Solar Bankability Energy Efficiency Finance Market Place, Brussels, 19 January 2017

Improving the Financeability and Attractiveness of Sustainable Energy Investments in Photovoltaics

David Moser, EURAC

Funded by the Horizon 2020 Framework Programme of the European Union

www.solarbankability.eu

Project Overview

- European Union Horizon 2020 Work Programme
- 24 months (March 2015 February 2017)
- 5 consortium partners:

Main Objective: Develop and establish a common practice for professional risk assessment which will serve to reduce the technical risks associated with investments in PV projects.

Bankability in PV projects

Solar bankability is an active quality management process, where all stakeholders in the approval process of a PV project attempt to identify potential legal, technical and economical risks throughout the entire project life cycle. These risks need to be quantitatively and qualitatively assessed, managed and controlled. Despite a wide overlap in this quality management process, the focus and the assessment criteria will vary whether the stakeholder represents an investor, a bank, an insurance or a regulatory body.

Risk assessment

Gap analysis 20 Identified technical gaps in different project phases

Risk	Phase/field	Identified critical technical gaps	
Year-0	Procurement/ product selection and testing	 Insufficient EPC technical specifications to ensure that selected components are suitable for use in the specific PV plant environment of application. Inadequate component testing to check for product manufacturing deviations. Absence of adequate independent product delivery acceptance test and criteria. 	Impact on BANKABILITY quality of installation
	Planning/ lifetime energy yield estimation	 The effect of long-term trends in the solar resource is not fully accounted for. Exceedance probabilities (e.g. P90) are often calculated for risk assessment assuming a normal distribution for all elements contributing to the overall uncertainty. Incorrect degradation rate and behavior over time assumed in the yield estimation. Incorrect availability assumption to calculate the initial yield for project investment financial model (vs O&M plant availability guarantee). 	Impact on cash flow model
	Transportation Installation/ construction	 Absence of standardized transportation and handling protocol. Inadequate quality procedures in component un-packaging and handling during construction by workers. Missing intermediate construction monitoring. 	Impact on quality
	Installation/ provisional and final acceptance	 Inadequate protocol or equipment for plant acceptance visual inspection. Missing short-term performance (e.g. PR) check at provisional acceptance test, including proper correction for temperature and other losses. Missing final performance check and guaranteed performance. Incorrect or missing specification for collecting data for PR or availability evaluations: incorrect measurement sensor specification, incorrect irradiance threshold to define time window of PV operation for PR/availability calculation. 	Impact on risk/cost ownership
Risks during operation	Operation	 Selected monitoring system is not capable of advanced fault detection and identification. Inadequate or absence of devices for visual inspection to catch invisible defects/faults. Missing guaranteed key performance indicators (PR, availability or energy yield). Incorrect or missing specification for collecting data for PR or availability evaluations: incorrect measurement sensor specification, incorrect irradiance threshold to define time window of PV operation for PR/availability calculation. 	Impact on risk/cost ownership and on O&M stratgy
	Maintenance	 Missing or inadequate maintenance of the monitoring system. Module cleaning missing or frequency too low. 	1/23/2017 5

Technical risk framework

Α	Risk identification
В	Risk assessment
С	Risk management
D	Risk controlling

Technical Risks Matrix

	Pro	oduct Development	Assessm	ent of PV Plants
	Product testing	Planning Tra	Insportation O&M	Decommissioning
Modules	····			
 Insulation test Incorrect cell soldering Undersized bypass diode Junction box adhesion Delamination at the edges Arcing spots on the module Visually detectable hot spots Incorrect power rating (flash test issue) Uncertified components or production line 	 Soiling Shadow diagram Modules mismatch Modules not certified Flash report not available or incorrect Special climatic conditions not considered (salt corrosion, ammonia,) Incorrect assumptions of module degradation, light induced degradation unclear Module quality unclear (lamination, soldering) Simulation parameters (low irradiance, temperature) unclear, missing PAN files 	 Module mishandling (glass breakage) Module mishandling (cell breakage) Module mishandling (defective backsheet) Incorrect connection of modules Bad wiring without fasteners 	 Hotspot Delamination Glass breakage Soiling Shading Shading Snail tracks Cell cracks PID Failure bypass diode and junction box Corrosion in the junction box Corrosion in the junction box Theft of modules Module degradation Slow reaction time for warranty claims, vague or inappropriate definition of procedure for warranty claims Spare modules no longer available, costly string reconfiguration 	Undefined product recycling procedure

Technical risk framework

Α	Risk identification
В	Risk assessment
С	Risk management
D	Risk controlling

Quantification of the economic impact of technical risks

Planning

• Risks to which we can assign an uncertainty (e.g. irradiance)
 → Impact on financial exceedance probability parameters

O&M

 Risks to which we can assign a Cost Priority Number CPN (e.g. module and inverter failure) given in Euros/kWp/year
 → Impact on cash flow

Planning

Quantification of the economic impact of technical risks

Typical uncertainty values (irradiance, temperature, soiling, shading, etc): 5-10%

Quantification of the economic impact of technical risks

Planning

Objectives:

- More precise estimation of uncertainty in yield estimation
- Reduction of uncertainty

	σ (k=1)	P50 (kWh/kWp)	P50 (kWh/kWp) P90 (kWh/kWp)	
Reference case (PVSYST, not all contributions included)	4.3%	1440	1350	94%
Ref. case (sum of squares)	8.7%	1445	1283	89%
Low end scenario	4.6%	1445	1365	94%
High end scenario	9.3%	1445	1273	88%
Worst case scenario	16.6%	1445	1138	79%
Worst case scenario (different mean value)	16.6%	1314	1034	72%

22% difference in terms of yield used in the business model 1/2

SOLAR

BANKABILITY

Procedure for the calculation of a Cost Priority Number (CPN)

- a) Economic impact due to downtime and/or power loss (kWh to Euros)
- Failures might cause downtime or % in power loss
- Time is from failure to repair/substitution and should include: time to detection, response time, repair/substitution time
- Failures at component level might affect other components (e.g. module failure might bring down the whole string)
- b) Economic impact due to repair/substitution costs (Euros)
- Cost of detection (field inspection, indoor measurements, etc)
- Cost of transportation of component
- Cost of labour (linked to downtime)
- Cost of repair/substitution

Income reduction Savings reduction

SOLAR

BANKABILITY

Increase in maintenance costs Reduction of reserves

Technical Risks collection

CPN is given in Euros/kW/year

 $CPN = C_{down} + C_{fix}$

It gives an indication of the economic impact of a failure due to downtime and investment cost

	Total number of plants	Total Power [kWp]	Average number of years
TOTAL	772	441676	2.7
Components	No. tickets	No. Cases	No. Components
Modules	473	678801	2058721
Inverters	476	2548	11967
Mounting structures	420	15809	43057
Connection & Distribution boxes	221	12343	20372
Cabling	614	367724	238546
Transformer station & MV/HV	53	220	558
Total	2257	1077445	2373222

- Tickets from O&M operators from preventive and corrective maintenance

- Visual and detailed PV plant inspections

CPN Results - Components and Market Segments

• PV modules - Utility scale

O&M

- Highest risk consists of a group of installation failures (mishandling, connection failures, missing fixation, etc.)
- Variety of failures detected by different techniques (VI, IR, EL, IV-Curves)

14

CPN results - Comparison studies

• Affected components vs total components: CPN ratio

Failures calculated over the whole database

Failures calculated over the affected plants

CPN results - Comparison studies

M&O

 Some failures do not occur very often and are not equally spread over the portfolio but when they do, the economic impact is very high

High CPN ratio for product failures or non technical factors (e.g. safety)

Technical risk framework

Risk mitigation

100%

Risk

0%

CAPEX & OPEX depending on mitigation measures

0

CAPEX

OPEX

0

€/kWp €/kWp/a

6

Mitigation Measure Approach

List of 8 defined MMs, their mitigation factors and affected parameters

Preventive measures —

Corrective measures _____

Component testing – PV modules	number of failures
Design review + construction monitoring	number of failures
Qualification of EPC	number of failures
Advanced monitoring system	time to detection
Basic monitoring system	time to detection
Advanced inspection	time to detection
Visual inspection	time to detection
Spare part management	time to repair/substitution

Impact of Applied Mitigation Measures

New CPN results of mitigation measure combinations for different cost scenarios compared to CPN without mitigation measures

Preventive measures have higher impact

SOLAR

BANKABILITY

Impact on LCOE

Germany Italy UK

Input parameter	Low scenario	Medium scenario	High scenario		
CAPEX [€/kWp]					
Ground-mounted utility (≥ 1 MWp)	€ 900	€ 1000	€ 1200		
Commercial rooftop (< 1 MWp)	€ 1000	€ 1200	€ 1400		
Residential (up to 5 kWp) (VAT excluded)	€ 1300	€ 1400	€ 1600		
OPEX [€/kWp/year]					
Ground-mounted utility (≥ 1 MWp)	€ 13	€ 15	5 €20		
Commercial rooftop (< 1 MWp)	€ 10	€ 10	€ 18		
Residential (up to 5 kWp) (VAT excluded)	€5	€5 €5			
Performance Ratio 'PR' [%]					
Ground-mounted utility (≥ 1 MWp)	86%	84%	86%		
Commercial rooftop (< 1 MWp)	84%	82%	84%		
Residential (up to 5 kWp)	82%	80%	82%		
Plane-of-array (POA) irradiation [kWh/m ²]	1331	1821	1168		
Discount rate [%]	4%	8%	6.5%		
Degradation rate [%]		0.5% linear			
Lifetime [years]		25 years			

Market segment	Low scenario	Medium scenario	High scenario
LCOE without any mitigation	[€cents/kWh]	[€cents/kWh]	[€cents/kWh]
Ground-mounted utility (≥ 1 MWp)	5.4 – 8.1	6.2 – 9.3	10.3 – 15.5
Commercial rooftop (< 1 MWp)	5.8 – 8.7	7.0 - 10.7	11.8 - 17.8
Residential (up to 5 kWp)	6.9 – 10.6	7.9 – 12.2	12.5 – 19.2

Impact of Applied Mitigation Measures on the cost of PV electricity

Market segment	Low scenario	Medium scenario	High scenario	
% maximum LCOE reduction				
Ground-mounted utility (≥ 1 MWp)	3.6%	3.8%	4.2%	
Commercial rooftop (< 1 MWp)	4.6%	4.8%	5.0%	
Residential (up to 5 kWp)	4.8%	5.0%	5.1%	
LCOE after best mitigation combination	[€cents/kWh]	[€cents/kWh]	[€cents/kWh]	
Ground-mounted utility (≥ 1 MWp)	5.2 – 7.8	5.9 – 8.9	9.9 – 14.8	
Commercial rooftop (< 1 MWp)	5.5 – 8.4	6.7 – 10.3	11.2 – 17.0	
Residential (up to 5 kWp)	6.6 - 10.1	7.5 – 11.6	11.9 – 18.2	

Mitigation measures increases CAPEX and OPEX but also the utilisation rate

The most effective mitigation measures are those implemented at the *early stage of project lifecycle*. Those implemented in the operation phase still show some positive impact on LCOE but less gain is found.

Although the implementation of mitigation measures increase either CAPEX or OPEX or both, the overall LCOE decreases as the gain in yield surpasses the extra cost incurred.

Mitigation measures most effective in lowering PV LCOE are:

- 1. Qualification of EPC;
- 2. Component testing prior to installation; and
- 3. Advanced monitoring system for early fault detection.

Impact on Business Models

	Description							
Business model 1	Residential rooftop PV system with crystalline modules located in central Europe (5,6 kW, c-Si, Germany)							
Business model 2	Residential rooftop PV system with crystalline modules and battery storage located in central Europe (5,2 kW c-Si + storage, Germany)							
Business model 3	Utility scale ground mounted PV system with crystalline modules, central inverters, located in northern Europe (7,6 MW, c-Si, UK)							
Business model 4	Utility scale ground mounted PV system with CdTe modules, string inverters, located in southern Europe (0,6 MW, CdTe, Italy)							

Technical Risks selection for business models

	Product Developme			omer	nt		Assessment of PV Plants						
	Protect	duct ting	Planning		Transp / insta	ortation		O&M	Decommissioning				
Modules													
Inverter					Top 10 g	generic	teo	chnical ris	ks				
Mounting structure					Number	Compone	ent	Name		BM1	BM2	BM3	BM4
		_			Risk xx00	Module (C	C-Si)	Potential induc	ed degradation (PID)	х	х	х	1)
Connection &					Risk xx00	Module (C	CdTe)	Low Power/TC	O corrosion				х
distribution boxes		Dial	motrix		Risk xx10	Module		Failure of bypa	ss diode/junction box	x	х	х	х
Cohling		RISP			Risk xx20	Module		Hotspot		x	х	х	2)
Capling		wit	n more		Risk xx30	Module		Theft or vandal	ism	x	х	х	х
Potential equalization	9	1	140		Risk xx40	Inverter		Fan failure and	overheating	x	х	х	х
arounding LPS	II 0.	tha	an 140		Risk xx50	Inverter		Lightning strike	•	х	х	х	х
grounding, LPS		Tec	chnical		Risk xx60	Mounting		Mismatch of m	odule clamp	х	х	х	х
Weather station,					Risk xx70	Cable		UV aging of str	ing cable	х	х	х	х
communication,		r	risks		Risk xx80	Cable		Wrong/absent	cable connection	х	х	х	х
monitoring					Risk xx90	Cable		Cabling damag	jed by rodents	х	х	х	х
					Selected	d techn	ica	l risks by l	ousiness model				
					Number	Compone	ent	Name		BM1	BM2	BM3	BM4
environmental influence	e .				Risk 1100	Module		Glass breakag	e by hail	х			
Storage system					Risk 1110	Module		Soiling of modu	le	х			
					Risk 2100	Battery		Failure of batte	ry		X		
Miscellaneous	L				Risk 2110	Inverter		Failure of batte	ry inverter		X		
					RISK 3100	Module			erter			X	

Risk 4100

Module

Glass breakage, frameless module

х

Financial Performance of Business Models

IRR (Base case)

Cumulative cash flow (Base case)

Failure Categories

The impact of risks is measured by failure categories based on a 12 month revenue reserve account (as demanded by banks)

Failure Category Overview

Business Model 1

Business Model 3

Business Model 2

Business Model 4

Risk Scenario – Business Model 3 (Example)

Risk scenario - businss model 3

Risk	Risk number	Risk name	Start Date	Case	Phase	
Risk 1	3020	Hotspot of modules	01.01.2012	Best	Infant	
Risk 2 ²⁾	3101	Flooding of inverter	01.08.2017	Worst	Mid-life	
Risk 3 ¹⁾	3051	Lightning strike of inverter	01.06.2020	Worst	Mid-life	
Risk 4	3011	Failure of bypass diode and juction box	01.10.2026	Worst	Wear-out	
Comments						

1) External cause independent from project phase

2) Business model specific risk, i.e. due to system design/technology, geographic/climatic conditions

Cumulative cash flow

Risk transfer

Technical risk framework

Α	Risk identification
В	Risk assessment
С	Risk management
D	Risk controlling

Capital market regulation

In a harmonized effort, financial regulatory bodies on a global, European and national level have developed a set of regulations for each capital market sector:

- Banking (Basel III),
- Insurance (Solvency II),
- Investment Funds (UCITS V / AIFM).

31

SOLAR

BANKABILITY

Best Practice Guidelines

www.solarbankability.eu

<u>v</u> /x	Technical aspect & what to look for in the LTYA				
Α	Solar resource assessment				
	 Only reliable solar irradiation data sources should be used and the name(s) and version(s) must be clearly stated. Data source(s) used must be able to provide uncertainty estimations and ideally have been extensively validated 	SOLAR BANKABILITY			
	 The period covered by the solar irradiation data source(s) used must be reported. Only data sources with more than 10-year recent data should be used for LTYA calculations 				
	 The effect of long-term trends in the solar resource should be analyzed. In the presence of such trends, the long-term solar resource estimation should be adjusted to account for this effect 				
	4. The use of site adaptation techniques is recommended to reduce the uncertainty. A measurement campaign of at least 8 months and ideally one full year is recommended				
в	PV yield modeling				
	5. The PV modeling software and the specific version used must be clearly stated in the report				
	6. If in-house software is used, the name(s) and version(s) must also be stated	Best practice			
	 All assumptions (e.g. soiling losses, availability, etc.) and sub-models used (e.g. transposition model) must be clearly stated 	in long term			
С	Degradation rate and behavior	Viold			
	8. The degradation rate(s) used for the calculations must be clearly stated in the report. It is recommended to differentiate between first year effects and yearly behavior over project lifetime	Assessment			
	 Degradation behavior assumption (e.g. linear, stepwise, etc.) over time should be clearly stated an ideally backed up with manufacturer warranties 				
	10. If specific manufacturer warranties are available (e.g. module warranty document or sales agreement), these can be used to fine tune the lifetime degradation calculation				
D	Uncertainty calculation				
	11. All steps in the long-term yield calculation are subject to uncertainties. All uncertainties should be clearly stated and references must be provided in the report				
	12. Special attention must be paid to the solar resource related uncertainties as these are among the most important elements in the contribution to the overall uncertainty				
	13. If special methods are used to reduce some uncertainties e.g. site adaptation techniques, these should be clearly documented and ideally backed up with scientific validation				
	14. Special care must be taken when classifying each uncertainty as either systematic or variable (stochastic) since these are treated differently in overall lifetime uncertainty calculations	10/20/201			
	15. When possible, exceedance probabilities (e.g. P90) for each uncertainty must be calculated using empirical methods based on available data instead of assuming normal distribution for all element	6 33			

Area/phase	Recommendations		
EPC/procurement and product testing phase	 The EPC technical specifications should include requirements that the selected components are suitable for use in the specific PV plant environment of application. The EPC should list tests to be performed by the component supplier while manufacturing the components. The test data should be submitted to the EPC contractor for verification. The EPC should specify that the components must pass independent testing before acceptance. The tests and acceptance criteria should be included. 	SOLAR BANKABILITY	
EPC/ system design phase - lifetime energy yield estimation	 The effect of long-term trends in the solar resource should be taken into account. When possible, exceedance probabilities (e.g. P90) must be calculated using empirical method based on available data instead of assuming normal distribution. Correct degradation rate and behaviour (linear/stepwise) over time should be used in the yield estimation. Overall availability assumption (not O&M guaranteed availability) must be used to calculate the initial yield for project investment financial model. 	Solar	
EPC/transportation	The EPC should specify requirement of transportation and handling protocol.	Dankability	
EPC/construction	 9. The EPC should include comprehensive protocol and training to its field workers on how to un-package and handle components properly. 10. The EPC should include intermediate construction monitoring site visits. 	technical best practice (EPC and O&M)	
EPC/plant commissioning and acceptance	 The EPC should include IR imaging as part of plant acceptance visual inspection. The EPC should include short-term performance (e.g. PR) check at provisional acceptance test, including proper correction for temperature and other losses. The EPC should include correct final performance check and guaranteed performance. The EPC should include correct measurement sensor calibrations and set a correct irradiation threshold to define time window of PV operation for PR/availability calculation. 		
0&M	 The O&M should use smart monitoring system for plant fault detection and identification. The maintenance should use IR or EL imaging analysis as regular plant inspection. The O&M should include guaranteed PR, availability and/or energy yield. The O&M should include correct measurement sensor calibrations and set a correct irradiation threshold to define time window of PV operation for PR/availability calculation. The maintenance should specifically include the monitoring system. Module cleaning should be at minimum once a year. 	34	

Solar Bankability financial best practice

- 1. PV investments are considered as qualified infrastructure investment. Compared with other asset classes PV projects offers a favorable risk profile. Under Solvency II the corresponding equity stress factor has been lowered accordingly.
- 2. New capital market regulations require a thorough due diligence and ongoing risk management procedures. Banks and insurances are requested to either implement a qualified inhouse risk rating or to take advantage of external professional rating services.
- 3. Technical risks represent only one out of up several risk categories. In most rating schemes the impact of technical risks is limited up to 20%.
- 4. The impact of technical failures cannot be generalized. It depends on the individual framework conditions of the underlying PV business model, i.e. system size and design, geographic location, climate, technology, financing, taxation, jurisdiction and national policies.
- 5. The financial impact of technical failures can be classified in four failure categories. Only categories one and two are covered by regular operations and maintenance provisions and reserve accounts. Failures in category three and four are more common in smaller than in larger PV systems. The financial impact of failures often depends to a large extend on high spare parts costs for modules and inverters and high downtime costs due to long detection times and high yield losses especially during the summer season.

Solar Bankability financial best practice

- 6. Changing market factors require an enhanced risk awareness. Since the financial crisis in 2008 the profitability of PV systems has decreased along the decline of overall financial market returns. Increasing competition and cost pressure in the PV industry are threatening quality standards. Manufacturer and EPC insolvencies have made product warranties and performance guarantees become void.
- 7. A professional risk management plan should become integral part for each PV investment. The budget for risk assessment and mitigation measures should be adjusted to size and investment volume of the PV project. Mitigation measures should reflect the bathtub like curve of risk occurance and important milestones of system design, commisioning, end of warranty and guarantee periods. Ongoing monitoring and maintenance checks will help to minimize the occurance of failures.
- 8 Manufacturers and EPC should incorporate lessons learnt from technical failures into their component and system design. Rather than exchanging entire components, smart repair should become market standard i.e. to exchange defective module junction box diodes or inverter circuit boards. A system design based on i.e. micro or string inverters might be less downtime prone than on central inverters.
- 9 The risks assessement methodology developed under the Solar Bankability Project including technical risk catalogue, cost priority numbers, failure categories, failure cost distribution and mitigation measures can be used by banks and insurers to optimize i.e. required debt service reserve accounts or to adjust insurance premiums.
- 10 To enhance the effectiveness of government tender schemes for large PV projects regulators should consider to also include non-monetary qualification requirements beyond the price-only criteria. A professional risk management plan to ensure the financial viability and technical reliability of the PV system should be incorporated. A monitoring program should accompany the tendering process: It should cover the project realization rate and a technical quality and performance check before the end of the PV system warranty period.

SOLAR

BANKABILIT

Project Reports: www.solarbankability.eu

Project Advisory Board Closed

Deliverable D5.2 (M12)

d by the Herizon 2020 work Pregnamma of the

Photovoltaic Projects

Merged Deliverable D1.2 and D2.2 (M16)

Minimizing Technical Risks in

Recommendations for Minimizing Technical Risks of PV Project Development and PV Plant

Workshops #1 and #2 - Proceedings

SOLAR BANKABILITY PV Business Model Country Snapshots August 31st, 2015

Funded by the Horsen 2020 Frankwark Programme of the European Union

Technical risks in PV projects Report on technical risks in PV project development and PV plant operation

Merged Deliverable D1.1 and D2.1 (M12) Version 1.0

www.solarbankability.eu

Funded by t Framework

Operation

WANTY S

www.solarbankability.eu

www.solarbankability.eu

Review and Gap Analyses of Technical Assumptions in PV Electricity Cost

Report on Current Practices in How Technical Assumptions are Accounted in PV Investment Cost Calculation

27/07/2016, Version 1 0

inded by the Horlace 2020 amenant Programme of the

www.solarbankability.eu

Financial Modelling of PV Risks Financial Modelling of Technical Risks in PV Projects Deliverable D4 2 (M18)

Funded by the Horzon 2020 Framework Programme of the European Union www.solarbankability.eu

Solar Bankability Webinar 11/22/2016 38

Final Public Workshop 7th-8th February 2017 Brussels, Belgium

Enhancement of PV Investment Attractiveness

Concept:

Target groups: Finance sector, insurance, EPCs, service providers, decision makers / broader attendance

1.5-day-Workshop including networking dinner

Fully paid workshop for max. 120 participants

Registration available: End of Oct 2016

Save the date: 7-8 Feb 2017!

Thank you!

• David Moser (Eurac),

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 649997. The content of this report reflects only the author's view and the Commission is not responsible for any use that may be made of the information it contains

Funded by the Horizon 2020 Framework Programme of the European Union

www.solarbankability.eu

Impact of Applied Mitigation Measures on the cost of PV electricity

PV LCOE calculation

$$LCOE = \frac{I + \sum_{n=1}^{N} \frac{C - RV}{(1 + r)^{n}}}{\sum_{n=1}^{N} \frac{Y_{o} x (1 - D)^{n}}{(1 + r)^{n}}}$$

N = PV system life (years)

I = total initial investment (CAPEX) (€/kWp)

C = annual operation and maintenance expenditures (OPEX) (\notin /kWp)

 $RV = residual value (\ell/kWp)$

- r = discount rate (%)
- $Y_0 = initial yield (kWh)$
- D = system degradation rate (%)

