take 340 years, where a reduced 

harvest rotation is used.  Where increased harvest is achieved through extension of the 

harvest area, these times change to 135-205 years and 205-360 years respectively, 

depending on the impact of harvesting on subsequent tree density. 

Main strengths  

Considers net atmospheric effect on the total forest scale rather than individual stands.  

Attempts a detailed model of typical Norwegian forest age structure.  Considers effect of 

multiple harvest cycles. 

Main weaknesses 

Only considers using the entire harvest for energy purposes, not timber products.  

Limited consideration of carbon dynamics: only forest carbon stock and displaced fossil 

fuel. 

Transparency  

Low in the main paper, but good in supplementary material. 

Reported indicators  

Tonnes of carbon in the atmosphere. 
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Title and source of the study:  

Krug, J., Koehl, M. & Kownatzki, D. 2012. Revaluing managed forests for climate change 

mitigation. Carbon Balance and Management 7: 11. 

Aims and Objectives:  

The purpose of the paper is to review studies on the potential of unmanaged forests to 

sequester carbon in Central Europe.  

Summary of the study: 

The paper presents an appraisal of published results on the potential of unmanaged 

forests for carbon sequestration in Central Europe. It is concluded that some studies have 

recorded unexpected high growth rates compared to common yield tables. There is 

evidence that such high growth rates relate to changed environmental conditions, such 

as increased N deposition and warmer temperatures. However, the authors emphasise 

that no uniform conclusions can be drawn on the basis of the review. It is highlighted 

that forests provide other mitigation potential in addition to C sequestration. It is 

suggested that traditional forest management concepts of "increment optimised 

maintenance" of relatively high biomass stocks could be revitalized. Thus, the 

contribution of temperate forests to climate mitigation could be improved by 

concentrating forest management at mature but not over-aging stands. 

Main strengths  

Review is fairly comprehensive and deals with a relevant topic.  

Main weaknesses 

Does not deal with the climate impacts of forest bioenergy use, only looks at carbon 

sequestration in unmanaged forests.  

Transparency  

Low/moderate 

Reported indicators  

None  
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Title and source of the study: 

Mitchell SR, Harmon ME and O’Connell KEB  GCB Bioenergy (2012) 4, 818-827. Carbon 

debt and carbon sequestration parity in forest bioenergy production 

Aims and Objectives:  

Uses an ecosystem simulation model to compare the use of forest bioenergy to substitute 

for fossil fuels, with a counterfactual of not harvesting the wood. An estimate is made of 

the ‘time for carbon sequestration parity’, defined as the time for the use of forest 

bioenergy to substitute for fossil fuels to equal the carbon that would have been 

sequestered if the forest had been left unharvested. Analyses a range of ecosystem 

models and harvesting regimes to compare how carbon payback time is affected by 

different scenarios. Also considers the effect of different bioenergy efficiencies. 

Summary of the study: 

Uses ecosystem simulation model LANDCARB, developed by one of the authors, to 

simulate the growth and harvest of woody biomass.  This includes up to seven live pools 

of carbon, eight dead pools and three stable pools (including soil), and also charcoal 

(surface and buried).  This is applied to nine different growth rate, mortality and (forest) 

biomass decomposition scenarios.  Two different harvesting intensities (50% and 100%) 

are applied at three different harvesting frequencies (25, 50 & 100 years) and four 

different land use histories.  These are used to calculate the time for carbon debt 

repayment and also carbon sequestration parity for each of nine ecosystems types, six 

harvesting regimes and four land use histories when using the harvest for bioenergy.  In 

addition a range of different bioenergy usage efficiencies/counterfactuals are included 

corresponding to overall bioenergy conversion factors ranging from 20% to 80%.  No 

attempt appears to have been made to allocate the harvest to a range of different 

applications. 

Depending on the previous land use history, carbon debt repayment times range from 

less than a year (for previously agricultural land) to over 100 years for old growth forest.  

Times to achieve carbon sequestration parity are significantly longer, greater than 20 

years, mainly >100 years. 

Main strengths  

Directly addresses the issue of displaced continued sequestration by the harvesting of 

forests.  Incorporates consideration of the effects of periodic wildfires.  Includes live, 

dead and soil forest carbon stocks.  Appears to be a sophisticated model of the forest, 

including different scenarios with different growth rates and biomass longevities. 

Main weaknesses 

Unsophisticated modelling of harvested timber applications. Although wood products are 

considered during “spin-up” stage of the model, it appears that the only biomass usage 

scenario is bioenergy, with no other timber products considered.  Does not undertake a 

full LCA.  Bioenergy counterfactual only included as “bioenergy conversion factor”. 

Transparency  

The LANDCARB model may be run online for two regions of Oregon. Reasonably 

comprehensive documentation may be downloaded for this. Otherwise transparency is 

limited. 

Reported indicators  

Time to achieve carbon sequestration parity: tonnes of carbon. 
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Title and source of the study:  

Nepal, P., P. J. Ince, K. E. Skog and S. J. Chang 2012. Projection of U.S. forest sector 

carbon sequestration under U.S. and global timber market and wood energy consumption 

scenarios, 2010–2060. Biomass and Bioenergy 45(0): 251-264. 

Aims and Objectives:  

The aim of the paper is to examine changes in the U.S. forest sector carbon inventory for 

alternative projections of U.S. and global timber markets over time. 

Summary of the study:   

The paper uses a spreadsheet model developed to project growth in timber growing stock 

inventory by three U.S. regions and two species groups (softwood and hardwood). 

Change in timberland by U.S. regions and scenarios over time was received from forest 

land projections for the most recent RPA forest assessment. Timeframe of the 

assessment is 50 years extending from 2010 to 2060.  

Four different scenarios are assessed. The scenarios are based on the IPCC SRES 

scenarios released in 2000 (A1B, A2, B2 and a variant of the A1B called historical 

fuelwood scenario). Changes in the forest carbon stock in the different scenarios are 

compared to year 2010. The carbon pools included in the study are above-ground and 

below-ground biomass, deadwood of all live and standing dead trees above 2.5 cm 

diameter. Soil carbon and litter and understory vegetation are excluded as well as foliage 

biomass.  

The results indicated that the sector’s projected capacity for carbon sequestration would 

be considerably changed by the use of forest resources for energy. Over the studied 

period, three of the scenarios (A2, B2 and HFW) displayed consistently increasing U.S. 

tree biomass carbon stocks, while the A1B scenario (with highest wood energy 

consumption) showed declining biomass carbon stock after 2045. Thus, depending on the 

future economic scenarios, the U.S. tree biomass carbon stock on timberland could 

increase by 17-72% over the next 50 years. 

On the other hand, although the projected carbon stocks in wood product carbon stock 

increased in all the scenarios throughout the study period, the stock was projected to be 

the largest in scenario A1B, followed by HFW, A2 and B2 scenarios. The A2 scenario 

resulted in the smallest amount of carbon stocks due to lowest lumber production in it. 

Altogether the results indicated that the A1B scenario with a 16-fold increase in wood 

energy consumption, would convert U.S. timberlands to an important emission source by 

2060. On the other hand, scenario HFW with the same high economic growth as in 

scenario A1B but with much lower wood energy consumption, would result in a c. 4-fold 

increase in the average annual additions to the U.S. forest sector carbon by 2060. 

Nevertheless, the results suggest that the decline in the sink could be partially offset 

over time by increased forest plantations and more intensive forest management. 

Main strengths  

The study is fairly comprehensive covering all the timberlands in the USA. It also 

assesses several different scenarios.   

Main weaknesses 

The period studied is fairly short, 50 years. Soil carbon has been excluded. The use 

phase of the wood and the possible substitution impacts have not been included. 

Moreover, imports are not considered nor the possible indirect land use change impacts 

related to wood use abroad.  
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Summary continued - Title and source of the study:  

Nepal, P., P. J. Ince, K. E. Skog and S. J. Chang 2012. Projection of U.S. forest sector 

carbon sequestration under U.S. and global timber market and wood energy consumption 

scenarios, 2010–2060. Biomass and Bioenergy 45(0): 251-264. 

Transparency  

Moderate 

Reported indicators  

Tg CO2-eq./y; Tg CO2-eq. 
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Title and source of the study:  

Poudel, B.C., Sathre, R., Bergh, J., Gustavsson, L., Lundström, A. & Hyvönen, R. 2012. 

Potential effects of intensive forestry on biomass production and total carbon balance of 

in north-central Sweden. Environmental Science and Policy 15: 106-124. 

Aims and Objectives:  

The objective of the paper is to assess the potential effects of intensive forest 

management in North-Central Sweden over the next 100 years.  

Summary of the study: 

In the paper, the potential effects of intensive forest management on forest production in 

North-Central Sweden over the next 100 years are assessed. Four different scenarios are 

compared. These include two scenarios with increased harvest, and one scenario with 

increased environmental ambitions (8% forest set aside for protected reserves, 14% set 

aside for special environmental care). In addition, a reference scenario, “business as 

usual” is assessed in which the forests are assumed to be developed with the silvicultural 

techniques of the Swedish forestry today and with the current environmental policy. 

Climate change assumed in all scenarios in accordance with the SRES B2 scenario 

(warmer climate enhances tree growth). The reference energy scenario is formed by coal 

or fossil gas in stationary power plants with relative conversion efficiencies of 100% and 

96%. 

According to the results, whole tree harvest increases in the reference scenario increases 

by ca. 50% over the 100 year period. Intensive forestry may increase forest production 

by up to 26% and annual harvest 19% compared to the Reference scenario. The largest 

effect on the carbon balance stems from using the increased biomass production for 

substitution of fossil fuels and construction materials. Total avoided emissions in the 

Production and Maximum scenarios are 68 Tg and 132 Tg C larger than in the Reference 

scenario during the 100-year period for whole tree biomass use with coal reference fuel. 

Environment scenario has 16 Tg less avoided C emissions than reference scenario. It is 

concluded that with the assumptions made, intensive forest management can 

significantly increase biomass production in the area over the next 100 years and thereby 

produce reductions in the carbon emissions.  

Main strength 

The paper includes many different forest management scenarios and also a 

counterfactual energy scenario  

Main weaknesses 

Does not consider no use of the forest residues.  

Transparency  

Moderate / good 

Reported indicators  

Tg C and Tg C/year 
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Title and source of the study:  

Routa, J., Kellomäki, S. & Peltola, H. 2012. Impacts of intensive management and 

landscape structure on timber and energy wood production and net CO2 emissions from 

energy wood use in Norway spruce. Bioenerg. Res. 5: 106-123.  

Aims and Objectives:  

The aim of the study is to analyse the effects of intensive management and forest 

landscape structure on timber and energy wood production on a site level and on a 

landscape level.  

Summary of the study: 

The paper aims to compare the impacts of landscape structure and intensive 

management on timber and energy wood production. Moreover, the study looks at the 

resulting implications on net CO2 emissions. The calculations are conducted with the 

Ecosystem Model SIMA and the emission calculator tool developed by Kilpeläinen et al. 

(2011).  

On the site level, for OMT sites, the emissions varied between 89-285 kg CO2/MWh 

without fertilisation and 59-280 kg CO2/MWh with fertilisation. For MT sites the emissions 

were 80-357 kg CO2/MWh without fertilisation, and 67-297 kg/MWh with fertilisation. On 

the site level, the lowest net CO2 emissions per year were obtained for OMT and MT sites 

with rotation lengths of 80 and 100 years, respectively. Per energy unit the lowest 

emissions resulted for OMT sites with a rotation length of 60 years and a late energy-

wood thinning with very dense pre-commercial stand and fertilisation (management 

regime 3f), and for MT sites either with 80 years combined with fertilisation and late 

energy wood thinning (management regime 3f) or in a dense pre-commercial stand with 

a rotation length of 100 years without fertilisation but with late energy wood thinning 

(management regime 2). 

On the landscape level, left-skewed age distribution resulted in least emissions (kg 

CO2/MWh/a) on the rotation lengths of 60 and 80 yr, regardless of the fertilisation 

regime. Landscape structure representing normal age-class distribution outputted the 

least emissions for rotation length of 120 yrs. Moreover, integrated management 

(combined mananagement regimes 2 and 3) with fertilisation resulted in the least 

emissions in all cases. 

Main strengths  

The analysis is fairly thorough with several different scenarios.  

Main weaknesses 

An appropriate baseline for forest management and use of the forest raw material is not 

taken into account.  

Transparency  

Moderate / good  

Reported indicators  

Accumulated C over 100 years.  
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Title and source of the study:  

Stewart W.C., and G.M. Nakamura (2012). Documenting the Full Climate Benefits of 

Harvested Wood Products in Northern California: Linking Harvests to the US Greenhouse 

Gas Inventory. Forest Products Journal 62, 340–353. 

Aims and Objectives:  

With a sample of partial and clear-cut harvests in Northern California, the financial and 

climate benefits of the harvested products are assessed. As there are many studies that 

argue that increased climate benefits of temperate forests could be achieved by reducing 

harvests below sustainable levels, the study aimed to test whether the divergence in the 

outcomes of the previous studies is mainly due to assumptions on the allocation of the 

harvested biomass to different products and waste. The article focuses only on harvested 

products. The authors justify this with the fact that many studies have been conducted in 

the USA.  

Summary of the study: 

The assessment covered 28 recent harvest operations conducted by five different forest 

owners over 6870 hectares in Northern California. The operations included a combination 

of partial cut and clear-cut harvests in a region containing both sawmills and wood-fired 

energy plants. There were no pulp mills or wood based panel plants. All the harvests in 

the sample were conducted under the sustainable forest practice regulations of the 

California Forest Practice Rules. High-value saw-logs are the main consideration of the 

California forest managers. The forest-types in the region are mainly dry-mixed conifer 

forests. The region has high risks of large-scale crown fires.  

It was assumed that 75% of the saw logs ended up in wood products, 24% were used for 

energy and 0.9% ended up as uncollected waste. It was assumed that harvested forests 

continued to accumulate carbon at or above current rates. Clear-cut harvest areas are 

replanted and are not harvested for decades. Partial-cut harvest areas will typically be 

harvested every 10-20 years. On the basis of literature, a 52-year half-life was calculated 

for wood products manufactured in California. The use of wood for energy was assumed 

to be carbon neutral.  

On the basis of a meta-analysis published by Sathre and O’Connor (2010) it is assumed 

that each ton of carbon in wood-buildings avoided an additional 1.1 tons of carbon 

emissions that would occurred through producing more fossil fuel intensive materials 

(e.g. cement and steel). 90% of future post-consumer wood is assumed to be deposited 

in engineered land-fills or wood-fired energy plants.  

According to the authors, the difference between the previous conflicting assessments of 

the potential climate benefits of the temperate US forests is mainly due to using poorly 

documented historical estimates of wood utilization as a projection instead of current 

best practices as an estimate of standard practices in the coming decades. The estimates 

used by Stewart and Nakamura almost doubled the full cycle climate benefits (123 t 

CO2eq. per 100 t CO2eq. of forest biomass, vs. 66) which is a commonly cited coefficient. 

Main weaknesses 

The new coefficients could be grounded more. The timeframe of the assessment is not 

given?  

Transparency  

Good / moderate  

Reported indicators  

Climate benefits in tCO2eq / t CO2eq forest biomass. 
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Title and source of the study:  

Bernier, P. & Paré, D. 2013. Using ecosystem CO2 measurements to estimate the timing 

and magnitude of greenhouse gas mitigation potential of forest bioenergy. GCG 

Bioenergy 5: 67-72.  

Aims and Objectives:  

The aim of the study is to demonstrate the application of whole ecosystem field-

measured CO2 exchanges obtained from eddy covariance flux towers for the assessment 

of GHG mitigation potential of forest bioenergy projects. The method enables one to 

integrate all field-level CO2 fluxes and the inter-annual variability in these fluxes.  

Summary of the study: 

The objective of the study is to demonstrate the application of whole ecosystem field-

measured CO2 exchanges obtained from eddy covariance flux towers for the assessment 

of GHG mitigation potential of forest bioenergy projects. As an example, a theoretical 

bioenergy project that uses tree stems as bioenergy feedstock is evaluated. The method 

enables one to integrate all field-level CO2 fluxes and the inter-annual variability in these 

fluxes. According to the results, the time for carbon debt repayment greatly depends on 

the ecosystem level CO2 exchanges. Despite the low carbon sequestration due to the 

mature stand age in the no-harvest scenario, the harvest scenario leads to a CO2 debt 

that takes up to 90 years to repay (the point where the cumulative difference in 

emissions between the two scerios is zero).  The analysis also shows that the time for 

CO2 debt repayment is very sensitive to the harvesting age. In the example analysed, the 

harvested stands were assumed to be mature (120 years). If they were harvested 

earlier, the time for debt repayment is pushed much beyond 90 years. This is because 

the larger productivity of the younger trees makes the difference between the harvest 

and no-harvest scenarios greater. 

Main strengths  

The study apparently applies a novel method that has not been used for this purpose 

previously. Uncertainties are discussed fairly thoroughly. Moreover, a sensitivity analysis 

is performed.  

Main weaknesses 

Only one bioenergy scenario is assessed. The use of branches, leaves and residues is not 

assessed. Soil carbon is not included in the study.  

Transparency  

Moderate  

Reported indicators  

kg CO2/GJ/year 
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Title and source of the study:  

Eliasson, P., Svensson, M., Olsson, M. & Ågren, G.I. 2013. Forest carbon balances at the 

landscape scale investigated with the Q model and the CoupModel – responses to 

intensified harvests. Forest Ecology and Management 290: 67-78. 

Aims and Objectives:  

The aim of the study was to compare the carbon budgets under changing management 

regimes both on a single-stand level and on the landscape scale.   

Summary of the study: 

A reference scenario represented the conventional management regime in Sweden: 

rotation forestry where only stemwood is removed and thinnings are carried out at 

recommended intervals. It was assumed in the reference scenario that all logging 

residues, including tops, are left on the site after harvest. Two management scenarios 

where harvest intensity was increased relative to the reference scenario were simulated: 

(a) stems, tops and branches (80% of the tops and branches were removed) and (b) 

stems, tops, branches and stumps (50% of removal of stumps at final felling, otherwise 

identical to scenario a.  

 

According to the results, the aggregated carbon balance over the landscape was less 

profound than that of a single stand. According to the authors, provided that the 

environmental factors and management policy stay the same, the aggregated carbon 

balance remains stable over time in the landscape. Nevertheless, they point out that 

when removal of logging residues is begun, the carbon gain starts to increase 

immediately, while the soil carbon responds much slower. The amount of carbon in the 

harvest is always larger than the amount of soil carbon lost as a result of increased 

harvests.  

 

The authors argue that the difference between their results and those of other papers is 

caused by the geographic coverage. The present paper studies carbon flows on a 

landscape level while some have studied only individual stands. However, this does not 

cause the difference. The landscape level and stand level lead to exactly the same 

conclusions as long as the system boundary is the same in both the studied scenario and 

the reference scenario. The main difference between the assessment of Eliasson et al. 

and that of e.g. Repo et al. (2011) or Kirkinen et al. (2008), is that the emissions from 

using the harvest residues for energy are not taken into account. 

Main strengths  

Two different models used.  

Main weaknesses 

Emissions from energy use of wood are not taken into account. 

Transparency  

Good  

Reported indicators  

Mg C ha-1 
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Title and source of the study:  

Fiorese, G. & Guariso, G. 2013. Modeling the role of forests in a regional carbon 

mitigation plan. Renewable Energy 52: 175-182. 

Aims and Objectives:  

The aim of the paper is to analyse how the management of forest for energy production 

contributes to the regional carbon budget. Study conducted in the Italian Emilia-

Romagna region.  

Summary of the study: 

In the paper, the management of the forest in the Emilia Romagna region in Northern 

Italy for energy production is assessed. The influence of alternative management policies 

on carbon budget and biomass removal is compared using the CO2FIX model. The aim is 

to assess how much such activities can contribute to bioenergy production and climate 

change mitigation on a regional level.  

 

The study region contains many different types of forests. The most widespread species 

are deciduous, such as oaks, poplars and willows, while conifer forests represent 3% and 

mixed conifer and deciduous another 3% of the forest area. About 85-90% of the wood is 

harvested for energy purposes, less than 5% for wood products and the remaining is lost 

in the harvesting operations. In the study only energy use is assumed. Four different 

types of forests are considered: conifer, beech, oak and mixed. For each of these forest 

types, four different management strategies are compared: complete protection (no 

intervention and no-use); conservation (the annual net growth is removed each year); 

maximum annual removal (harvest maximised, respecting the 10% constraint on the 

litter); 5, 10 and 20 years rotation cycle (biomass harvested in regular intervals, every 5, 

10 or 20 year respecting the constraint on litter). It is assumed that the amount of litter 

cannot deviate more than 10% from the current level.  

 

Heat produced from the biomass is assumed to replace heat produced with natural gas. 

CO2 emissions from the energy conversion of the biomass are assumed to be 0. Different 

management scenarios are compared in terms of the CO2eq. fixed by the forest and 

CO2eq. avoided through replacement of fossil fuels.  

 

Within the studied scenarios, the maximum annual removal leads to the highest amount 

of emissions avoided per hectare in all the forest types except for beech deciduous 

forest. For them, the highest amount of emissions avoided is achieved with the 10 year 

rotation cycle. As the CO2 emissions from energy conversion of the biomass are assumed 

to be zero, and the more natural gas is replaced, the better the overall carbon balance of 

the bioenergy system. It does not become clear from the paper why the benefits from 

avoided emissions are so much larger than the annual growth in the “no-use” scenario. Is 

the growth rate higher in the other scenarios? Is so, what is the rate? What happens to 

the forest carbon stock, does it remain constant? Is a considerable increase in growth 

rates achieved through increased harvests?  

 

Main strengths  

Part of the modelling approach and some of the assumptions made are explained clearly. 

Emphasis is placed also on the biodiversity impacts of increased forest biomass removal. 

Several different scenarios are assessed, including a “no use” scenario.  
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Summary continued - Title and source of the study:  

Fiorese, G. & Guariso, G. 2013. Modeling the role of forests in a regional carbon 

mitigation plan. Renewable Energy 52: 175-182. 

Main weaknesses 

Not all the assumptions made in the modelling are specified. The annual growth of the 

forest in each of the scenarios is not specified except for the “protection” scenario. The 

conditions under which the conclusions of the study apply (e.g. the low growth of forests 

in the “protection” scenario and the apparently high growth) could be discussed more. 

Transparency  

Moderate 

Reported indicators  

t CO2eq./ha/y; t CO2eq./y  
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Title and source of the study:  

Jonker, J.G.G., Junginger, H.M., Faaij,  A. 2013. Carbon payback period and carbon offset 

parity point of wood pellet production in the Southeastern USA. GCB Bioenergy (in 

press). 

Aims and Objectives:   

The aim of the study is to address and discuss the long-term environmental 

consequences of possible policy choices related to forest management in Europe. 

Summary of the study:   

This study examines the effect of methodological choices to determine the carbon 

payback time and the offset parity point for wood pellet production from softwood 

plantations in the South-eastern United States. The carbon accounting model GORCAM is 

used to model low-, medium- and high-intensity plantation management scenarios for a 

single stand level, an increasing stand level and a landscape level. Electricity production 

(MJe) is used as a functional unit and coal is considered as a reference fuel. No allocation 

procedure is applied. Emissions are expressed as absolute (actual) emissions including 

substitution credits. Rotation times of 20-25 years is used. 

This analysis points out that switching to highly productive plantations (only if 

sustainably managed) increases the uptake of carbon strongly, which offsets the 

additional emissions of silvicultural practices by far. Increased silvicultural emissions are 

compensated by faster (re) growth of plantations, and thereby increased uptake of 

carbon and increased fossil fuel displacement. However, due to the large amount of 

possible methodological choices and reference systems, there is a wide range of payback 

times and offset parity points. When the ‘no-harvest’ scenario is compared with the 

bioenergy scenarios, we conclude that initially, the carbon balance of the ‘no-harvest’ 

scenario is more favourable. However, after the carbon offset parity points (see above), 

the bioenergy scenarios are favourable. 

Main strengths 

Sensitivities studied for productivity. 

Main weaknesses 

In the stand level approach, no comparison is made to an appropriate baseline land use 

scenario, which certainly has influence on the conclusion about the importance of setting 

the system boundary, i.e. stand level vs. landscape level. The determination of the 

reference scenario for all the studied bioenergy scenarios is to some extent inconsistent. 

It is stated that the wood would be otherwise used for timber production. However, the 

influence of reduced timber wood supply from the region studied is not considered. The 

warming impact of dynamic carbon emission pulses through cumulative radiative forcing 

is not studied. Sensitivities are not considered for parameters other than productivity. 

The scope and goal of the study are to some extent unclear, e.g. the study does not 

determine which research questions are to be addressed. The reason why restoration of 

natural forests or long rotation forests are not considered as an option for plantations is 

not explained, thus possibly influencing the robustness of the conclusions about the GHG 

benefits of bioenergy use compared to forest protection.  
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Summary continued - Title and source of the study:  

Jonker, J.G.G., Junginger, H.M., Faaij,  A. 2013. Carbon payback period and carbon offset 

parity point of wood pellet production in the Southeastern USA. GCB Bioenergy (in 

press). 

Transparency  

Moderate 

Reported indicators  

Mg C / ha, g CO2-eq./MJe 
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Title and source of the study:  

Kallio, A.M.I., Salminen, O. & Sievänen, R. 2013. Sequester or substitute – 

Consequences of increased production of wood based energy on the carbon balance in 

Finland. Journal of Forest Economics, in press. 

Aims and Objectives:  

The paper compares scenarios in which the Finnish EU targets for bioenergy use are fully 

or partially met, to a reference case, where policies enhancing wood-based energy 

production are removed. The aim is to assess the trade-offs between sequestering 

carbon in forests and substituting wood for fossil fuels in Finland.  

Summary of the study: 

The purpose of the paper is to assess the net change in GHG emissions in the 

atmosphere in the period 2012-2035 under the assumption that Finland will achieve its 

RES policy goal of increasing the use of wood for energy. The policy aims at increasing 

the use of forest chips to 13.5 m3 in heat and power production. Moreover, according to 

the targets, the use of wood for biodiesel production should be increased to 5-6 m3. 

According to previous studies, this target is too high to be reached with mere wood chips 

and therefore pulpwood will also need to be harvested for energy. The paper considers 

three different scenarios: (a) ‘Reference’, in which policies favouring use of wood for 

energy are lifted in 2012; (b) ‘Bio’, in which all the bioenergy policies are included and a 

carbon price of 15 Eur/t is assumed. In addition 3 large biodiesel plants are set in 

operation in 2017; (c) ‘Bio-no BD’, which is the same as Bio, except that the biodiesel 

plants are excluded. 

According to the results, in the scenarios Bio and Bio-no BD, the future forest carbon 

sequestration is reduced by a larger amount than fossil fuel emissions are reduced. This 

reduction comes through two factors: in the scenario Bio, reduction in the above ground 

biomass contributes ca. 75% to it, while the contribution of the reduction in soil carbon 

stocks is ca. 25%.  Thus, the results suggest that reaching the policy target for wood 

based bioenergy, will increase the amount of carbon dioxide in the atmosphere. Increase 

in emissions is higher in the Bio scenario, in which production of biodiesel is included as 

planned under present policy. In the Bio-no BD scenario the increase in emissions is 

fairly small in both absolute and relative terms. The authors therefore conclude that it is 

possible that with less ambitious bioenergy targets and more restrictions on types of 

biomass that can be used for energy production, the impact on atmospheric carbon could 

become positive. However, this possibility has not been considered in the study. 

The authors also point out that there are many other benefits obtained from the use of 

forests for energy, such as energy security, rural employment, and self-sufficiency. Thus, 

the best use of forests will depend on several, often conflicting, societal aims. However, 

when bioenergy policies are planned for climate change mitigation, it is important to 

consider their short- and medium-term impacts.  

Main strength 

The paper is clearly and transparently written. Considers the whole of Finland. Several 

different models are applied, making the assessment comprehensive. Bioenergy 

scenarios are compared to a counterfactual scenario.  
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Summary continued - Title and source of the study:  

Kallio, A.M.I., Salminen, O. & Sievänen, R. 2013. Sequester or substitute – 

Consequences of increased production of wood based energy on the carbon balance in 

Finland. Journal of Forest Economics, in press. 

Main weaknesses 

Albedo is not taken into account, nor the risks of forest fires, wind damage or diseases. 

Transparency  

Good 

Reported indicators  

Mt CO2-eq.  
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Title and source of the study: 

Lamers P, Junginger M, Dymond CC and Faaij A. GCB Bioenergy (2014). Damaged 

forests provide an opportunity to mitigate climate change. 

Aims and Objectives:  

Assess the carbon implications of different management alternatives for forests in British 

Columbia (BC) affected by mountain pine beetle (MPB), and whether manufacturing wood 

pellets for bioenergy from slash (brash) and timber unsuitable as sawlogs (as a result of 

time since death) represents a better approach than simply making pellets from sawdust 

(BAU – business as usual), or no harvesting.  Scenarios compared are BAU, no harvest, 

making pellets from slash, and making pellets from salvaged dead trees. 

Summary of the study: 

In British Columbia (BC) considerable areas of forest have had significant mortality as a 

result of mountain pine beetle (MPB).  Current practice is to harvest and send what is 

merchantable to sawmills, while slash is burned at roadside to reduce fire risk.  While it is 

estimated that 70% of the dead trees are merchantable, as more inaccessible sites are 

harvested, this proportion is expected to decrease.  This study aims to consider forest 

carbon stocks at both landscape and stand level, in the context of MPB infection and 

periodic wildfires, and compare carbon payback times.  Harvested timber is used for a 

range of applications, including sawn wood for building products where possible, and also 

wood pellets.  Pine only, pine dominated, spruce dominated and spruce & fir sites are 

considered.  Times to carbon break-even (number of years until carbon in the harvested 

forest area and harvested wood and bioenergy products is lower than the pre-harvest 

level) and carbon parity (number of years until carbon in the harvested forest area and 

harvested wood and bioenergy products is lower than in the reference scenario) are the 

principal parameters considered. 

Forest carbon dynamics were simulated using the Carbon Budget Model of the Canadian 

Forest Sector (CBM-CFS3), which specifically allows inclusion of MPB infestation; usage of 

wood for different applications, and calculation of carbon parity, were modelled 

separately.  Carbon substitution factors were selected for wood products (1.7 tC/tC) and 

wood pellets (0.923 tC/tC), but sensitivity analysis is used to consider different values.  

Wood products broken down into “long lived wood products” (50% of viable sawlogs), 

“short lived products” (pulp and paper – 35% of sawlogs) and wood pellets (15% of 

sawlogs, plus brash and some dead timber, depending on scenario).  There is no further 

attempt to model a range of wood products and lifetimes. 

Carbon break-even times calculated range from 20 to 40 years, depending on forest type 

(pine/spruce/fir), for the BAU scenario, and 0 to 140 year for the no harvest scenario, 

and carbon parity from 0 years to 80 years when comparing to no harvesting, and 50 

years to 110 year when comparing to BAU. 

Main strengths  

Models a very specific situation (MPB infested forests in BC) in detail.  Addresses insect 

damage and includes wildfire effect. Designed to answer specific questions about how 

best to manage a particular situation. Uses regionally specific tree growth curves and 

carbon pool dynamics to give a regionally accurate model.  Allows consideration of 

uneven aged stands or landscapes. 

 

 



Biogenic Carbon  

and Forest Bioenergy 

260    |    Final report on Task 1    |    Robert Matthews   |    15th May 2014 

 
Summary continued - Title and source of the study:  

Lamers P, Junginger M, Dymond CC and Faaij A. GCB Bioenergy (2014). Damaged 

forests provide an opportunity to mitigate climate change. 

Main weaknesses 

Only considers a single, specific situation.  Not very detailed analysis of potential range of 

wood products.  Does not undertake full LCA.  Uses single figures to represent carbon 

displacement by all wood products (1.7 tC/tC) and wood pellets (0.923 tC/tC), although 

it does undertake sensitivity analysis on these. 

Transparency  

Uses a publically available forest model (CBM-CFS3) with documentation on the NRC 

website.  Scenario assumptions given in supporting information tables. 

Reported indicators  

Years to carbon parity; years to carbon break-even: tonnes of carbon. 
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Title and source of the study: 

Matthews R, Mortimer N, Mackie E, Hatto C, Evans A, Mwabonje O, Randle T, Rolls W, 

Sayce M and Tubby I. 2014. Carbon impacts of using biomass in bioenergy and other 

sectors: forests. 

Aims and Objectives:  

An assessment of the potential carbon (GHG) impacts of using different types of 

bioenergy feedstocks (in the form of suitable woodfuels) to displace carbon (GHG) 

emissions from fossil fuels, against the role played by forest stocks as carbon storage 

facilities (including diverting wood from landfill/forest floor to bioenergy). 

An assessment of the impact on carbon (GHG) emissions of diverting these woody 

biomass feedstocks from a range of other uses (such as construction) and from landfill at 

the end of the product life to bioenergy. 

Summary of the study: 

This report sets out to calculate lifecycle GHG emissions associated with the production of 

different combinations of harvested wood products, including woodfuel, per ha of forest, 

and compare them with emissions associated with both non-wood and imported wood 

counterfactuals.  These are then ranked in terms of emissions benefits and compared 

with the option of simply leaving the forest to sequester carbon unmanaged.  In order to 

take account of the different timescales of both emissions and sequestration (including 

“carbon debt”), the emissions are calculated over 20, 40 and 100 year timescales. 

This report explicitly addresses the situation in the UK and the mixture of wood products 

potentially available from UK forests, together with some of the most realistic 

counterfactuals.  It also explicitly addresses the concept of “carbon debt” and also 

sequestration foregone by current, or potential future, levels of management.  Includes 

all carbon pools, including above and below ground biomass, litter, soil carbon and both 

long and short lived wood products. 

Main strengths  

It considers a great many different combinations of wood use scenarios, thus allowing 

them to be ranked in GHG benefits.  Uses consequential LCA.  Calculations based on 

emissions per ha of forest land, allowing best use of limited forest to be assessed.  

Includes forest carbon stock changes and both non-wood and imported wood 

counterfactuals for forest products.  Explicitly includes both conventional “carbon debt” 

and sequestration lost by management. 

Main weaknesses 

Allocation approach not stated.  Relatively limited range of counterfactuals. 

Transparency  

Good 

Reported indicators  

T CO2-eq/ha/yr 
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Appendix 6. Summary of assessment against criteria of 
published case studies on GHG emissions of forest bioenergy 

 

A detailed assessment was carried out of published case studies on GHG emissions of 

forest bioenergy, based on a set of more than 20 criteria. The full assessment is large 

and complex and is not included in this report. The summary in Table A6.1 is based nine 

of the most relevant criteria: 

1 Geographical location 

2 Scale (spatial) 

3 Forest bioenergy feedstock 

4 Bioenergy conversion system 

5 Forest management scenario 

6 Wood utilisation scenario 

7 Counterfactual land use 

8 Counterfactual energy source(s) 

9 LCA approach. 

For each criterion, a set of categories are defined and each published case study has 

been classified according to these categories. For example, Geographical location has 

three categories, Europe, North America and Theoretical. Of the 29 case studies covered 

by the meta-analysis, 15 consider locations in Europe, 13 consider locations in North 

America and one considers a notional, theoretical forest in an arbitrary location. Note 

that a total of 31 studies were included in the meta-analysis, but two papers (Cherubini 

et al., 2011ab) were excluded from this assessment on the basis that their content was 

closer to a theoretical statement on methodology. Note that many studies considered 

several bioenergy systems or applied several methods of assessment, with the result that 

the totals of frequencies for most criteria are greater than 29. 
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Table A6.1 Summary assessment of published case studies on GHG emissions 

of forest bioenergy for nine criteria 

Criterion Category Frequency 

Geographical 

location 

Europe 15 

North America 13 

Theoretical (notional forest in arbitrary location) 1 

   

Scale 

Individual stand 8 

Forest holding/landscape 10 

Region of country 12 

Country 4 

Region of world 2 

   

Forest 

bioenergy 

feedstock 

All (additional) harvested biomass 15 

All (additional) stemwood 4 

Raw sawlogs 2 

Sawlog co-products 3 

Small roundwood 2 

Harvest residues 14 

Recycled/waste wood 0 

Other 2 

Ambiguous 3 

Bioenergy 

conversion 

system 

Small scale heat 3 

District heat 6 

Power only (combustion) 10 

Power only (other, e.g. gasification, pyrolysis) 0 

Power only (co-firing) 1 

Combined heat and power 6 

Other 1 

Ambiguous 10 

Not stated 2 

   

Forest 

management 

scenario 

Business as usual 3 

Additional extraction on harvest 9 

Additional harvest 17 

Shortened rotation 4 

Conversion to plantation 2 

Enrichment of growing stock 1 

Afforestation 2 

Other 9 

Ambiguous 2 

Wood 

utilisation 

scenario 

Low value wood 17 

Diversion from use as material 4 

Other 14 
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Table A6.1 (continued) Summary assessment of published case studies on 

GHG emissions of forest bioenergy for nine criteria 

Criterion Category Frequency 

Counterfactual 

land use 

Business as usual 20 

No harvesting 11 

No forest 2 

None 3 

Other 1 

Not stated 1 

   

Counterfactual 

energy 

source(s) 

Coal 12 

Oil 5 

Natural gas 7 

Unspecified/generic fossil energy source or mix 4 

None 6 

Other (e.g. detailed BAU scenario at large scale) 5 

Ambiguous 1 

   

LCA approach 

Consequential 22 

Attributional 4 

Other 3 

Unclear/not stated 6 
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Appendix 7. Assessment of transparency of case studies on 
GHG emissions of forest bioenergy 

 

The assessment of transparency presented in Table A7.1 is based on seven tests: 

1 A broad description is given of calculation methods, and of data, results and 

parameters used in calculations. 

2 Citations are given for all data, results and parameters used in calculations.  

3 All data results and parameters used in calculations are presented, with original 

sources and references cited where appropriate. 

4 Citations are given for published statements of methods, models and approaches 

which set out the general principles adopted in calculations. 

5 In addition to Test 4, it is stated that the published statements describe in detail the 

methods, models and calculation steps used. 

6 Aspects of the detailed calculation methods and data, results and parameters used in 

calculations are described.  

7 The calculation methods employed and the data, results and parameters referred to in 

calculations are fully described, so that it is possible to replicate the calculations and 

results. 

Brief comments are also made on each paper. 

The study of Ros et al. (2013) is not included in this analysis since it is a subject of 

discussion in Section 5.4. 
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Table A7.1 Meta-analysis of transparency in published case studies  

Source 
Test 

Comments 
1 2 3 4 5 6 7 

Mitchell et al. (2009) Y Y Y Y Y Y N 
Detailed descriptions of models + input parameters used in the calculation are given in 
appendices. 

Walker et al. (2010) Y Y Y Y N Y N A very long document with extensive appendices giving references and source data. 

Werner et al. (2010) Y Y N Y Y N N Some assumptions given.  Interaction between models explained. 

Cherubini et al. 
(2011a) 

Y Y Y Y Y Y Y 

The paper proposes and describes a model in detail. References are given for equations 

and assumptions.  No forest data is required. The paper is similar to Cherubini et al 
(2011b). 

Cherubini et al. 
(2011b) 

Y Y Y Y Y Y Y 
The paper proposes and describes a model in detail. References are given for equations 
and assumptions.  No forest data is required. The paper is similar to Cherubini et al 
(2011a). 

Hudiburg et al. 
(2011) 

Y Y N Y N Y N 
The paper includes very little data, but following the link to www.nature.com gives 
supplementary information.  

Kilpeläinen et al. 

(2011) 
Y Y Y Y N Y N 

Describes an LCA model, but does not give detailed description of all the calculations 

undertaken by the model. 

Lecocq et al. (2011) Y N N Y N N N 
No information on the source of the data.  Possibly it is data embedded within the model 
used, but the paper does not say this. 

McKechnie et al. 
(2011) 

Y Y Y Y N Y N The supporting information to the paper is the main basis of the assessment. 

Repo et al. (2011) Y Y N Y N Y N 

Good description of methods and approaches, but full knowledge of assumptions and 

replication of work would require understanding of and access to Yasso07 decomposition 
and soil carbon model. 

Ter-Mikaelian et al. 
(2011) 

Y Y N Y N Y N  

UN-ECE (2011) Y Y N Y N Y N 
Key forest resource indicators used in scenarios are given. Models used are not described 
in detail. The extensive nature of the work and the number of models used would make 
the calculations difficult to replicate. 

Zanchi et al. (2011) Y Y N Y N Y N Very good explanation of calculation steps, including relevant equations. 

Böttcher et al. 
(2012) 

Y Y N Y N N N 
Several models and several datasets are used and all are referenced. None of the actual 
datasets/input parameter values are given in the paper, possibly because they are so 
extensive.  

Colnes et al. (2012) Y N N N N Y N 
A literature review and the development of a carbon accounting model. Data and 
references given in appendix. 

Galik and Abt (2012) Y N N Y N Y N 
Comparison of results variation with assessment scales - one model used for all scales.  

Assumptions and input parameters for the model not given. 
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Table A7.1 (continued) Meta-analysis of transparency in published case studies 

Source Test Comments 

1 2 3 4 5 6 7 

Holtsmark (2012a) Y Y N Y N Y N 
Note that model descriptions and calculation steps are provided in the supplemental 
online data. 

Krug et al. (2012) Y Y N N N Y N 
A critical appraisal of published research results. It does not include calculations so it is 

difficult to score the tests. 

Mitchell et al. (2012) Y Y N Y N Y N 
The model used is described in the text and referenced. Some input parameters are 
given.  

Nepal et al. (2012) Y Y N Y N N N 
Various models used to investigate scenarios. Some of the assumptions/inputs to the 
models are stated.  A spreadsheet model is developed and used, but not described in 
detail. 

Poudel et al. (2012) Y Y N Y N N N 
Various models used to investigate scenarios. Parameters used for these models not 
stated. General description of method, but little information regarding detailed 

calculations. 

Repo et al. (2012) Y Y N Y N Y N Some description of detailed calculation methods given. Some input parameters given 

Routa et al. (2012) Y Y Y Y N Y N 

Good description of methods and approaches, but full knowledge of assumptions and 
replication of work would require understanding of and access to SIMA ecosystem model 

and an LCA tool emissions calculations tool. Parameters for the emissions calculation are 
given in the paper. 

Stewart and 
Nakamura (2012) 

Y Y N Y N Y N Utilises source data collected by the authors. Some of this data is presented. 

Bernier and Paré 

(2013) 
Y Y Y Y N Y N  

Eliasson et al. 
(2013) 

Y N N Y N N N 
Models used are described in outline and referenced, but very little information regarding 
parameters and scenario assumptions is given. 

Fiorese and Guariso 

(2013) 
Y Y N Y N Y N 

Models used are described in some detail and referenced. Some detailed calculation steps 

also given. 

Jonker et al. (2013) Y Y Y Y Y Y N 
Model described and referenced. States that reference provides detailed explanation of 
model. Text states that all relevant input parameters for the model are described in 
Appendix. 

Kallio et al. (2013) Y Y N Y N N N Some assumptions given, though judged not to be a complete set of assumptions.  

Lamers et al. (2014) Y Y N Y N Y N  

Matthews et al. 
(2014) 

Y Y N Y Y Y N 
Not all input data and parameters presented, but models are described, indicating that 
the references given provide details about the models. 
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Appendix 8. Meta-analysis of methodological choices, scenario 
assumptions and model parameterisation in published case 
studies 

The assessment in this appendix builds on the meta-analysis presented in Lamers and 

Junginger (2013), which compares the methodological choices, scenario assumptions and 

model parameterisation adopted in individual case studies (see Table 1 in Lamers and 

Junginger, 2013). Most of the criteria referred to in Table A8.1 derive directly from 

Lamers and Junginger, where they are described and discussed. In addition, Table A8.1 

lists the time horizons adopted in individual case studies.  
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Table A8.1 Meta-analysis of methodological choices, scenario assumptions and  

model parameterisation in published case studies 

Source Methodology Forest data 

Post-
harvest 
carbon 
cycling 

Full 
LCA 

Baseline 
Time 

horizon 
Model 

Mitchell et al. 

(2009) 

Fixed 

landscape 

Representative 

theoretical plots 
Y N BAU (current patterns of FM). 500 STANDCARB 

Walker et al. 
(2010) 

Stand-level 
Representative 
theoretical plots 

Y Y 

Essentially BAU forest management. 
Oil for heat or CHP. 
Coal for electricity. 
Natural gas for heat. 
Natural gas for electricity. 

90 

US Forest 

Service Forest 
Vegetation 
Simulator 

Werner et al. 
(2010) 

Dynamic 
landscape 

Swiss National 
Forest Inventory 

Y Y 
BAU (current patterns of FM, wood 
and fossil energy use). 

100 

MASSIMO, 
Yasso and 
Swiss timber 

industry model 

Cherubini et 
al. (2011a) 

Fixed 
landscape 

Representative 
theoretical plots 

N N -  Bern 2.5CC 

Cherubini et 
al. (2011b) 

Stand-level 
Representative 
theoretical plots 

N N 
No harvest (but no additional tree 
growth). 

 Bern 2.5CC 

Hudiburg et 
al. (2011) 

Dynamic 
landscape 

Geospatially 
explicit 
(California, 
Oregon and 
Washington, 

USA) 

Y Y Protection, no harvest. 20 
NCAR CESM/ 
CLM4-CN 

Kilpeläinen et 
al. (2011) 

Stand-level 
Representative, 
theoretical plots 

N N None. 80 SIMA 

Lecocq et al. 
(2011) 

Dynamic 
landscape 

French Regional 
Forest 
Inventories 

N N 
BAU (current patterns of FM, wood 
and fossil energy use). 

100 
FFSM (French 
Forest Sector 
Model) 
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Table A8.1 (continued) Meta-analysis of methodological choices, scenario assumptions and  

model parameterisation in published case studies 

Source Methodology Forest data 

Post-
harvest 
carbon 
cycling 

Full 
LCA 

Baseline 
Time 

horizon 
Model 

McKechnie et 
al. (2011) 

Dynamic 
landscape 

Geospatially 
explicit (Ontario, 

Canada) 

Y Y 

Decay of harvest residues + coal 

electricity. 
Decay of harvest residues fossil 
transport fuel. 
Protection (natural disturbances) + 
coal electricity. 
Protection (natural disturbances) + 
fossil transport fuel. 

100 FORCARB-ON 

Repo et al. 
(2011) 

Fixed 
landscape 

Representative, 
theoretical plots 

Y Y 
BAU (timber harvest only), decay of 
residues + fossil fuel electricity. 

100 Yasso07 

Ter-
Mikaelian et 

al. (2011) 

Dynamic 
landscape 

Geospatially 
explicit (Ontario, 

Canada) 

Y Y 
Protection (natural disturbances) + 
coal electricity. 

250 FORCARB-ON 

UN-ECE 

(2011) 

Dynamic 

landscape 

European 
National Forest 
Inventories 

N N 
BAU (current patterns of FM, wood 

and fossil energy use). 
21 EFISCEN 

Zanchi et al. 
(2011) 

Fixed 
landscape 

Representative, 
theoretical plots 

Y N 

BAU (timber only harvest, 

agriculture) + coal/oil/natural gas 
electricity. 

400 GORCAM 

Böttcher et 

al. (2012) 

Dynamic 

landscape 

Forest inventory 

data for EU 
Member States 

(not including 
Cyprus, Greece, 
Malta) 

N N 

Business as usual (current patterns 

of forest management, wood and 
fossil energy use, in the absence of 

RED and ESD). Business as usual 
energy consumption (market 
mediated displacement). 

21 
G4M, EFISCEN, 

GLOBIOM 

Colnes et al. 
(2012) 

Dynamic 
landscape 

Geospatially 
explicit 
(Southeast USA) 

Y Y 
BAU (timber only harvest) + fossil 
electricity (several). 

100 Combination 

Galik and 

Abt (2012) 

Dynamic 

landscape 

Geospatially 
explicit (Virginia, 

USA) 

Y N 
BAU (current forest management, 
wood use). Coal fired electricity 

generation without co-firing. 

25 FORCARB/SRTS 
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Table A8.1 (continued) Meta-analysis of methodological choices, scenario assumptions and  

model parameterisation in published case studies 

Source Methodology Forest data Post-
harvest 
carbon 
cycling 

Full 
LCA 

Baseline Time 
horizon 

Model 

Holtsmark 
(2012a) 

Fixed 
landscape 

Representative, 
theoretical plots 

Y N 

BAU (timber harvest only) + coal 

electricity. 
BAU (timber harvest only) + fossil 
transport fuel. 

400 
Statistics 
Norway 
internal 

Krug et al. 
(2012) 

Fixed 
landscape 

Empirical CO2 
flux data 

N N None. 
Current 

conditions 

Meta-analysis 
of CO2 flux 
measurements 

Mitchell et al. 
(2012) 

Fixed 
landscape 

Representative, 
theoretical plots 

Y N 
No use, natural disturbances, range 
of fossil energy sources. 

10 000 LANDCARB 

Nepal et al. 
(2012) 

Dynamic 
landscape 

Regional US 

forest inventory 

data 

N N 
BAU (historical forest bioenergy 
harvest levels). 

Year 2030 
Spreadsheet 
model 

Poudel et al. 
(2012) 

Dynamic 
landscape 

Regional 
Swedish forest 
inventories 

Y N 
BAU (current patterns of FM, wood 
and fossil energy use). 

100 

BIOMASS, 
HUGIN, Q-
model, wood 
products and 
bioenergy 

substitution 
model 

Repo et al. 

(2012) 

Fixed 

landscape 

Representative, 

theoretical plots 
Y Y 

BAU (timber harvest only), decay of 

residues + fossil based electricity. 
100 Yasso07 

Routa et al. 
(2012) 

Stand and 
fixed 
landscape 

Representative 
theoretical plots 

N N - 120 SIMA 

Stewart and 
Nakamura 
(2012) 

Fixed 
landscape 

Californian 
forest inventory 

N N None. 

None, 
implicitly 
current 

conditions 

 

Bernier and 
Paré (2013) 

Fixed 
landscape 

Empirical carbon 
flux data 

Y Y Protection + oil heating. 120 
Chrono-
sequence of 

flux-net data 
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Table A8.1 (continued) Meta-analysis of methodological choices, scenario assumptions and  

model parameterisation in published case studies 

Source Methodology Forest data Post-
harvest 
carbon 
cycling 

Full 
LCA 

Baseline Time 
horizon 

Model 

Eliasson et 
al. (2013) 

Stand and 

fixed 
landscape 

Representative, 
theoretical plots 

N N - 300 Q, Coup 

Fiorese and 
Guariso 
(2013) 

Stand and 
fixed 
landscape 

Representative, 
theoretical plots 

N N None. 100 CO2FIX. Yasso07 

Jonker et al. 
(2013) 

Stand and 
fixed 
landscape 

Representative, 
theoretical plots 

Y Y Protection, no harvest and BAU. 75 GORCAM 

Kallio et al. 

(2013) 

Dynamic 

landscape 

Finnish national 

forest inventory 
N N 

A scenario resembling BAU (timber 

only harvest). 
23 

MELA, YASSO, 

SF-GTN 

Ros et al. 
(2013) 

Dynamic 
landscape 

Regional 
National Forest 
Inventories 
within EU 

N N 
BAU (current patterns of FM, wood 
and fossil energy use). 

400 EFISCEN 

Lamers et al. 
(2014) 

Stand and 
fixed 
landscape 

Representative, 
theoretical plots 

Y Y 
Branchwood: burning at roadside. 
Protection (no use), disturbance 
BAU (timber only harvest). 

 CBM-CFS3 

Matthews et 
al. (2014) 

Stand and 
fixed 

landscape 

Representative, 
theoretical plots 

Y Y 
No use, fossil energy and non-wood 
products. 

20, 40, 
100 

CSORT and 
spreadsheet 

model 
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Appendix 9. Meta-analysis of published results for GHG 
emissions associated with forest bioenergy 

In Table A9.1 of this appendix, results relating to the GHG emissions associated with the 

production and consumption of forest bioenergy are collated and listed along with 

essential information about the type of forest management, production scenario, 

conversion technology, and details of any baseline scenario referred to in an individual 

case study. The format in Table A9.1 is based on the approach adopted in Tables 1 and 3 

of the JRC technical report (Marelli et al., 2013), with certain elaborations, e.g. to 

accommodate results for GHG emissions expressed in different units. An attempt has also 

been made to clarify details of forest management, production and baseline scenarios 

where this may assist with interpretation. The various case studies are classified with 

respect to a number of factors: 

 Source (i.e. the publication in which the case study can be found) 

 Geographical location 

 Forest management/production scenario (i.e. the type of forest management, biomass 

extraction, processing and conversion involved in supplying the forest bioenergy) 

 Counterfactual scenario (i.e. where relevant, the type of forest management and 

biomass extraction that would have occurred if the forest bioenergy were not to be 

supplied) 

 Result type (essentially the metric used for presenting results, for example GHG 

emissions payback time, attributed emissions etc. and associated units where 

relevant) 

 Result value 

 Comments. 

Wherever possible, results included in Appendix 9 are expressed as GHG emissions 

payback times (see Section 5.2.1). This has involved some interpretation and 

manipulation of results actually presented in some individual case studies.  

It is important to understand that results for GHG emissions payback times reported in 

Table A9.1 have not always been calculated consistently. Rather, the details of 

calculations may be context-specific. For examples where harvesting is introduced in 

forests that were not previously in management for production, the payback time most 

likely relates to the period required to recoup the loss of forest carbon stocks as a result 

of the introduction of harvesting. For examples where forests are already in management 

for production (i.e. this is the business as usual scenario), but changes are made to 

existing management, the payback time is likely to represent the period required to 

achieve net GHG emissions reductions, compared to a business as usual reference case.  

It should be noted that the results of Eliasson et al. (2013) have been excluded from this 

analysis partly for reasons suggested in the summary description in Appendix 5), and 

partly due to difficulties in interpreting the study results. 
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Table A9.1 Meta-analysis of published results for GHG emissions associated with forest bioenergy 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

Mitchell et 
al. (2009) 

Northwest 
USA 

Coast range forest type (‘old growth’ 

stand types): forest biomass removed 
for fire prevention, involving understory 
removal, overstorey thinning, and 
prescribed fire every 25 years. 
 
Harvested wood used for bioenergy 
only. 

Non-implementation of fire 
prevention measures. Assumed 
emissions displacement factor 
representative of solid biomass 
displacing US average fossil energy 
mix. 

Payback 
time 

169 

Referred to in 
JRC review and 
Lamers and 

Junginger. 

Forest management same as 
previous entry. Assumed fossil 
energy emissions displacement factor 
representative of liquid transport fuel 
replacing fossil transport fuel. 

201 

Coast range forest type (‘secondary’ 
stand types): forest biomass removed 
for fire prevention, involving understory 
removal, overstorey thinning, and 
prescribed fire every 25 years. 
 
Harvested wood used for bioenergy 
only. 

Forest management same as 
previous entry. Assumed emissions 
displacement factor representative of 

solid biomass displacing US average 
fossil energy mix. 

34 

Forest management same as 
previous entry. Assumed fossil 
energy emissions displacement factor 
representative of liquid transport fuel 
replacing fossil transport fuel. 

339 

West cascades forest type (‘old growth’ 
stand types): forest biomass removed 
for fire prevention, involving understory 
removal, overstorey thinning, and 
prescribed fire every 25 years. 
 
Harvested wood used for bioenergy 
only. 

Forest management same as 
previous entry. Assumed emissions 
displacement factor representative of 
solid biomass displacing US average 
fossil energy mix. 

228 

Forest management same as 
previous entry. Assumed fossil 
energy emissions displacement factor 
representative of liquid transport fuel 
replacing fossil transport fuel. 

459 

West cascades forest type (‘secondary’ 
stand types): forest biomass removed 
for fire prevention, involving understory 
removal, overstorey thinning, and 
prescribed fire every 25 years. 
 
Harvested wood used for bioenergy 
only. 

Forest management same as 
previous entry. Assumed emissions 
displacement factor representative of 
solid biomass displacing US average 
fossil energy mix. 

107 

Forest management same as 
previous entry. Assumed fossil 
energy emissions displacement factor 
representative of liquid transport fuel 
replacing fossil transport fuel. 

338 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

Walker et al. 
(2010) 

Northeast USA 

Additional felling of stemwood and 
also extraction of harvest residues to 
supply bioenergy only (3 scenarios 
with increasing levels of felling). 

Essentially ‘business as usual’ 
forest management. Oil for heat 
or CHP. 

Payback time 

3 to 15 

Referred to in 
JRC review. 

Forest management same as 
previous entry. Coal for 
electricity generation. 

12 to 
32 

Forest management same as 
previous entry. Natural gas for 
heat. 

17 to 
37 

Forest management same as 
previous entry. Natural gas for 
electricity generation. 

59 to > 
90 

Werner et al. 
(2010) 

Switzerland 

Optimisation of harvesting from 
forests (e.g. selection of rotations) for 
production of wood for construction 
plus bioenergy (co-production). 

Business as usual (current 
patterns of forest management, 
wood and fossil energy use). 

Payback time 0 

Interpreted from 
annual 
trajectories of 
GHG emissions 
reported in 
paper. 

Hudiberg et 
al. (2011) 

Northwest USA 

Fire prevention measures 

No fire prevention measures. 
Fossil energy counterfactual 
unclear, possibilities are regional 
energy consumption or coal. 

Consequential 
(increase in) 
GHG emissions 
(MtC yr-1) 

2.3 

Referred to in 
Lamers and 
Junginger. 

Fire prevention measures with 
associated harvesting of biomass for 
bioenergy. 

9.5 

Harvesting of biomass for bioenergy 
only, regardless of fire risk. 

20.3 

Kilpeläinen 
et al. (2011) 

Finland 

Increased harvesting of stemwood for 
solid wood products and bioenergy, 
use of wood for bioenergy restricted to 
feedstocks unsuitable for materials. 

None. 

Attributed GHG 
emissions 
(kgCO2  
MWh-1) 

~180  

Lecocq et al. 
(2011) 

France 

Increased extraction of harvest 
residues for bioenergy. Several 
scenarios for bioenergy use, co-firing 
for electricity considered here. 

Conservation of forest carbon 
stocks (i.e. ‘no use’). Coal fired 
electricity generation without co-
firing. 

Payback time 

~20 
Interpreted from 
annual 
trajectories of 
GHG emissions 
reported in 
paper. 

Increased harvesting of trees for 
bioenergy only. Several scenarios for 
bioenergy use, co-firing for electricity 
considered here. 

~40 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

McKechnie et 
al. (2011) 

Canada 
(Ontario) 

Additional felling of stemwood to 
supply bioenergy only. Co-firing for 
electricity. 

Business as usual (current patterns 
of forest management, wood and 
fossil energy use, implying 
conservation of forest areas where 
additional felling takes place). Coal 
fired electricity generation without 
co-firing. 

Payback 
time 

38 

Referred to in 
JRC review and 
Lamers and 
Junginger. 

Additional felling of stemwood to 
supply bioenergy only. Transport fuel. 

Forest management same as 
previous entry. Fossil transport 
fuel. 

> 100 

Increased extraction of harvest 
residues for bioenergy. Co-firing for 
electricity. 

Forest management same as 
previous entry. Coal fired 
electricity generation without co-
firing. 

16 

Increased extraction of harvest 
residues for bioenergy. Transport fuel. 

Forest management same as 
previous entry. Fossil transport 
fuel. 

74 

Repo et al. 
(2011) 

Finland 

Increased extraction of harvest 
residues (branchwood) for bioenergy 
(electricity generation). 

Business as usual (no extraction of 
harvest residues). Coal fired 
electricity generation. 

Payback 
time 

0 

Referred to in 
Lamers and 
Junginger. 

Forest management same as 
previous entry. Oil fired electricity 
generation. 

3 

Forest management same as 
previous entry. Natural gas fired 
electricity generation. 

4 

Increased extraction of harvest 
residues (stumps) for bioenergy 
(electricity generation). 

Forest management same as 
previous entry. Coal fired 
electricity generation. 

0 

Forest management same as 
previous entry. Oil fired electricity 
generation. 

15 

Forest management same as 
previous entry. Natural gas fired 
electricity generation. 

22 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

Ter-
Mikaelian et 
al. (2011) 

Canada 
(Ontario) 

Additional felling of stemwood to 
supply bioenergy only. Co-firing for 
electricity. 

Business as usual (current patterns 
of forest management, wood and 
fossil energy use, implying 
conservation of forest areas where 
additional felling takes place). Coal 
fired electricity generation without 
co-firing. 

Payback time 

42 to 
105 

(mean 
61) 

Referred to in 
Lamers and 
Junginger. 

UN-ECE 
(2011) 

Europe 

Four policy scenarios: (1) maximising 
biomass carbon without affecting the 
level of harvest; (2) priority to 
biodiversity; (3) promoting wood 
energy; (4) fostering innovation and 
competitiveness. 

Assumed fossil energy emissions 
displacement factor for fossil 
energy counterfactual. 

Qualitative-
quantitative 
socio-
economic 
score 

- 

European Forest 
Sector Outlook 
Study (EFSOS 
II). Referred to in 
Lamers and 
Junginger. 

Zanchi et 
al. (2011) 

Austria 

Additional felling in conifer forests, 
harvest levels constrained to be less 
than forest increment. Stemwood used 
for bioenergy only. 

Business as usual (current patterns 

of forest management, wood and 
fossil energy use). Coal fired 
electricity generation. 

Payback time 

175 

Referred to in 
JRC review and 
Lamers and 
Junginger. 

Forest management same as 
previous entry. Oil fired electricity 
generation. 

230 

Forest management same as 
previous entry. Natural gas fired 
electricity generation. 

300 

Additional felling in conifer forests, 
harvest levels not constrained to be 
less than forest increment. Stemwood 
used for bioenergy only. 
 

Forest management same as 
previous entry. Coal fired 
electricity generation. 

230 

Forest management same as 
previous entry. Natural gas fired 
electricity generation. 

295 

Forest management same as 
previous entry. Natural gas fired 
electricity generation. 

400 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

Zanchi et al. 
(2011) 

Austria 

Increased extraction of harvest 
residues (essentially branch wood) for 
bioenergy (electricity generation). 

Business as usual (no extraction of 
harvest residues). Coal fired 
electricity generation. 

Payback 
time 

0 

Referred to in 
JRC review and 
Lamers and 
Junginger. 

Forest management same as 
previous entry. Oil fired electricity 
generation. 

7 

Forest management same as 
previous entry. Natural gas fired 
electricity generation. 

16 

Clearfelling of existing forest and 
replacement with low-productivity short 
rotation forest plantation (harvested on 
a 20 years rotation). All harvested 
wood for bioenergy (electricity 
generation). 

Business as usual (no production, 
constant carbon stock). Coal fired 
electricity generation. 

114 

Forest management same as 
previous entry. Oil fired electricity 
generation. 

145 

Forest management same as 
previous entry. Natural gas fired 
electricity generation. 

197 

Clearfelling of existing forest and 
replacement with high-productivity 
short rotation forest plantation 
(harvested on a 10 years rotation). All 
harvested wood for bioenergy 
(electricity generation). 

Business as usual (no production, 
constant carbon stock). Coal fired 
electricity generation. 

17 

Forest management same as 
previous entry. Oil fired electricity 
generation. 

25 

Forest management same as 
previous entry. Natural gas fired 
electricity generation. 

20 
 

Clearfelling of existing forest and 
replacement with high-productivity 
short rotation forest plantation for 
bioenergy production (harvested on a 
10 years rotation). Harvested wood 
from initial clearfelling used for solid 

wood products and bioenergy (co-
production). Bioenergy used for 
electricity generation. 

Business as usual (no production, 
constant carbon stock). Coal fired 
electricity generation. 

0 

Forest management same as 
previous entry. Natural gas fired 
electricity generation. 

8 

Afforestation of low grade agricultural 
land with low initial carbon stock. 

Business as usual (continues as 
agricultural land). Coal, oil or 
natural gas fired electricity 
generation. 

0 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

Böttcher et 
al. (2012) 

EU24 

Increased harvest (for bioenergy): 
same as baseline scenario but with 
changes to meet national targets for 
renewable energy set in the RED and 
the GHG Effort Sharing Decision 
(2009/406/EC) by 2020. 

Business as usual (current 
patterns of forest management, 
wood and fossil energy use, in the 
absence of RED and ESD). 
Business as usual energy 
consumption (market mediated 
displacement). 

Consequential 
(decrease in) 
carbon sink 
compared to 
BAU (Mt CO2 
yr-1) 

10 to 
30 

Referred to in 
Lamers and 
Junginger. 

Colnes et al. 
(2012) 

Southeast USA 

Additional thinning and felling of 
stemwood in plantations for bioenergy 
only. Biomass-fired electricity 
generation. 

Business as usual (current 
patterns of forest management, 
wood and fossil energy use). 
Several fossil energy 
counterfactuals, coal fired 
electricity generation considered 
here. 

Payback time 

35 

Referred to in 
Lamers and 
Junginger. 

Forest management same as 
previous entry. Several fossil 
energy counterfactuals, natural 
gas fired electricity generation 
considered here. 

50 

Galik and 
Abt (2012) 

Southeast USA 
(Virginia) 

Additional thinning and felling of 
stemwood in plantations for bioenergy 
only. Biomass-fired electricity 
generation. 

Business as usual (current 
patterns of forest management, 
wood and fossil energy use, 
implying conservation of forest 
areas where additional felling 
takes place). Coal fired electricity 
generation without co-firing. 

Consequential 
(increase in) 
GHG emissions 
compared to 
BAU (tC ha-1  
yr-1) 

- 

Very variable 
with spatial 
scale/ system 
boundary. 

Holtsmark 
(2012a) 

Norway 

Additional felling of stemwood for 
bioenergy only. Biomass fired 
electricity generation. 

Business as usual (current 
patterns of forest management, 
wood and fossil energy use). 
Assumed fossil energy emissions 
displacement factor (broadly 
representing coal fired 
electricity). 

Payback time 

190 

Referred to in 
JRC review and 
Lamers and 
Junginger. 

Additional felling of stemwood for 
bioenergy only. Biomass derived 
transport fuels. 

Forest management as previous 
entry. Assumed fossil energy 
emissions displacement factor 
(broadly representing fossil 
transport fuels). 

340 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario 

Result 
type 

Result 
value 

Comments 

Krug et al. 
(2012) 

Europe 
Forests not in management for 
production. 

None. 
Net CO2 flux 
(tCO2 ha-1  
yr-1) 

-  

Mitchell et 
al. (2012) 

Northwest USA 

Afforestation, various forest 
management scenarios (thinning 
intensities and rotations for felling). 

Ex-agricultural land. A range 
assumed for a fossil energy 
emissions displacement factor 
(value here based on quoted US 
average fossil fuel). 

Payback 
time 

0 
Based on 
discussion of 
scenario in paper. 

Partial felling (‘thinning’) of trees for 
bioenergy only, instead of for solid 
wood products (diversion of wood 
feedstock), rotations for partial fellings 
of 25, 50 or 100 years. 

Business as usual (current 
patterns of forest management, 
wood and fossil energy use). 
Represented by felling of trees for 
solid wood products and bioenergy 
every 50 years. A range assumed 
for a fossil energy emissions 
displacement factor (value here 
based on quoted US average fossil 
fuel). 

4 
Referred to in JRC 
review.  

Clearfelling of trees for bioenergy only, 
instead of for solid wood products 
(diversion of wood feedstock), 
rotations of 25, 50 or 100 years. 

4 to 
1000 

Sensitive to 
rotation of forest 
management 
scenario. 

Salvage logging of recently disturbed 
forest for bioenergy only. On 
restoration of forest, partial felling 
(‘thinning’) of trees for bioenergy only, 
instead of for solid wood products 
(diversion of wood feedstock), 
rotations for partial fellings of 25, 50 or 
100 years. 

100 to 
125 

Sensitive to 
rotation of forest 
management 
scenario. 
 
Referred to in JRC 
review. 

Salvage logging of recently disturbed 
forest for bioenergy only. On 
restoration of forest, clearfelling of 
trees for bioenergy only, instead of for 
solid wood products (diversion of wood 
feedstock), rotations for partial fellings 
of 25, 50 or 100 years. 

400 to 
2500 

 

Partial felling (‘thinning’) of old growth 
forest on rotations of 25, 50 and 100 
years. 

315 to 
600 

 

Clearfelling of old growth forest on 
rotations of 25, 50 and 100 years. 

900 to 
2500 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

Nepal et al. 
(2012) 

USA forest 
sector 

Four different scenarios involving 
forest management required for wood 
consumption based on the SRES 
scenarios of the IPCC 2000 (A1B, A2, 
B2 and a variant of the A1B called 
historical fuelwood or HFW scenario). 
The A1B scenario is considered here. 

Arguably the HFW scenario 
(effectively, current patterns of 
forest management, wood and 
fossil energy use). Business as 
usual consumption of solid wood 
products and energy including 
bioenergy (market mediated 
displacement). 

Consequential 
(decrease) in 
carbon sink in 
forests and 
harvested 
wood products 
(MtCO2 yr-1) 

200 

 

Poudel et 
al. (2012) 

North-central 
Sweden 

Two scenarios with increased 
harvesting of wood for solid wood 
products and bioenergy. One scenario 
with increased environmental 
ambitions (8% forest set aside for 
protected reserves, 14% set aside for 
special environmental care). Increased 
production scenarios considered here. 

Business as usual (current 
patterns of forest management, 
wood and fossil energy use). 
Business as usual consumption of 
solid wood products and energy 
including bioenergy (market 
mediated displacement). 
 
Climate change assumed in all 
scenarios in accordance with the 
SRES B2 scenario (warmer 
climate enhances tree growth). 

Payback time 0 

Both production 
scenarios 
Interpreted from 
decadal values 
reported in 
paper. Negligible 
over first 10 to 
20 years. 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

Repo et al. 
(2012) 

Finland 

Increased extraction of harvest 
residues (branchwood) for bioenergy 
(electricity generation). 

Business as usual (no extraction of 
harvest residues). Coal fired 
electricity generation. 

Payback 
time 

0 

Sensitive to 
region in Finland 
(south to north). 
 
Referred to in 
JRC review and 
Lamers and 
Junginger. 

Forest management same as 
previous entry. Oil fired electricity 
generation. 

3 to 4 

Forest management same as 
previous entry. Natural gas fired 
electricity generation. 

6 to 8 

Increased extraction of harvest 
residues (stumps) for bioenergy 
(electricity generation). 

Business as usual (no extraction of 
harvest residues). Coal fired 
electricity generation. 

0 

Forest management same as 
previous entry. Oil fired electricity 
generation. 

10 to 
12 

Forest management same as 
previous entry. Natural gas fired 
electricity generation. 

17 to 
23 

Increased extraction of harvest 
residues (stumps) for bioenergy 
(electricity generation). 

Business as usual (no extraction of 
harvest residues). Coal fired 
electricity generation. 

0 

Forest management same as 
previous entry. Oil fired electricity 
generation. 

18 to 
22 

Forest management same as 
previous entry. Natural gas fired 
electricity generation. 

32 to 
45 

Routa et al. 
(2012) 

Finland 

Thirty scenarios in total. Three different 
management regimes (standard 
thinning for bioenergy only; late pre-
commercial thinning for bioenergy in 
dense stand; late thinning for 
bioenergy in very dense pre-
commercial stand) with five different 
rotation periods (40, 60, 80 100, and 
120 years). In addition, two different 
fertilisation regimes in combination 
with each scenario. All the simulations 
were done for both high and medium 
fertility sites. 

None. 

Attributed 
GHG 
emissions 
(kgCO2  
MWh-1) 

60 to 
300 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

 

Routa et al. 
(2012) 

Finland 

Thirty scenarios in total. Three different 
management regimes (standard 
thinning for bioenergy only; late pre-
commercial thinning for bioenergy in 
dense stand; late thinning for bioenergy 
in very dense pre-commercial stand) 
with five different rotation periods (40, 
60, 80 100, and 120 years). In 
addition, two different fertilisation 
regimes in combination with each 
scenario. All the simulations were done 
for both high and medium fertility sites. 

None. 

Attributed 
GHG 
emissions 
(kgCO2  
MWh-1) 

60 to 
300 

 

Stewart and 
Nakamura 
(2012) 

 
Business as usual (partial-cut and 
clearfell harvest) for co-production of 
solid wood products and bioenergy. 

No baseline for forest 
management. Notional 
displacement factor broadly 
equivalent to coal. 

Consequential 
(reduction in) 
GHG 
emissions 
(tCO2 m

-3) 

~1  

Bernier and 
Paré (2013) 

Canada 

Additional clearfelling (range of stand 
ages from 60 to 120 years), stemwood 
harvested for bioenergy only. Biomass-
fired domestic heating. 

Business as usual (current patterns 
of forest management, wood and 
fossil energy use, implying 
conservation of forest areas where 
additional felling takes place). Oil 
fired domestic heating. 

Payback time 
90 to 
150 

Sensitive to 
stand age (and 
implied rotation). 
 
Referred to in 
Lamers and 
Junginger. 

 



 

 

2
8
4
    |

    F
in

a
l re

p
o
rt o

n
 T

a
s
k
 1

    |
    R

o
b
e
rt M

a
tth

e
w

s
   |

    1
5

th M
a
y
 2

0
1
4
 

B
io

g
e
n
ic

 C
a
rb

o
n
  

a
n
d
 F

o
re

s
t B

io
e
n
e
rg

y
 

 

Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

Fiorese and 
Guariso 
(2013) 

Northern Italy 

Harvest above ground biomass, 
effectively for bioenergy only, whilst 
maintaining forest carbon stocks at 
pre-existing levels. Commercial or 
industrial heat. 

Effectively ‘no use’. Commercial 
or industrial heat from natural 
gas. 

Consequential 
(reduction in) 
GHG emissions 
(tCO2 ha-1  
yr-1) 

2.8 

 

Maximise production of biomass from 
forests, effectively for bioenergy only. 
Commercial or industrial heat. 

4.11 

Management of forests for bioenergy 
only, with rotation of 5 years. 
Commercial or industrial heat.. 

3.01 

Management of forests for bioenergy 
only, with rotation of 10 years. 
Commercial or industrial heat. 

3.74 

Management of forests for bioenergy 
only, with rotation of 20 years. 
Commercial or industrial heat. 

1.94 

Maximise production of biomass, 

effectively for bioenergy only, with 
rotation of 10 years. Commercial or 
industrial heat. 

1.52 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
Moderate input to management of 
restocking (includes some inputs of 
fertliser). Bioenergy fired electricity 
generation. 

21 to 
37 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
High input to management of 
restocking (includes inputs of 
fertliser). Bioenergy fired electricity 
generation. 

8 to 17 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

Jonker et al. 
(2013) 

Southeast USA 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
Low input to management of 
restocking. Bioenergy fired electricity 
generation. 

‘No use’. Coal fired electricity 
generation. 

Payback 
time 

39 to 
57 

Sensitive to 
relative efficiency 
of bioenergy and 
fossil energy 
scenario. 
 
Referred to in 
JRC review and 
Lamers and 
Junginger. 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
Moderate input to management of 
restocking (includes some inputs of 
fertiliser). Bioenergy fired electricity 
generation. 

21 to 
37 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
High input to management of 

restocking (includes inputs of fertiliser). 
Bioenergy fired electricity generation. 

8 to 17 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
Low input to management of 
restocking. Bioenergy fired electricity 
generation. 

Abandonment after first 
clearfelling, unassisted forest 
regeneration. Coal fired electricity 
generation. 

6 to 46 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
Moderate input to management of 
restocking (includes some inputs of 
fertiliser). Bioenergy fired electricity 
generation. 

2 to 7 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
High input to management of 
restocking (includes inputs of fertiliser). 
Bioenergy fired electricity generation. 

2 to 4 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

Jonker et 
al. (2013) 

Southeast USA 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
Low input to management of 
restocking. Bioenergy fired electricity 
generation. 

No use’. Electricity generation 
(average fossil energy mix) 

Payback time 

69 to 
106 

Sensitive to 
relative 
efficiency of 
bioenergy and 
fossil energy 
scenario. 
 
Referred to in 
JRC review and 
Lamers and 
Junginger. 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
Moderate input to management of 
restocking (includes some inputs of 
fertiliser). Bioenergy fired electricity 
generation. 

46 to 
68 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
High input to management of 

restocking (includes inputs of 
fertiliser). Bioenergy fired electricity 
generation. 

21 to 

39 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
Low input to management of 
restocking. Bioenergy fired electricity 
generation. 

Abandonment after first 
clearfelling, unassisted forest 
regeneration. Coal fired electricity 
generation. 

60 to 
91 

Referred to in 
JRC review and 
Lamers and 
Junginger. 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
Moderate input to management of 
restocking (includes some inputs of 
fertiliser). Bioenergy fired electricity 
generation. 

25 to 
59 

Clearfelling of high productivity 
coniferous plantation for bioenergy. 
High input to management of 
restocking (includes inputs of 
fertiliser). Bioenergy fired electricity 
generation. 

6 to 15 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

Kallio et al. 
(2013) 

Finland 

Increased harvesting of wood and 
diversion of small roundwood to meet 
increased demands for bioenergy, not 
including transport fuels. 

Business as usual (current patterns 
of forest management, wood and 
fossil energy use). National energy 
consumption (market mediated 
displacement). 

Consequential 
(increase in) 
GHG 
emissions 
(MtCO2 for 
time horizon) 

-1 

Sensitive to time 
horizon. 

Increased harvesting of wood and 
diversion of small roundwood to meet 
increased demands for bioenergy 
including production of transport fuels. 

Business as usual (current patterns 
of forest management, wood and 
fossil energy use). National energy 
consumption including biodiesel in 
place of fossil transport fuels 
(market mediated displacement). 

4 

Ros et al. 
(2013) 

Europe 

Moderate increase in final felling of 
stemwood for bioenergy only. Eight 
indicative forest types. 

Business as usual (current patterns 
of forest management, wood and 
fossil energy use). Assumed GHG 
emissions displacement factor. 

Payback 
period 

~100 
 

Large increase in final felling of 
stemwood for bioenergy. Eight indicative 
forest types. 

~380 

Moderate increase in thinning of 
stemwood for bioenergy. Eight indicative 
forest types. 

~40 

High increase in thinning of stemwood 
for bioenergy. Eight indicative forest 
types. 

~140 

Moderate increase in extraction of 
harvest residues for bioenergy. Eight 
indicative forest types. 

~0 

High increase in extraction of harvest 
residues for bioenergy. Eight indicative 
forest types. 

~10 

Moderate increase in extraction of 
harvest residues for bioenergy. Eight 
indicative forest types. 

Business as usual (current patterns 
of forest management, wood and 
fossil energy use). Assumed GHG 

emissions displacement factor 
representative of natural gas. 

~10 

High increase in extraction of harvest 
residues for bioenergy. Eight indicative 
forest types. 

~50 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

 

Source 
Geographical 

location 

Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 

value 
Comments 

Lamers et 
al. (2014) 

Western 
Canada 

‘No use’ 

Forest carbon stocks at time of 
disturbance. Coal fired electricity 
generation. 

Payback time 

0 to 
142 

Referred to in 
Lamers and 
Junginger. 

Salvage logging of stemwood for solid 
wood products and bioenergy, burning 
of harvest residues on site (business as 
usual). Biomass-fired electricity 
generation (possibly co-firing). 

8 to 
54 

Salvage logging of stemwood for solid 
wood products and bioenergy, 
extraction of harvest residues for 
bioenergy. Biomass-fired electricity 
generation (possibly co-firing). 

0 to 
30 

Salvage logging of trees including 
branchwood (first harvest) for 
bioenergy only. Biomass-fired 

electricity generation (possibly co-
firing). 

56 to 
75 

Salvage logging of stemwood for solid 
wood products and bioenergy; harvest 
residues for bioenergy. Biomass-fired 
electricity generation (possibly co-
firing). 

Business as usual (salvage logging 
of stemwood for solid wood 
products, no extraction of harvest 
residues, burning on site instead). 
Coal fired electricity generation. 

0 

Salvage logging of trees including 
branchwood (first harvest) for 
bioenergy only. Biomass-fired 
electricity generation (possibly co-
firing). 

53 to 
109 
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Table A9.1 (continued) Meta-analysis of published results for GHG emissions associated with forest bioenergy 

Source 
Geographical 

location 
Forest management/production 

scenario 
Counterfactual scenario Result type 

Result 
value 

Comments 

Matthews et 
al. (2014) 

UK 

Introduction of thinning in previously 
neglected broadleaf forests with 
relatively low productive potential. Use 
of all stemwood and 50% branchwood 
for bioenergy only. A range of 
bioenergy conversion technologies 
including small scale heat and 
electricity generation. 

‘No use’ (effectively business as 
usual for neglected broadleaf 
forests). Coal fired equivalents to 
bioenergy conversion systems. 

Payback 
time 

0 

Interpreted from 
detailed results 
for over 600 
scenarios 
produced in 
study. 

Forest management same as 
previous entry. Oil and natural gas 
fired equivalents to bioenergy 
conversion systems. 

> 100 

Introduction of thinning in previously 
neglected broadleaf forests with 
relatively low productive potential. Use 
of stemwood for solid wood products 
and bioenergy (co-production) and 
50% branchwood for bioenergy only. A 
range of conversion technologies 
including small scale heat and 
electricity generation. 

Forest management same as 
previous entry. Various fossil 
energy equivalents to bioenergy 
conversion systems (coal, oil, 
natural gas). High potential 
displacement GHG emissions by 

solid wood products. 

0 

Forest management same as 
previous entry. Various fossil 
energy equivalents to bioenergy 
conversion systems (coal, oil, 
natural gas). Low potential 
displacement GHG emissions by 
solid wood products. 

> 100 

Continued harvesting of conifer and 
broadleaf forests already managed for 
production, but diversion of wood 
feedstock (small roundwood, sawlogs, 
sawlog offcuts, or complete stems) 
currently used for solid wood products 
to production of bioenergy. A range of 
conversion technologies including small 
scale heat and electricity generation. 

Business as usual (current patterns 
of forest management, wood and 
fossil energy use). Various fossil 
energy equivalents to bioenergy 
conversion systems (coal, oil, 
natural gas). High potential 
displacement GHG emissions by 
solid wood products. 

> 100 

Effectively, there 
is an indefinite 
increase in GHG 
emissions. Highly 
specific to 
context. 
 
Interpreted from 
detailed results 
for over 600 
scenarios 
produced in 
study. 
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Appendix 10. Analysis of estimates for GHG emissions payback time associated with 
production of forest bioenergy as reported in Appendix 9 

 

Forest management/ production scenario 
Fossil energy counterfactual 

Source 
Coal Oil Natural gas Mix 

Bioenergy only production associated with fire 
prevention measures in biologically mature stands with 
high carbon stocks. 

   
Min = 169 

Median = 458 
Max = 4500 

Mitchell et al. (2009) 

Bioenergy only production through salvage logging of 

recently disturbed forest (generally with high carbon 
stocks), followed by restoration of forest areas with 
high harvesting intensity for bioenergy only. 

   

Min = 400 

Median = 
1450 

Max = 2500 

Mitchell et al. (2012) 

Diversion of harvested wood from solid wood products 
to bioenergy, leaving harvesting intensity unchanged 

or increased. 

Increased 
emissions 

Increased 
emissions 

Increased 
emissions 

4 to 1000 
Mitchell et al. 
(2012); Matthews et 

al. (2014) 

Bioenergy only production from additional thinning of 

stemwood in forest areas with high initial carbon 
stocks. 

0 > 100 > 100 

Min = 40 

Median = 228 
Max = 600 

Mitchell et al. 
(2012); Matthews et 
al. (2014); 
Ros et al. (2013) 

Co-production of solid wood products and bioenergy 
through introduction of thinning in previously 
unmanaged forest areas with high initial carbon 
stocks, low potential for displacement of GHG 
emissions associated with solid wood products. 

> 100 > 100 > 100  
Matthews et al. 

(2014) 

Harvesting forest with high carbon stocks for 

bioenergy only, followed by restoration of forest areas 
with low productivity plantation forest for bioenergy 
only. 

114 145 197  Zanchi et al. (2011) 

Bioenergy only production through salvage logging of 
recently disturbed forest (generally with high carbon 

stocks), followed by restoration of forest areas with 
moderate harvesting intensity for bioenergy only. 

Min = 56 
Median = 66 

Max = 75 
  

Min = 100 
Median = 113 

Max = 125 

Mitchell et al. 
(2012); 
Lamers et al. (2014) 
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Appendix 10 (continued) Analysis of estimates for GHG emissions payback time associated with production  

of forest bioenergy as reported in Appendix 9 

Forest management/ production scenario 

Fossil energy counterfactual 

Source 
Coal Oil 

Natural 
gas 

Mix 

Bioenergy only production from additional clearfelling 

of stemwood in forest areas already under 
management for production. 

Min = 8 

Med = 39 
Max = 230 

Min = 13 

Med = 64 
Max = 295 

Min = 50 

Med = 100 
Max = 400 

Min = 21 

Med = 69 
Max = 380 

Walker et al. (2010); 

Lecocq et al. (2011); 
McKechnie et al. 
(2011); 
Ter. Mikaelian et al. 

(2011); Colnes et al. 
(2012); Holtsmark 
(2012a); Zanchi et 
al. (2011); Jonker et 
al. (2013); Ros et al. 
(2013) 

Bioenergy only production associated with fire 
prevention measures in relatively mature stands with 
moderate carbon stocks. 

   
Min = 34 
Med = 71 
Max = 107 

Mitchell et al. (2009) 

Co-production of solid wood products and bioenergy 
through salvage logging of recently disturbed forest 

(generally with high carbon stocks), followed by 
restoration of forest areas with moderate harvesting 
intensity for co-production. 

Min = 8 

Med = 31 
Max = 54 

  

 

Lamers et al. (2014) 

Harvesting of forest with high carbon stocks for 
bioenergy only, followed by restoration of forest areas 

with high productivity plantation forest for bioenergy 

only. 

17 20 25 

 

Zanchi et al. (2011) 

Co-production of solid wood products and bioenergy 
through salvage logging of recently disturbed forest 
(generally with high carbon stocks), including 
extraction of harvest residues, followed by restoration 
of forest areas with moderate harvesting intensity for 

co-production. 

Min = 0 
Med = 15 
Max = 30 

  

 

Lamers et al. (2014) 

Additional extraction of harvest residues including 
stumps for bioenergy only. 

Min = 0 
Med = 0 

Max = 0 

Min = 15 
Med = 18 

Max = 22 

Min = 22 
Med = 32 

Max = 45 

 
Repo et al. (2011, 
2012) 
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Appendix 10 (continued) Analysis of estimates for GHG emissions payback time associated with production  

of forest bioenergy as reported in Appendix 9 

Forest management/ production scenario 

Fossil energy counterfactual 

Source 
Coal Oil 

Natural 

gas 
Mix 

Additional harvesting of pre commercial thinnings for 
bioenergy only. 

Min = 0 
Med = 0 
Max = 0 

Min = 10 
Med = 11 
Max = 12 

Min = 17 
Med = 20 
Max = 23 

 Repo et al. (2012) 

Additional harvesting of branch wood for bioenergy 
only. 

Min = 0 
Med = 0 
Max = 20 

Min = 3 
Med = 4 

Max = 35? 

Min = 4 
Med = 9 
Max = 50 

 

Lecocq et al. (2011); 
McKechnie et al. 
(2011); 
Repo et al. (2011, 
2012); Zanchi et al. 

(2011); Ros et al. 

(2013) 

Harvesting forest with high carbon stocks for 50% 
bioenergy and 50% additional solid wood products, 
followed by restoration of forest areas with high 
productivity plantation bioenergy only. 

0 0 8 Zanchi et al. (2011) 

Diversion of harvested wood from solid wood products 
to bioenergy, combined with reduced harvesting 
intensity. 

   4 Mitchell et al. (2012) 

Co-production of solid wood products and bioenergy 

through introduction of thinning in previously 

unmanaged forest areas with high initial carbon stocks, 
high potential for displacement of GHG emissions 
associated with solid wood products. 

0 0 0  

Werner et al (2011); 

Poudel et al. (2012); 

Matthews et al 
(2013) 
 

Creation of new forests for bioenergy only on marginal 
agricultural land with low initial carbon stock. 

0 0 0 0 Zanchi et al. (2011) 
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Appendix 11. Provisional qualitative assessment of sources of 
forest bioenergy that may contribute to increased bioenergy 
consumption 

This appendix describes a provisional qualitative assessment of the types of bioenergy 

system, forest bioenergy feedstock and forest management that are more or less likely 

to occur in response to incentives for increased consumption of forest bioenergy.  

Before considering the potential effects of increased consumption of forest bioenergy in 

the EU, it is important to characterise how forest bioenergy has been, and still is being, 

used in the absence of bioenergy policies (including existing policies). Existing levels of 

forest bioenergy consumption and patterns of production of bioenergy feedstocks have 

been reviewed in Section 2. However, there is limited systematic information on the 

extent of forest management for bioenergy production, consumption of forest bioenergy 

feedstocks and deployment of conversion systems within the various EU Member States. 

A subjective, provisional assessment based on limited data sources and anecdotal 

accounts suggests: 

1 There is some existing harvesting of thinnings, small roundwood and some 

branchwood, particularly in broadleaf forests for local use as fuel logs, wood chips, 

wood pellets and briquettes (small scale heat). In some cases stumps may also be 

harvested. This type of activity may be significant in some Member States. 

2 There is some existing use of sawmill and boardmill co-products internally within these 

processing facilities (industrial process heat and power). 

3 There is some consumption of the above feedstocks and additionally recovered waste 

wood for district heating or combined heat and power (CHP). This activity is important 

for some Member States. 

This set of activities represents a baseline for comparison with assessments of potential 

impacts of bioenergy policies, including existing policies. 

Table A11.1 describes two provisional assessments of the types of activities already 

taking place in the EU, or likely to take place, as a consequence of policies aimed at 

increasing consumption of bioenergy20, assuming that forest bioenergy makes a major 

contribution. As with the preceding assessment for the baseline, these assessments 

involve identifying a set of activities involving forest management, forest bioenergy 

feedstocks and conversion systems which are relevant for the scenario. The first 

assessment (‘Towards 2020 targets’ scenario) considers a scenario of existing policies, 

which set targets for bioenergy consumption in 2020. Thus, the scenario involves the 

assumption that bioenergy consumption increases in the EU up to 2020 but then remains 

constant at 2020 levels. The second assessment (‘Increase beyond 2020 targets’ 

scenario) considers a scenario of further policies going beyond the existing targets for 

                                       
20 It must be stressed that policies relating to liquid biofuels are not considered as part of 

the scope of this report. 
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bioenergy set for 2020. The scenario is thus concerned with the possibility of further 

increases in bioenergy consumption beyond targets for 2020, perhaps taking place up to 

2050. A further assessment (‘Less likely’ scenario) is made in Table A11.1 of types of 

activity considered less likely to occur in these scenarios. 

The sets of activities in Table A11.1 can be compared with those already considered in 

Table 5.11 in Section 5, for which assessments have already been made of associated 

risk of adverse outcomes for GHG emissions reductions (see Section 5.2.1 and Table 

5.2). The ranges of risks associated with activities relevant for each scenario are also 

summarised in Table A11.1. 

For the case of importation of wood as part of the two scenarios for increased 

consumption of forest bioenergy, further provisional assessments are made in Tables 

A11.2, A11.3 and A11.4 of possible activities in the Russian Federation and Eastern 

Europe, Canada and the USA, respectively.  

The assessment in Tables A11.1 to A11.4 presents some challenges, since it would seem 

that there is no particular correlation between the level of increased consumption of 

forest bioenergy and the level of risk attached to consequent GHG emissions. However, 

the range of activities associated with each scenario in Tables A11.1 to A11.4 are strictly 

identified as potentially, not definitely involved in the increased consumption of forest 

bioenergy. Further research is required to clarify the detailed responses which may occur 

in the forest and energy sectors, depending on future levels of bioenergy consumption in 

the EU.  
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Table A11.1 Risk to GHG emissions from increased consumption of forest bioenergy in the EU: 

provisional qualitative assessment of bioenergy systems, forest biomass feedstocks and forest management 

activities potentially involved in the EU 

Scenario Relevant activities Risk1 

‘Towards 

2020 targets’ 

scenario 

 Importation of wood pellets (large scale power only or co-firing). 

 Additional extraction of harvest residues, mainly branchwood and poor quality stemwood 

for chips and pellets (small scale heat, district heating, power only, CHP or co-firing). 

 Diversion of some small roundwood from previous use as feedstock for particleboard, 

fibreboard, paper, to produce chips and pellets (small scale heat, district heating, power 

only, CHP or co-firing). 

 Additional use of sawmill co-products for chips and pellets, to the extent that this can be 

supported by increased sawmill output (small scale heat, district heating, power only, CHP 

or co-firing). 

 Diversion of some sawmill co-products from previous use as feedstock for particleboard, 

fibreboard, paper, to produce chips and pellets (small scale heat, district heating, power 

only, CHP or co-firing). 

 Additional use of recovered waste wood (district heating, power only, CHP). 

 Some limited additional thinning and felling for chips and pellets, to the extent that this is 

economic when co-production with material/fibre products is considered (small scale heat, 

district heating, power only, CHP or co-firing; sawn timber, particleboard, fibreboard). 

See note 2 

Moderate3 

 

Very high 

 

 

Low 

 

 

Very high 

 

 

Low to high4 

Low to high5 

‘Increase 

beyond 2020 

targets’ 

scenario 

 Significantly increased importation of wood pellets (small scale heat, district heating, power 

only, CHP or co-firing).  

 Modest further increases in other ‘Towards 2020’ activities. 

 

See note 2 

 

See above 

Notes to Table A11.1: 

1. It is very important to understand how risk of adverse effects on GHG emissions has been defined. This has been discussed in detail in 

Section 5.2.1. 
2. The importation of forest bioenergy is assessed separately in Tables 5.13 to 5.15, for the Russian Federation and Eastern Europe, 

Canada and the USA as potential suppliers. 
3. Moderate risk has been assigned on the assumption that harvesting of stumps would not increase significantly. A high risk would be 

assigned in the case of stump harvesting. 
4. It should be noted that, strictly, this activity was not assessed as part of the meta-analysis of the literature review. The assessment of 

risk is therefore based on expert judgement. The outcome is very sensitive to the counterfactual for the fate of waste wood, e.g. 

incineration without energy recovery of landfill.  
5. The risk is extremely sensitive to the types of material/fibre co-products associated with the bioenergy production and their 

counterfactuals. 



 

 

B
io

g
e
n
ic

 C
a
rb

o
n
  

a
n
d
 F

o
re

s
t B

io
e
n
e
rg

y
 

2
9
6
    |

    F
in

a
l re

p
o
rt o

n
 T

a
s
k
 1

    |
    R

o
b
e
rt M

a
tth

e
w

s
   |

    1
5

th M
a
y
 2

0
1
4
 

Table A11.1 (continued) Risk to GHG emissions from increased consumption of forest bioenergy in the EU: 

provisional qualitative assessment of bioenergy systems, forest biomass feedstocks and forest management 

activities potentially involved in the EU 

Scenario Relevant activities Risk6 

‘Less likely’ 

scenario 

 Enrichment of existing forest areas with low growing stock/productive potential to enhance 

carbon stocks and increase production of wood chips or pellets, most likely as part of co-

production (small scale heat, district heating, power only, CHP or co-firing; sawn timber, 

particleboard, fibreboard). 

 Planting of agricultural land with trees managed as short rotation biomass forests for 

dedicated production of wood chips or pellets (small scale heat, district heating, power only, 

CHP or co-firing). 

 Planting of agricultural land with trees managed as high forest for co-production with 

material/fibre products is considered (small scale heat, district heating, power only, CHP or 

co-firing; sawn timber, particleboard, fibreboard). 

 Additional thinning and felling for chips and pellets only (small scale heat, district heating, 

power only, CHP or co-firing). 

Low 

 

 

 

Low7 

 

 

Low7 

 

 

Very high 

Notes to Table A11.1: 

6. It is very important to understand how risk of adverse effects on GHG emissions has been defined. This has been discussed in detail in 

Section 5.2.1. 
7. It must be stressed that these activities have been classified as low risk on the assumption that risks of iLUC would be mitigated, e.g. by 

restricting the activities to marginal/low productivity agricultural land. 
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Table A11.2 Risk to GHG emissions from increased consumption of forest bioenergy in the EU: 

provisional qualitative assessment of bioenergy systems, forest biomass feedstocks and forest management 

activities potentially involved in the Russian Federation and Eastern Europe 

Scenario Relevant activities Risk1 

‘Towards 

2020 targets’ 

scenario 

 Some additional thinning and felling for small roundwood to produce chips and pellets within 

the EU, to the extent that this is economic when co-production with material/fibre products 

is considered (small scale heat, district heating, power only, CHP or co-firing; sawn timber, 

particleboard, fibreboard). The material/fibre products may be consumed internally or 

exported. 

Low to high2 

‘Increase 

beyond 2020 

targets’ 

scenario 

 Additional thinning and felling for stemwood, for internal processing to make pellets for 

export, to the extent that this is economic. This may or may not involve co-production with 

material/fibre products (small scale heat, district heating, power only, CHP or co-firing; 

sawn timber, particleboard, fibreboard). 

Low to very 

high2 

Notes to Table A11.2: 

1. It is very important to understand how risk of adverse effects on GHG emissions has been defined. This has been discussed in detail in 
Section 5.2.1. 

2. The risk is extremely sensitive to the types of material/fibre co-products associated with the bioenergy production and their 

counterfactuals. 
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Table A11.3 Risk to GHG emissions from increased consumption of forest bioenergy in the EU: 

provisional qualitative assessment of bioenergy systems, forest biomass feedstocks and forest management 

activities potentially involved in Canada 

Scenario Relevant activities Risk1 

‘Towards 

2020 targets’ 

scenario 

 Additional extraction of harvest residues, mainly branchwood and poor quality stemwood 

for internal processing to make chips and pellets for export (small scale heat, district 

heating, power only, CHP or co-firing). 

 Additional use of sawmill co-products for internal processing to make pellets for export, to 

the extent that this can be supported by increased sawmill output (small scale heat, district 

heating, power only, CHP or co-firing). 

 Additional thinning and felling for internal processing to make pellets for export, to the 

extent that this is economic when co-production with material/fibre products is considered 

(small scale heat, district heating, power only, CHP or co-firing; sawn timber, particleboard, 

fibreboard). The material/fibre products may be consumed internally or exported. 

 Additional salvage logging for internal processing to make pellets for export. This may or 

may not involve co-production with material/fibre products (small scale heat, district 

heating, power only, CHP or co-firing; sawn timber, particleboard, fibreboard). The 

material/fibre products may be consumed internally or exported. 

Moderate2 

 

 

Low 

 

 

Low to high3 

 

 

 

High 

‘Increase 

beyond 2020 

targets’ 

scenario 

 Further increases in ‘Towards 2020’ activities. See above 

Notes to Table A11.3: 

1. It is very important to understand how risk of adverse effects on GHG emissions has been defined. This has been discussed in detail in 

Section 5.2.1. 
2. Moderate risk has been assigned on the assumption that harvesting of stumps would not increase significantly. A high risk would be 

assigned in the case of stump harvesting. 
3. The risk is extremely sensitive to the types of material/fibre co-products associated with the bioenergy production and their 

counterfactuals. 
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Table A11.4 Increased Risk to GHG emissions from increased consumption of forest bioenergy in the EU: 

provisional qualitative assessment of bioenergy systems, forest biomass feedstocks and forest management 

activities potentially involved in the USA 

Scenario Relevant activities Risk1 

‘Towards 

2020 targets’ 

scenario 

 Additional extraction of harvest residues, mainly branchwood and poor quality stemwood 

for internal processing to make chips and pellets for export (small scale heat, district 

heating, power only, CHP or co-firing). 

 Additional use of sawmill co-products for internal processing to make pellets for export, to 

the extent that this can be supported by increased sawmill output (small scale heat, district 

heating, power only, CHP or co-firing). 

 Additional thinning and felling for internal processing to make pellets for export, to the 

extent that this is economic when co-production with material/fibre products is considered 

(small scale heat, district heating, power only, CHP or co-firing; sawn timber, particleboard, 

fibreboard). The material/fibre products may be consumed internally or exported. 

Moderate2 

 

 

Low 

 

 

Low to high3 

‘Increase 

beyond 2020 

targets’ 

scenario 

 Further increases in ‘Towards 2020’ activities. 

 Additional thinning and felling for stemwood, for internal processing to make pellets for 

export, to the extent that this is economic. This may or may not involve co-production with 

material/fibre products (small scale heat, district heating, power only, CHP or co-firing; 

sawn timber, particleboard, fibreboard). The material/fibre products may be consumed 

internally or exported. 

 Additional salvage logging for internal processing to make pellets for export. This may or 

may not involve co-production with material/fibre products (small scale heat, district 

heating, power only, CHP or co-firing; sawn timber, particleboard, fibreboard). The 

material/fibre products may be consumed internally or exported. 

See above 

Low to very 

high3 

 

 

 

High 

Notes to Table A11.4: 

1. It is very important to understand how risk of adverse effects on GHG emissions has been defined. This has been discussed in detail in 
Section 5.2.1. 

2. Moderate risk has been assigned on the assumption that harvesting of stumps would not increase significantly. A high risk would be 

assigned in the case of stump harvesting. 
3. The risk is extremely sensitive to the types of material/fibre co-products associated with the bioenergy production and their 

counterfactuals. 
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