

Power Electronics - Key Enabling Technology for a CO₂ Neutral Energy Supply Linking HVDC and MVDC Grids

Prof. Dr. ir. Rik W. De Doncker BMBF FEN Research Campus, ISEA and PGS EONERC of RWTH Aachen University

EU Horizon 2050 – HVDC Workshop Brussels, February 4, 2020

- Introduction Driving Innovation at R&D at RWTH Aachen Research CAMPUS Flexible Electrical Networks (FEN Consortium)
- Electrical Grids for a CO₂ Neutral Energy Supply System
- Multi-terminal HVDC Transmission and MVDC Distribution grids
- Solutions to link HVDC and MVDC Intelligent DC Substation
- <u>Why we should urgently demonstrate</u> Intelligent DC Substations

Flexible Electrical Networks (FEN) Research Campus Academia and Industry work together under one roof to accelerate innovation

Status: Oktober 2019

Flexible Electrical Networks (FEN) Research Campus Research Divisions focus on DC Grids, Planning, Automation, Acceptance and Standards

FEN-MVDC-Research Grid at RWTH Campus Melaten Taking in operation the 5 kV/3 MW MVDC Grid on 19.11.2019

NETZE

DC Transition Higher Efficiency, Saving Materials, Digital, Flexible, but also more Ecological!

4,5 MVA, 50 Hz Transformator 11.500 kg (2,5 kg/kVA)

5,0 MVA, 1.000 Hz Transformator 675 kg (0,14 kg/kVA)

Solid State DC transformers reduce significantly our CO₂-foot print Estimated Transformer use; AC@50 Hz >25,000 ton/GVA, DC@1 kHz Grid < 1,500 ton/GW

Bottleneck of electrical supply in AC grids

Increased REN, decentralized power generation and sector coupling leads to the "1/3 Rule"

Bottleneck of electrical supply in AC grids

DSO sees long paths to redistribute energy and REN overload locally transmission system

Bottleneck of electrical supply

MVDC and LVDC interconnections avoid bottlenecks & provide higher efficiency and flexibility

Bottleneck of electrical supply Compared to classical AC grids, HVDC and MVDC grids are more

Flexible Grids for Decentralized Power Generation Cellular Grid Topologies, Sector coupling and HVDC/MVDC Intelligent Substations

Multi-terminal HVDC Grid demonstrated in China

DC Transmission for far distance large scale power plants (example Nan'ao China)

Large central power plants and large scale wind & PV farms

- Integrated into the transmission grid
- HVDC multi-terminal transmission grid
 - Higher efficiency (partial load)
 - Higher flexibility

 $\pm\,160$ kV Four-terminal HVDC grid in Nan'ao, China in operation since 2013

MVDC Multi-terminal Distribution Grid in operation in China

DC Distribution for small-scale distributed power plants, REN, prosumers and sector coupling

- Decentralized renewable generations
 - Integrated into the distribution grid
 - MVDC distribution grids
 - Higher efficiency
 - Simpler grid integration
 - Interoperability between renewable energy sources and storage systems, (all in DC)

 $\pm\,10$ kV MVDC distribution grid in Zhuhai, China in operation since 2018

Intelligent Substations – Missing Link

DC Converter Technology needed to link HVDC Transmission with MVDC Distribution

Lower cost

E.ON Energy Research Center

Intelligent Substations – Dual Active Bridge DC-DC Converter Promising but series connection for HVDC above 100 kV is transformer insulation challenge

- P = 7 MW, VDC = 5 kV ±10 %
- Efficiency up to 99.2 %
- Ultimately air-cooled devices are an option
- DC substation at 1/3 weight of 50 Hz transformer

Picture: EONERC: ABB IGCT Stack

R. Lenke, "A Contribution to the Design of Isolated DC-DC Converters for Utility Applications", Diss. RWTH Aachen University, E.ON ERC, 2012 N. Soltau, "High-power medium-voltage DC-DC converters : design, control and demonstration", Diss., RWTH Aachen University, E.ON ERC, 2017

Intelligent Substations – Multi-level Modular Converter

Back-to-back with isolation is a major challenge in capacitor costs

Picture: Siemens; HVDC PLUS –the decisive step ahead Stabilized power flows improve transmission grid performance, Article No. EMTS-B10016-00-7600

DC Substation based on TLC-MMC Dual Active Bridge Converter

Solution based on existing proven power electronic building blocks

- HV side Multi-level Modular IConverter (MMC) uses compact IGBT stacks
 - provides reactive power for ZVS of MV side
 - Medium frequency (200 400 Hz) significantly reduces amount of capacitors
- MV side Standard Two-Level Converters (TLCs) in parallel
 - Less amount of devices
 - Smaller dc-link capacitors
 - Series connection of IGCTs
 - Directly reach MV-side dc-link voltage
 - Snubber capacitors in parallel for ZVS
- Medium Frequency Transformer (200 400 Hz)
 - Secondary sides are connected in series
 - Proven technology in first generation STATCOMs

Source: Series connection of MV IGBTs, *Source*: ABB

Access dissertation Shengui Cui via -URL: <u>http://publications.rwth-aachen.de/record/762795</u>

17

Comparison MMC versus TLC-MMC Dual Active Bridge State-of-the-Art Solution - ±25 kV / ±200 kV, 400 MW System

	MMC-FTF Converter (Conventional)	TLC-MMC Converter (Proposed)
Converter on HV side	Identical	Identical
Semiconductors on the HV side	2400× 4.5 kV, 1.2 kA IGBTs	2400× 4.5 kV, 1.2 kA IGBTs
Number of converters on MV side	8	2
Semiconductors on the MV side	2400 × 4.5 kV, 1.2 kA IGBTs	300 × 4.5 kV, 1.4 kA IGCTs
Capacitive energy on the MV side	3.28 MJ	49 kJ (1.5 % of the conv.)

Urgency to develop/demonstrate DC Intelligent Substations

- Saving material resources using PEL and higher frequencies in DC solid state transformers is needed to reach climate goals
 - Recycling
 - New technologies

Copper Alliance,based on Global copper reserves are estimated at 830 million tonnes (United States Geological Survey [USGS], 2019) https://copperalliance.org/aboutcopper/long-term-availability/

- EU leading companies are selling key technologies as transition is too slow
- Electrification of developing countries must be our goal for geopolitical stability
- China State Grid is deploying soon this technology and is considering a "Electrical Silk Route" of > +/- 1 MV. Do we need to worry about dependency both on electricity (China) and gas (Russia)?

IEEE eGRID Workshop, Aachen, Nov. 2-4, 2020

Conference Deadlines

Deadlines for abstract submissions - July 3, 2020

Notification of acceptance - August 14, 2020

Deadline for final manuscripts - September 25, 2020

Early Bird Regristation - September 25, 2020

For more detailed information on what to expect from the workshop, paper submissions and registration, please visit the website www.egrid2020.org, which will be accessible soon.

Organizers

E.ON Energy Research Center at RWTH Aachen University

Flexible Electrical Networks (FEN) Research Campus

Contact

info@egrid2020.org will be activated in June 2019. You can also contact the organizers:

Dr. Sabine Vogel Public relations E.ON Energy Research Center Email: svogel@eonerc.rwth-aachen.de

Sascha Falkner Public relations Flexible Electrical Networks (FEN) Research Campus Email: sfalkner@fenaachen.net

Pictures Aachen Cathedral: O CEphoto, Uwe Aranas Eurogress: © Panomarino, giggel

November 2-4, 2020 Eurogress, Aachen

5th IEEE Workshop on the Electronic Grid 2020

More information and regristation: www.egrid2020.org

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Power Electronics - Key Enabling Technology for a $\rm CO_2$ Neutral Energy Supply Linking HVDC and MVDC Grids

Thank you for your attention

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Power Electronics - Key Enabling Technology for a CO_2 Neutral Energy Supply Linking HVDC and MVDC Grids

Panel Notes

Flexible Grids for Decentralized Power Generation Cellular Grid Topologies, Sector coupling and HVDC/MVDC Intelligent Substations

FEN Landmark Projects Medium-voltage DC CAMPUS Grid, Design Tools & Real Time Emulators

The 1/3 rule already applies in Germany to the installed capacities Meshed distribution grids are indispensable for renewables and CHP in urban areas

Future grids cannot ignore the energy feed-in in medium- and low-voltage distribution grids and must become interconnected

The 1/3 rule already applies in Germany to the installed capacities Meshed distribution grids are indispensable for Emobility in urban areas

Future grids cannot ignore the energy feed-in in medium- and low-voltage distribution grids and e-Mobility and must become interconnected

Estimated cost for 2020

Automotive inverter 3 €/kVA DC Solid-State Transformer 9 €/kVA

Modular Multilevel DC-DC Converters Interconnecting High-Voltage and Medium-Voltage DC Grids

Access dissertation via -URL: http://publications.rwth-aachen.de/record/762795 QR Code:

Modular Multilevel DC-DC Converters Interconnecting High-Voltage and Medium-Voltage DC Grids

Performance Improvement - A 400 MW Converter

Power semiconductor devices
4800 → 2700, reduced by 44%

Modular Multilevel DC-DC Converters Interconnecting High-Voltage and Medium-Voltage DC Grids

<u>Performance Improvement – A 400 MW</u> <u>Converter</u>

- Power semiconductor devices
 - 4800 \rightarrow 2700, reduced by 44%
- Power capacitors
 - 2400 capacitors in state-of-the-art topology, each 40 kg
 - 2400 \rightarrow 1300, reduced by 46%

Source: EPCOS

Modular Multilevel DC-DC Converters Interconnecting High-Voltage and Medium-Voltage DC Grids

Performance Improvement – A 400 MW Converter

- Power semiconductor devices
 - 4800 \rightarrow 2700, reduced by 44%
- Power capacitors
 - 2400 capacitors in state-of-the-art topology, each 40 kg
 - 2400 \rightarrow 1300, reduced by 46%
- Conversion Losses
 - 30~40% loss reduction over entire operation ranges

