

Power Electronics in HVDC

N. Chapalain, Power Electronic Systems division, Mitsubishi Electric R&D Centre Europe EC Workshop: Horizon 2050 power system and the role of HVDC technologies in a highly decentralised RES generation (Brussels, 4th of February 2020)

Summary

- Types of converters of HVDC grids
- The functionality and durability of HVDC Systems are highly dependent of the use of reliable power devices
 - IGBTs devices in HVDC converters
 - potential of Wide Band Gap (WBG) devices for power transmission
- Multi-terminal HVDC system needs Protection
 - HVDC circuit breakers
- Call for advanced control and management.
 - condition and health monitoring towards predictive maintenance
 - further functionalities brought by the future high penetration of PE: flexibility, islanding, grid forming

MITSUBISHI

Mitsubishi Electric LLC, Kii Channel HVDC Link in Japan

SIEMENS

Siemens HVDC Plus for the COBRA converter stations.

ABB

ABB HVDC Light link Danish and German power grids, Press release | Zurich, Switzerland | 2016-03-10

AC/DC Converters for HVDC

AC/DC VSC: Modular Multi-Level Converter (MMC) technology

- Robust and Flexible
 - can operate with weak grid
 - both active and reactive power exchange
 - black start capability
 - no reactive power compensation needed
 - small foot print, large AC filters are not required
- High modularity
 - easy to scale output voltages
- Big effort to produce suitable devices

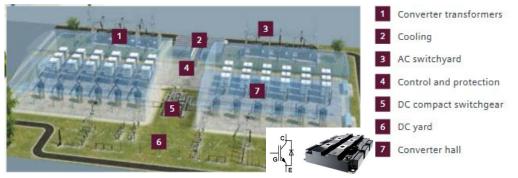
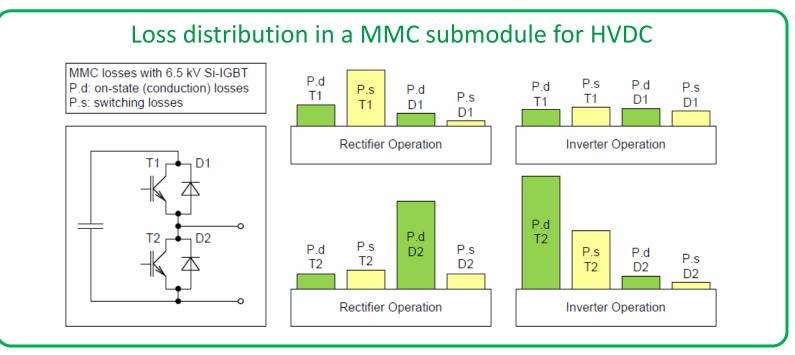


ABB StakPAk VCE=4.5kV ;IC=3kA

Mitsubishi Electric X-Series HV IGBTs 4.5kV/1.2kA.

Siemens HVDC PLUS VSC


Non Confidential / Export Control: NLR

MMC for VSC-HVDC

HVDC MMC equipped with 3.3 kV, 4.5 kV or 6.5 kV Si-IGBTs are the backbone of high power, long distance electrical energy transmission.

- A major design criterion: efficiency
- Low switching frequencies (<300Hz) of the MMC submodules</p>
- Si-IGBT: on-state losses are dominant, but switching losses are not negligible.

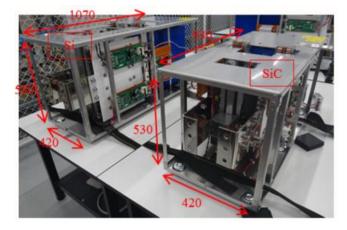
ECPE Joint Research Programme 2017: VHV SiC IGBTs and Diodes: Potential and Challenges for HV Converters; Prof. Kaminski, University of Bremen and Prof. Eckel, University of Rostock

Non Confidential / Export Control: NLR

SiC-based MMC for HVDC

Mitsubishi Electric: Technology Verification of MMC Cell for HVDC Transmission with SiC 3.3 kV

MMC switches at low f_{sw} and SiC-devices' switching losses are rather small. To further reduce the losses, SiC MMC f_{sw} increased from 175 Hz to 350Hz.

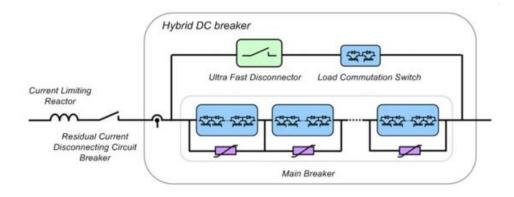

Result SiC v.s. Si 3.3kV submodule prototype ^(*)

- 50% semiconductor loss reduction -> downsizing the heatsink
- 17% decrease of capacitance of submodules -> downsizing capacitors
- 21% lower volume
- 14% less weight

(*) (3.3kV/1.5kA) SiC-MOSFET/SiC-SBD v.s. Si: CM1500HC-66 R (3.3kV/1.5kA)

SPECIFICATION OF ASSUMED HVDC TRANSMISSION SYSTEM		
Capacity	576 MW	
DC voltage	±250 KV	
AC voltage	380kV, 50Hz	

300kVA SiC prototype submodule /Si IGBT



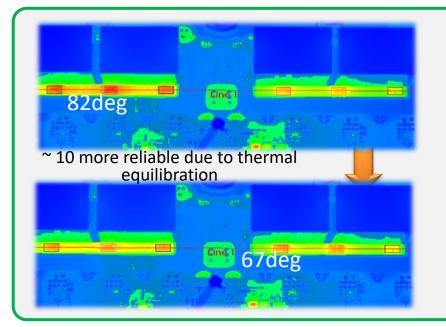
COMPONENT WEIGHT OF CHOPPER CELL					
Parts	Weig Si	ht [kg] SiC	Diff. [kg]	Ratio	
Cell capacitor	46.5	39.5	7	84.9%	
Bus bar	23.2	19.3	3.9	83.2%	
Heatsink	10.0	7.2	2.8	72.0%	
Module	9.6	9.2	0.4	95.8%	
Others	50.9	45.1	5.8	88.6%	
Total	140.2	120.3	19.9	85.8%	

Y. Ishii, T. Jimichi, "Verification of SiC based Modular Multilevel Cascade Converter (MMCC) for HVDC Transmission Systems", the 2018 International Power Electronics Conference

- Selective, fast fault blocking of the DC fault can be realized by:
 - \circ MMC with Full Bridge submodules
 - Electronic or Hybrid DC-Circuit Breakers (DCCB) at the DC-side of the converter
- Criteria for DCCBs: HV, interruption peak fault current (>16 kA), fast fault clearing <8ms, low loss, high temperature operation, robustness

DCCB development with PE:

- GE: Hybrid DC CB using thyristor-based valves
- ABB
 - 2011: Hybrid DCCB, using IGBT-based valves
 - 2015: Hybrid DCCB, using RC-IGBT-based valves (PCIM 2015)


- Implementing WBG semiconductor devices for DC circuit breakers:
 - -> SiC would provide lower losses, higher power density to reduce the size and weight

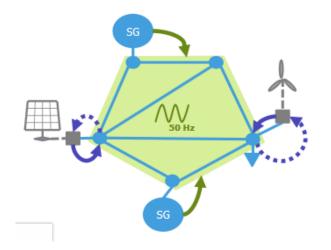
More available, cost-effective PE systems

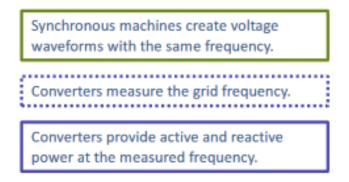
- Long operation hours under harsh environments.
- Power semiconductor modules are the major failure source in the products (1).
- General objective: to improve the safety, the longevity, and the life-cycle cost of PE devices.

The enabling technology is (also) **Condition and Health Monitoring** (2) which implies:

- estimate State-of-Health
- estimate End-of-Life
- optimised maintenance actions and possibility for max. usage before failure
- safer handling of severe events
- active stress management
- (1) ECPE Joint Research Programme 2016, Investigation of reliability issues in power electronics, P. Zacharias Uni Kassel, M. Lissere Uni Kiel
- (2) J. Brandelero, J. Ewanchuk, N. Degrenne, S. Mollov, "Lifetime extension through Tj equalisation by use of intelligent gate driver with multi-chip power module,"

Non Confidential / Export Control: NLR


PE in HVDC: additional functionalities

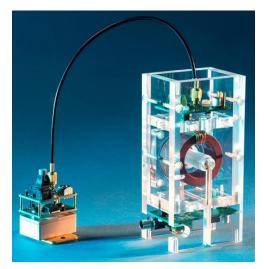

MIGRATE : Massive InteGRATion of Power Electronic device

Looking at technically feasible pathway towards stable 100% PE networks

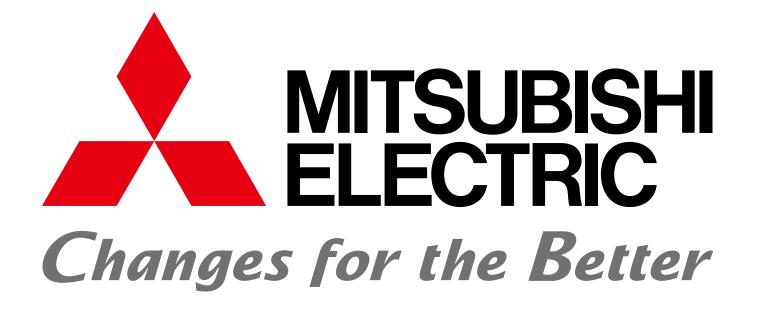
Increasing levels of PE penetration will significantly change the stability and dynamics of a power networks PE interfaced generators will have to actively take part in power system control

MIGRATE findings :

- a maximum PE penetration of 68 % if we continue installing grid following PE units only
- the maximum PE penetration can be increased with grid forming control


Massive PE penetration can improve grid reliability, providing city in-feeds and powering islands

Opportunities


Evolution in HVDC regarding PE

- Device evolution in advanced packaging solutions: reliability, HV
 - SiC is starting to replace Si devices will it propagate to HVDC?
 - SiC devices: significant research effort to push it to HV & power applications (reliability, reducing conduction losses, cost)
- Advancement in control and management:
 - stability issues need to be addressed
 - new control functions enabled: grid forming for city infeed, islanding
- Condition Monitoring and Prognostics
 - for an efficient predictive maintenance of components / cells
 - more efficient & available service

15 kV SiC MOSFET with mounted gate driver and galvanically isolated supply.

Thank you for your attention