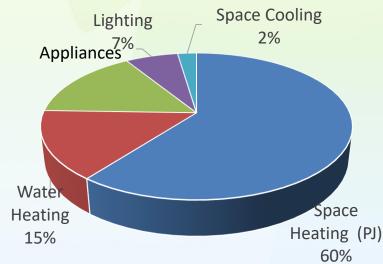
## CEM/GABC: Energy Efficiency in Buildings: How to accelerate Investments

Session 1B: How to accelerate the deployment of new energy efficient buildings

Energy Efficiency in Buildings in Canada:
Domestic and APEC Experience

Sarah Stinson, Director Buildings and Industry Division Office of Energy Efficiency, Natural Resources Canada December 11, 2017






## **Buildings: a Key Area of Opportunity in**

#### Canada Residential, commercial / institutional = 17% of Canada's GHG

- Need to address new <u>and</u> existing buildings
  - > 75% of buildings in 2030 are already standing
  - ➤ 25% of 2030 floor space will be built after 2017
  - Heating is our biggest challenge
  - ➤ GHG intensity is improving, but more to be done

Building Energy Use, 2013 (PJ)







### **Energy is a shared jurisdiction**

#### **F**EDERAL

Regulated standards

Model energy codes

National labels and certifications

PROVINCIAL / TERRITORIAL

Regulated standards

Code Implementation Incentives rebates





Ko







Initiatives will transform how homes / buildings are constructed, operated and renovated to increase energy efficiency / reduce GHG emissions

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017





## PCF measures for the Buildings and Housing Sector

- Federal Budget 2017
  - Buildings and Housing-CAD182M /5 years;
  - Federal government operations-CAD29.7 M/ 11 years
- Making new buildings and existing buildings more energy efficient
  - Net-Zero Energy Ready Codes adopted by 2030
  - Model energy codes for existing buildings developed by 2022 and Labelling/Disclosure by 2019
  - Financial support to PTs through Low Carbon Economy Fund (LCEF) and Infrastructure funding
- New standards for high-efficiency equipment and appliances
- Building codes and energy efficient housing in indigenous communities





## Residential Buildin



14M homes across Canada





17% of Canada's energy use



14% of GHG emissions



64% of energy used in homes is for space heating

- >1 M homes rated
- •>800,000 home retrofits
- >50 programs / regulations use Energuide

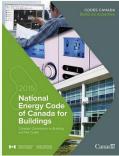


- •65,000 certified homes
- 400 participating builders

#### R-2000

- 22% of EE improvement
- A R-2000 home built in 2005 is now a typical home

1990-2014


• EE improvements: 47%

Cost Saving : CAD12.4B

Energy savings: 671 PJ

GHG savings: 30 MT

## **Commercial Buildings**



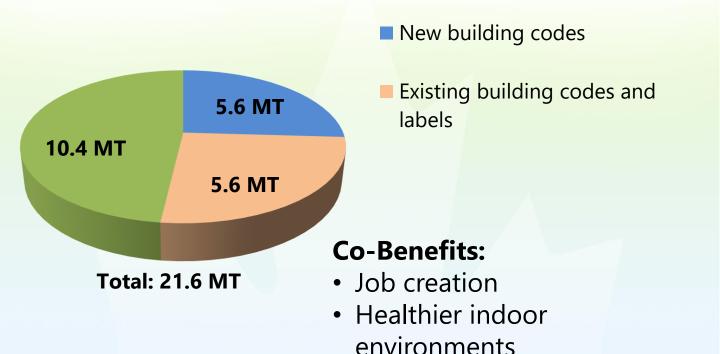
#### **National Energy Code of Canada for Buildings (NECB)**

- NECB 2011 –25% more stringent than 1997 version
- NECB 2015 –13-15% more stringent than NECB 2011
- Work underway for NECB 2020 toward net-zero energy ready

#### **ENERGY STAR Portfolio Manager Benchmarking**

- Energy benchmarking based on national energy use data, Canadian climate
- Considered by sub-national governments for mandatory energy disclosure (Ontario 1<sup>st</sup> to use)
- Adopted by over 22% of Canadian floor space

#### **Equipment Regulations**


Remove least efficient products from market, by setting minimum performance standards







# Potential Impacts from Buildings Strategy by 2030



© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resoulces on getterm decarbonization





## **Canada Promoting NZEB**

#### IEA Solar Heating and Cooling Task 40 / EBC Annex 52 on net zero energy buildings, 2008-2013

- Canada led
- Providing harmonized international definitions framework, tools, innovative solutions and industry guidelines



#### **Examples of Net or Near 0 Buildings**

- ➤ Mosaic Center, Edmonton (Alberta)
  - ■Farth's northernmost net-zero energy commercial building
- > Varennes Public Library (Quebec)





## **APEC Program - Nearly (Net) Zero Energy Building**

#### APEC Leaders' Declarations, 2011, re-confirmed in 2013:

- Aspire to reduce APEC's aggregate energy intensity by 45 percent by 2035 on the basis of 2005.
- 2014 Beijing Declaration: aspirational goal of doubling the share of renewables in the APEC energy mix, including in power generation, from 2010 levels by 2030.

#### Supported by

- APEC- Energy Working Group
  - ➤ APEC Program-Nearly (Net) Zero Energy Building (NZEB), Chaired by China
- Experts Group Energy Efficiency & Conservation



## **APEC Program - NZEB: Countries Engagement**

#### 20 APEC Economies engaged: series of meetings

- Task Group meetings since 2013
- Canada represented by Concordia University Smart Net-Zero Energy Buildings Strategic Research Network
- Meetings planned for 2018; options to host in Canada

#### **Key Projects**

- APEC NZEB Best Practices and Energy Reduction Results Comparative Study
- APEC Nearly (Net) Zero Energy Building Roadmap Study responding to COP21



### **Progress to date**

#### Study: NZEB Best Practices and Energy Reduction

#### **Results**

Systematic information collection on existing 100 NZEB projects for new and existing buildings to establish best practices in APEC regions

- Project Objectives
  - > Inventory of demonstration projects
  - Project distribution by building type and climate zone
  - Identify key technologies and quantify actual energy reduction
  - Promote NZEB best practices in APEC region to accelerate emission reductions





## **Progress to date**

#### **Findings**

- 36/100 projects achieved Net-0; 28/100 projects achieved 120 kWh/m<sup>2</sup> (220-300 kWh/m<sup>2</sup> for typical buildings)
- Country comparison difficult: different statistical basis
- Technical requirements to meet NZEB:
  - ➤ Envelope: high insolation and air tightness. Very high insolation may by more expensive than photovoltaic;
  - Daylight harvesting, EE lighting, natural ventilation, integrate passive solar heat gain, PV, solar tube, geothermal
- Greatest obstacle to adoption: incremental cost





## **Progress to date**

#### Some Key Conclusions from the APEC work until now

- Energy efficiency goals will vary by region, climate, energy sources and environmental goals (resilience, etc.); i.e.: in North America, NZ ready office = 65-70 kWh/ m² per year;
- Net-zero, with photovoltaic system, the building form needs to provide enough envelope area for the PV.

NREL RSF, USA



the Minister of Natural Resources, 2017

Varennes Library, Canada



#### **Future APEC Work**

### Questions similar to CEM/GABC questions

- 1. What building sector goal could APEC set, as a whole and in each economy?
- 2. What are the policies used and their outcomes?
- 3. Which priority policies would support a potential NZEB goal? What kind of technology could have a market potential?

