Doses from tritium

EU Seminar, November 2007

Doses from tritium

Effective dose

Dose coefficients for HTO and OBT

RBE, DDREF and w_R

OBT in Cardiff Bay fish

Use of effective dose

A protection device

Allows summation of doses from different radionuclides and external dose

Use for regulatory purposes for comparison with dose limits / constraints

Relates to stochastic effects only

→ total detriment of 7% Sv⁻¹ (6% in new recommendations)

Use of effective dose

Not individual specific

→ reference biokinetic and dosimetric models, and defined w_R and w_T values, are used to calculate reference dose coefficients for protection purposes

Use of effective dose

Not individual specific

→ reference biokinetic and dosimetric models, and defined w_R and w_T values, are used to calculate reference dose coefficients for protection purposes

Use of individual monitoring data

→ better assessment of intake / exposure for the calculation of effective dose to a reference person

Calculation of equivalent and effective dose

1. Absorbed dose in tissues / organs, Gy

2. Equivalent dose in tissues / organs, Sv

- Gy x
$$W_R$$

$$H_T = \sum_{R} w_R D_{T,R}$$

- 3. Effective dose, Sv
 - equivalent dose x w_T

$$E = \sum_{\mathsf{T}} w_{\mathsf{T}} \mathsf{H}_{\mathsf{T}}$$

Weighting factors

Equivalent dose in tissues / organs, Sv

 w_{R} 1 for low LET radiations

20 for α particles

Effective dose, Sv

 $w_{\rm T}$ 0.01 bone surface, skin

0.05 bladder, breast, liver, oesophagus, thyroid

remainder

0.12 bone marrow, colon, lung, stomach

0.2 gonads

Tissue weighting factors

Current 0.01		bone surface, skin
	0.05	bladder, breast, liver, oesophagus, thyroid, remainder
	0.12	bone marrow, colon, lung, stomach
	0.2	gonads
New	0.01	bone surface, skin, brain, salivary glands
	0.04	bladder, liver, oesophagus, thyroid
	0.08	gonads
	0.12	bone marrow, colon, lung, stomach, breast, remainder

Sex-specific detriment

Applying to ages from 0 - 85 at exposure

Overall detriment is about 40% greater in females than males

Differences include:

Colon x 0.4 in females cf. males

Liver x 0.5

Lung x 2.0

Thyroid x 4.3

Breast one-quarter of total detriment in females

Age-specific cancer risks - life-time attributable risk

Cases per 10⁶ exposed to a single dose of 10 mGy (BEIR VII)

Cancer site	Age at exposure, years					
	Males		Females			
	0	20	60	0	20	60
Breast	-	-	-	1171	429	31
Colon	336	173	94	220	114	62
Liver	61	30	14	28	14	7
Lung	314	149	89	733	346	201
Thyroid	115	21	0.3	634	113	1
Leukaemia	237	96	82	185	71	57
All cancers	2563	977	489	4777	1646	586

Dosimetric **phantoms**- MIRD and Voxel

Sex averaging in calculation of Effective Dose

Forms of tritium

Tritiated Water (HTO)

Organically-bound Tritium (OBT)

- Non-exchangeable binding of ³H to C atoms in organic molecules

Includes ³H in carbohydrates

lipids

proteins

nucleic acids

ICRP biokinetic assumptions

HTO, OBT ingestion, inhalation as vapour Absorption to blood = 100%

Uniform distribution in all body tissues

Two components of retention, corresponding to HTO (A) and OBT (B) in body tissues

		A,%	B,%
Intakes as	HTO	97	3
	OBT	50	50

ICRP biokinetic assumptions - retention half-times

Age	Half-time, d			
	Α	В		
3 months	3.0	8		
1 year	3.5	15		
5 years	4.6	19		
10 years	5.7	26		
15 years	7.9	32		
Adult	10.0	40		

ICRP tritium ingestion dose coefficients

Age	Committed effective dose Sv Bq ⁻¹ x 10 ¹¹	
	НТО	OBT
3 months	6.3	12
1 year	4.8	12
5 years	3.0	7.3
10 years	2.3	5.7
15 years	1.8	4.2
Adult	1.8	4.2

Proposed ICRP assumptions - occupational intakes

Dose coefficients and interpretation of bioassay

Taylor; Rad. Prot. Dosim. 105, 225; 2003

Intakes of HTO: 99% 10d, 0.98% 40d, 0.02% 350d

Dose coefficient: 1.7 x 10⁻¹¹ Sv Bq⁻¹

Comparative doses to adult members of the public

Radionuclide	Compara	Comparative doses		
	Ingestion	Inhalation		
Tritium (HTO)	1	1		
Carbon-14	30	30		
Strontium-90	1,600	1,300		
lodine-131	1,200	400		
Caesium-137	720	260		
Plutonium-239	14,000	2,800,000		

ICRP dose coefficients - fetus / infant

Ingestion during pregnancy and lactation

Radionuclide	Ratio of offspr Pregnancy	ing : adult dose Lactation
Tritium (HTO)	1.7	1.2
Phosphorus-32	10	0.7
Calcium-45	11	2.7
Strontium-90	1.5	0.6
lodine-131	1.1	2.4
Caesium-137	0.4	0.3
Polonium-210	0.1	0.4
Plutonium-239	0.04	0.0004

Uncertainties in data used in tritium dose coefficients

Harrison, Khursheed, Lambert; Rad. Prot. Dosim. 98, 299; 2002.

5 - 95% range for uncertainty on central values for population groups

Absorption to blood

Incorporation into OBT in body tissues

Retention half-times

Relative biological effectiveness (RBE)

Uncertainties in tritium dose coefficients

Probability Distributions on Ingestion Dose Coefficients for Adults, Sv Bq⁻¹ x 10¹¹

Form	rm Range, %			ICRP	
	5	50	95		
НТО	2.1	3.9	6.6	1.8	
OBT	3.9	8.7	20.0	4.2	
	Strictly, Gy Bq ⁻¹ x RBE				

In utero / germ cell sensitivity

HTO ingestion / 60Co gamma ray exposure of mice throughout pregnancy and 14d lactation - oocyte survival in offspring

DDREF and RBE

DDREF and RBE

DDREF, RBE and W_R

High tritium RBEs in systems with high DDREF

DDREF of 2 for cancer in humans implies RBE of ≤ 2

More complex treatment of W_R for low LET radiations?

- inconsistent with intended use of effective dose
- implies greater knowledge of risk at low doses than is justified?

OBT in Cardiff Bay fish

Whole body retention of tritium in rats after ingestion of freeze-dried flounder or HTO

Rat	dat	a
IXAL	uai	.Cl

HTO	0.97	3d	0.03	10d
Fish OBT	0.7	3d	0.3	25d

Human					Sv Bq ⁻¹ x 10 ¹¹
HTO	0.97	10d	0.03	40d	1.8
OBT	0.5	10d	0.5	40d	4.2
Fish OBT	0.7	10d	0.3	100d	6.1

Hodgson et al. J. Radiol. Prot. 25, 149; 2005

Conclusions

- Effective dose is a protection tool
- Metabolism of HTO understood
 OBT treated generically
- Uncertainties relatively small
- RBE ≤ DDREF?
- Specific OBT may differ from ICRP