

Open-source software for HVDC control and protection

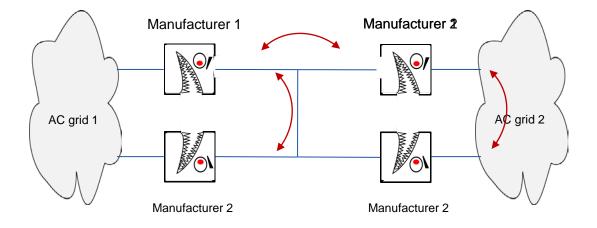
-- enabling interoperability and reducing technical risks

Presentation at the workshop "Horizon 2050 power system and the role of HVDC technologies in a highly decentralised RES generation" at Directorate-General for Energy, Brussels 2020-02-05

Staffan Norrga KTH Royal Institute of Technology Sweden

AC grid key component – Transformer

- Copper and steel
- Predictable, easy to model
- Grid expansion made by TSO


HVDC key component – Converter

- Behavior is software-defined
- Software is proprietary and closed
- System verification relies on detailed computer simulations

The HVDC software dilemma

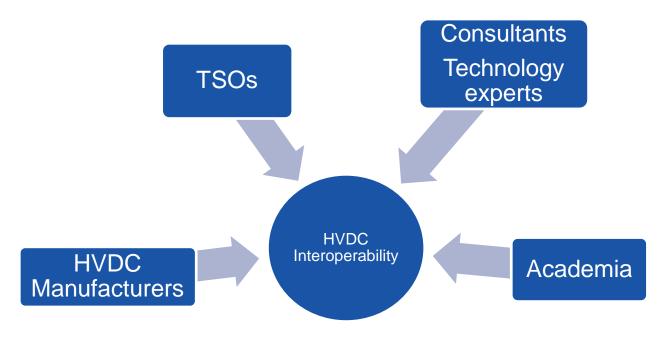
HVDC control and protection with partly open-source software

Upper Level Upper Level Control Control Interface□ ⊐Interface⊏ Lower Level Lower Level Control Control Interface ☐ Interface Non-OEM/ open source Converter Converter hardware hardware Closed source

Added paradigm

DC voltage / active power AC voltage / reactive power AC current , PLL, external protection

> Circulating current, arm energies modulation, capacitor balancing, internal protection


> Valve controllers MMC cells, sensors

See also CIGRE TB 604: Guide for the Development of Models for HVDC Converters in a HVDC Grid

Existing paradigm

Why open-source HVDC Control and Protection?

Widen the ecosystem – reduce technical risks

2020-02-01 Staffan Norrga

Open issues...

- Interfaces between open and closed software parts
- Choice of open-source software licenses
- System verification in an open-source context
- Responsibility for system performance
- Guarantees

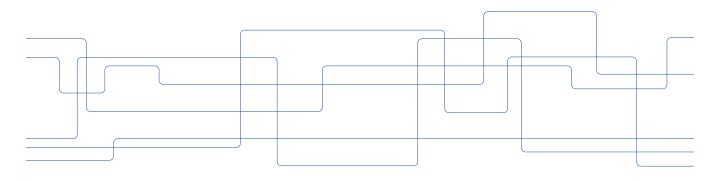
Ongoing activities this far

- Cigre Workgroup B4.85 (Interoperability in HVDC systems based on partially open-source software)
- Research project to be started at KTH with support from Svk and RTE
- Paper at ISGT 2019, Paper at CIGRE session 2020 to be presented

I. Jahn et al., "A Proposal for Open-Source HVDC Control," 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), 2019

Your participation is welcome!

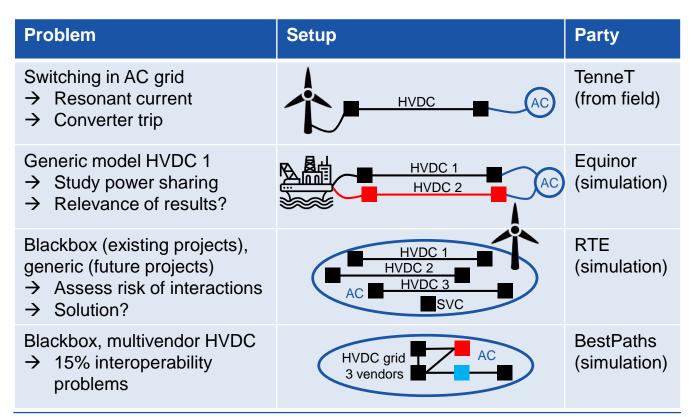
- Cigre WG B4.85 contact your Cigre B4 regular member
- Open-source C&P codebase for HVDC
- Contact me:


norrga@kth.se

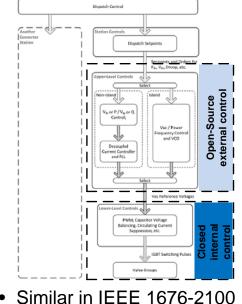
KTH ROYAL INSTITUTE OF TECHNOLOGY

BACKUP

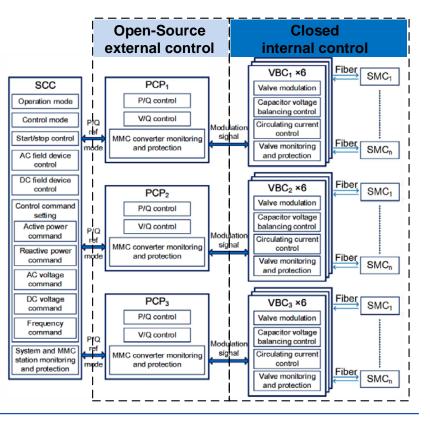
Impact of control on converter behavior


MMC AC-side admittance at different current control elements employed

- fixed references
- ac-side current proportional controller
- circulating current controller
- ac-side current resonant controller
- ac-side voltage feedforward

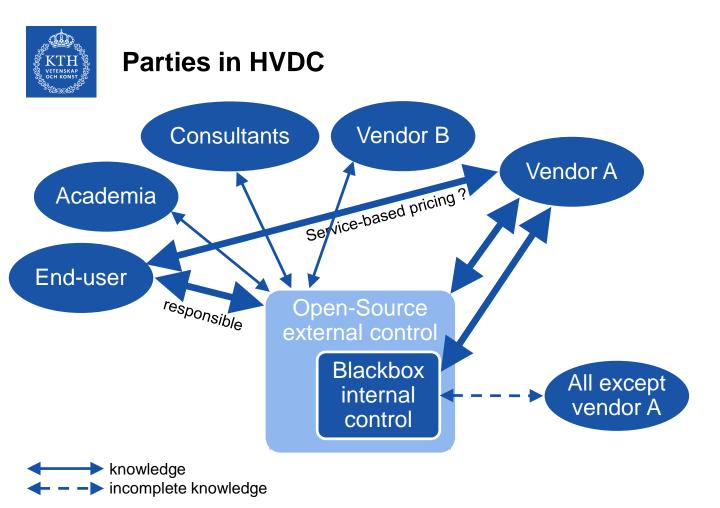

Blackbox Control Problems

Proposal for Open-Source Control Design


- For specific control scheme: circulating current (control) does not impact MMC ac-side admittance
- Proposal: **Open-Source** external control AC-bus voltage Another Higher-level Converter DC-bus voltage Station control Output current Output current reference Upper-Level Controls Output-current Output current control Vscor P / Vscor Q Control Output voltage reference Decoupled Closed Current Controlle and PLL internal control Circulating current Arm-balancing Sum capacitor control voltages Submodule Modulation and capacitor submodule balancing voltages Gate signals
- CIGRE guide 604:

Existing Control with Proposal

- Chinese multiterminal HVDC system Nan'ao
 - Several higher-level layers
 - Vendor-specific valve and submodule control



Licensing, Patents, Business models

License	Туре	Free Distribution	Derivative Works (new ext. control)	Patenting
MIT, BSD	All		No restrictions	Not stated
Apache 2.0	permissive	Yes	Apache name cannot be used for marketing	
MPL v2	Restrictive		GPL or MPL	Patent grant required
LGPL			GPL or LGPL	
GPL	Restrictive and viral		GPL	⊜?
Commercial	All restrictive	O No	Not allowed	Okay

- Less restrictive licenses
- Conclusion: Patent grant seems to be a requirement
 - Option: tailor HVDC-specific license

2020-02-06

Implementation and Expected Impact

1) Separation: black-boxed internal - open external controls

•	1 physical unit vs.
	2 physical units

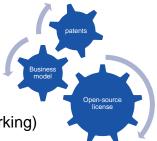
- Communication delay, might be acceptable
- Interface (software / hardware)

2) Requirement: defined interface

Expected impact

- Easier implementation of external input, (e.g. research results)
- Better studies with actual external controller
- Standard development
- Interoperability
- Multivendor development

3) Accelerate


- multivendor framework
- End-user responsible for system stability
- Less requirements on vendors to solve systemrelated problems
- Easier to solve problems touching on other vendors' equipment

(with certain conditions)

Licensing, patents, business models

- Restrictive licenses:
 - Require that alterations published back into the community
 - Risk that this is not done
 - Risk that material is used in closed IP for competitive product (forking)
 - Difficult to re-use in other platforms (e.g. RTDS, PSCAD etc.)
 - Discourage vendors from joining the open-source community and should be avoided
- Permissive licenses:
 - Distribution for derivative work is permitted, but not obligatory
 - Dynamic open-source community has strong incentive to contribute back
 - Better for maintenance in the long term
- Derivative work:
 - Work that has sufficient changes compared to the original work so that the derivative work becomes independent, e.g. a new external control method.

References

- [1] Scottish & Southern Electricity Networks, "Offshore HVDC Hub Project" https://www.ssen.co.uk/Home/. [Online]. Available: https://www.ssen.co.uk/TransmissionInnovation/OffshoreHVDCHubProject/. [Accessed Feb. 20, 2019].
- [2] FAB, "Technical Components" http://www.fablink.net/, 2018. [Online]. Available: https://www.fablink.net/technical/technical-components/. [Accessed Feb. 20, 2019].
- [3] B. Tourgoutian et al., "Design considerations for the COBRAcable HVDC interconnector," in Proc. IET RTDN, Birmingham, 26–28 Sept. 2017.
- [4] C. Buchhagen et al., "Borwin1 First Experiences with harmonic interactions in converter dominated grids," in Proc. Int. ETG Congr., Bonn, 17–18 Nov. 2015.
- [5] M. Koochack Zadeh et al., "Operating experience of HVDC links Behaviour during faults and switching events in the onshore grid," in Proc. CIGRE Colloq., Winnipeg, 30 Sept.–6 Oct. 2017.
- [6] H. Saad et al., "Interactions investigations between power electronics devices embedded in HVAC network," in Proc. IET ACDC, Manchester, 14–16 Feb. 2017.
- [7] H. Saad et al., "On Resonances and Harmonics in HVDC-MMC Station Connected to AC Grid," IEEE Trans. Power Deliv., vol. 32, no. 3, pp. 1565–1573, June 2017.
- [8] K. Sharifabadi et al., "Parallel operation of multivendor VSC-HVDC schemes feeding a large islanded offshore Oil and Gas grid," in Proc. CIGRE Session, Paris, 26–31 Aug. 2018.
- [9] O. Despouys et al., "Assessment of interoperability in multi-vendor VSCHVDC systems: interim results of the BEST PATHS DEMO #2," in Proc. CIGRE Session, Paris, 26–31 Aug. 2018.
- [10] P. Rault et al., "Implementation of a dedicated control to limit adverse interaction in multi-vendor HVDC systems," in Proc. IET ACDC, Coventry, 5–7 Feb. 2019, 6 pages.
- [11] Best Paths WP9, "Best Paths DEMO#2 Final Recommendations for Interoperability Of Multivendor HVDC Systems, Tech. Rep. D9.3, Dec. 2018.
- [12] J. Sun, "Impedance-Based Stability Criterion for Grid-Connected Inverters," IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3075-3078, Nov. 2011.
- [13] L. Harnefors et al., "Passivity-Based Stability Assessment of Grid-Connected VSCs An Overview," IEEE J. Emerg. Sel. Top. Power Electron., vol. 4, no. 1, pp. 116-125, Mar. 2016.

References

- [14] L. Bessegato, K. Ilves, L. Harnefors, and S. Norrga, "Effects of Control on the AC-Side Admittance of a Modular Multilevel Converter," IEEE Trans. Power Electron., to be published, doi: 10.1109/TPEL.2018.2878600.
- [15] X. Wang et al., "Unified Impedance Model of Grid-Connected Voltage-Source Converters," IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1775-1787, Feb. 2018.
- [16] K. Sharifabadi et al., "Dynamics and Control," in Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems, 1st ed., Chichester, UK: Wiley-IEEE Press, 2016, ch. 3, sec. 1, p. 134.
- [17] IEEE Std 1676-2010: IEEE Guide for control Architecture for High Power Electronics (1 MW and Greater) Used in Electric Power Transmission and Distribution Systems, IEEE, New York, NY, 2011.
- [18] CIGRE Working Group B4.57, "Brochure 604: Guide for the Development of Models for HVDC Converters in a HVDC Grid," CIGRE, Paris, Dec. 2014.
- [19] G. Bathurst and P. Bordignan, "Delivery of the Nan'ao multi-terminal VSC-HVDC system," in Proc. IET ACDC, Birmingham, 10–12 Feb. 2015.
- [20] H. Rao, "Architecture of Nan'ao Multi-terminal VSC-HVDC system and its Multi-functional Control," CSEE J. Power and Energy Syst., vol. 1, no. 1, pp. 9-18, Mar. 2015.
- [21] L. Zhu et al., "Standard Function Blocks for Flexible IED in IEC 61850–Based Substation Automation," IEEE Trans. Power Deliv., vol. 26, no. 2, pp. 1101–1110, Apr. 2011.
- [22] Open Source Initiative, "Open Source Licenses by Category" https://opensource.org/. [Online]. Available: https://opensource.org/ licenses/category. [Accessed Jan. 28, 2019].
- [23] J. Lindman et al., "Choosing an Open Source Software License in Commercial Context: A Managerial perspective," in Proc. IEEE EUROMICRO, Lille, 1–3 Sept. 2010, pp. 237–244.
- [24] ONAP, "Technical Charter for ONAP Project a Series of LF Projects, LLC" https://www.onap.org/. Dec. 12, 2017. [Online]. Available: https: //www.onap.org/wp-content/uploads/sites/20/2018/01/ONAP-Project-a-Series-of-LF-Projects-LLC-Technical-Charter-12-22-2017-FINAL.pdf. [Accessed Feb. 22, 2019].
- [25] GNU Operating System, "Why you shouldn't use the Lesser GPL for your next library" gnu.org. [Online]. Available: https://www.gnu.org/licenses/why-not-lgpl.html. [Accessed Jan. 28, 2019].