

EC WORKSHOP: HORIZON 2050 POWER SYSTEM AND THE ROLE OF HVDC TECHNOLOGIES IN A HIGHLY DECENTRALISED RES GENERATION - BRUSSELS, 4 FEBRUARY 2020

High-voltage AirPlus[™] switchgear for eco-efficiency

ABB Power Grids: Leading the way for a greener grid

Navid Mahdizadeh

© Copyright 2019 ABB. All rights reserved.

History of SF_6 Why is SF_6 so dominant today ?

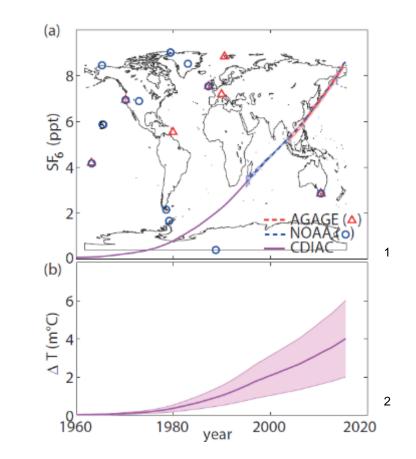
High-voltage products

- SF₆ is an excellent gas in terms of dielectric insulation properties and arc quenching capabilities
- SF₆ is an indispensable element for modern high-voltage switchgear technology
- Used for all voltages in transmission application to levels as high as 1,200 kV
- Over 50 years of experience

1968: First 170 kV GIS (SF₆), Zürich, Switzerland

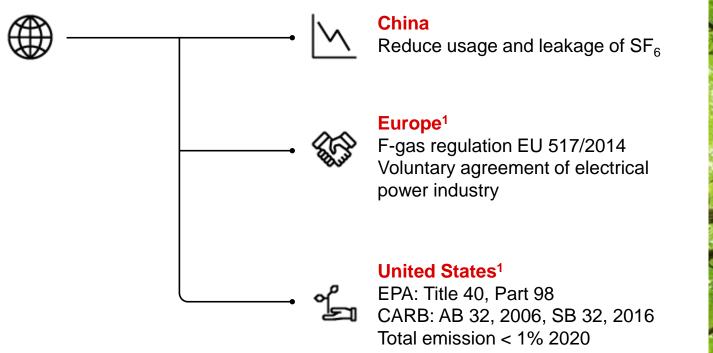
2008: First 1100 kV GIS (SF₆), Jingmen, China

Drawback - high GWP (23,500 x CO₂)


Global SF₆ emission

Atmospheric measurements

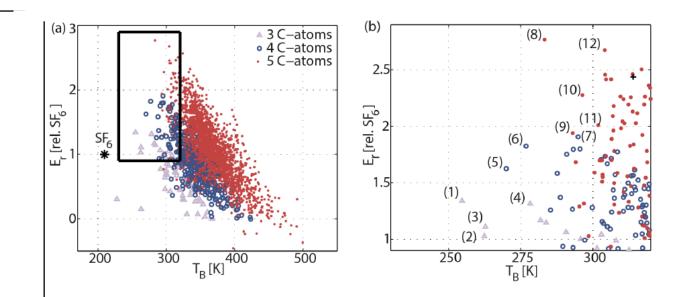
©ABB


February 6, 2020

- Measurements confirm an increase of the SF₆ concentration in the atmosphere
- The current global warming contribution due to SF₆ is 0.004 °C
- The electrical power industry is the largest contributor to the global SF_6 emissions
- ABB has been and continues to reduce the necessary amount of SF₆ in its high-voltage equipment and minimize SF₆ emission

Regulations on greenhouse gas emissions

IPCC target: Limit global climat change to < 2 °C by 2050



Potential SF₆ alternatives

Selection criteria for an insulation gas

Key requirements

- Very low global warming potential (GWP)
- Zero ozone depletion potential (ODP)
- Low toxicity
- Non-flammability
- Low boiling point
- High dielectric strength
- Arc quenching capabilities
- Stability and material compatibility

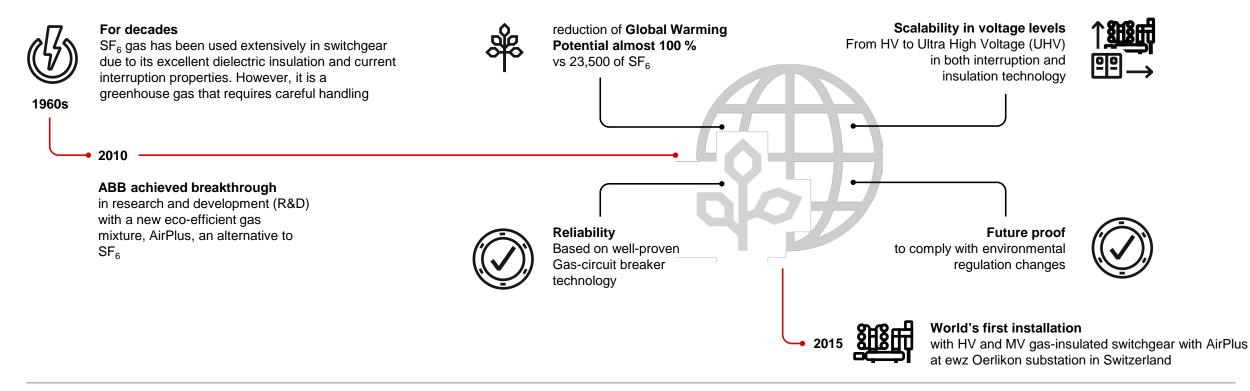
Global warming potential

Overview

Global warming is a gradual increase in world temperature caused by gases like carbon dioxide.

The Global warming potential (GWP) is a measure of how much heat a greenhouse gas traps in the atmosphere relative to carbon dioxide, which is standardized to 1.

Two main factors enter the calculation of the GWP:


- Lifetime of the molecule in the atmosphere
- Efficiency at which this molecule can absorb infrared radiation

GWP values IPCC AR5	Lifetime [years]	GWP
Carbon dioxide: CO ₂	-	1
Technical Air: N_2 and O_2	-	0
Fluoroketones: C5-FK mixtures	0.04	<1
Fluoronitriles: C4-FN mixtures	30	400 (pure: 2,100)
SF ₆ / N ₂ (30% / 70%) mixture	3,200	16,200
Sulphur hexafluoride: SF ₆	3,200	23,500

High voltage switchgear AirPlus™

Positioning

- AirPlus[™] is ABB's family of eco-efficient gas mixtures as an alternative to SF₆ for high-voltage (HV) products
- ABB's family of eco-efficient gases consists of components of air (O₂, N₂, CO₂) plus C5-Fluoroketones

World's first LTB 145 kV AirPlus[™] installation

Vattenfall, Sweden

Pilot installation:

- Energized successfully in March 2010
- One high-voltage 145 kV bay
- Application: Capacitor bank switching.
- Tested according IEC standards, the LTB Airplus[™] carried out about 100 breaking operations per year
- The pilot breaker performed flawlessly for 7 years until the substation has been decommissioned.

References

LTB / DCB 72.5 kV Airplus™ commercial installations since 2014

Total more than 100 units sold in:

- Sweden
- Norway
- Denmark
- South Africa
- New Zealand
- Australia

Application: Mostly replacements of old breaker

Tranås Energi, Sweden 2015 (4 units DCB LTB 72.5 kV)

LTB 145 kV Airplus™

Launched 2019 at Hannover Fair (Germany) and Elfack (Gothenburg, Sweden)

Eco-friendly alternative solution to SF₆

Performance data:

- 145 kV rated voltage
- 40 kA breaking current
- 3150 kA rated current
- -50/+40 °C ambient temperature
- Digital interface
- Close to 100 percent GWP reduction compared to conventional breakers
- Future-proof solution to comply with environmental regulation changes
- Based on well-proven ABB's high-voltage breaker technology

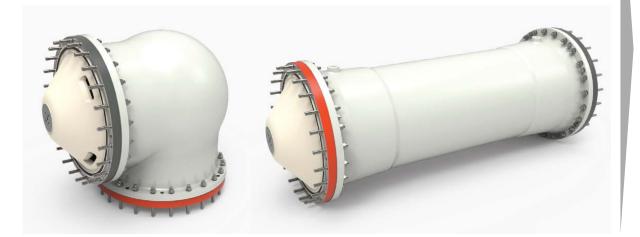
World's first GIS installation with AirPlus™

World's first GIS installation with AirPlus™

170 kV/24 kV Airplus[™] substation energized in August 2015

- 8 high-voltage GIS bays
- 50 medium-voltage GIS bays
- Supplying power to a district in the city of Zurich

Eco-efficient GIS for 420 kV


Next steps / outlook

420 kV components with AirPlus™

- AirPlus passive connecting components for 420 kV switchgear allow savings of up to 50 percent of the total SF₆ gas volume in a standard 420 kV GIS bay
- Reliable and safe operation under the same ambient temperature range from -25 up to +40 °C as SF₆

First eco-efficient GIS for 420 kV with AirPlus™

 - 380-kilovolt substation upgrade with eco-efficient gas-insulated switchgear for German utility TransnetBW¹⁾

