

Development of industrial yeast strains for economically sustainable production of advanced biofuels

NovelYeast

KU Leuven Lab of Molecular Cell Biology

New Delhi 4 March 2020

Johan Thevelein

2G bioethanol and bio-chemicals production

1G and 2G bioethanol production

Biomass

Main challenges

- Efficient xylose fermentation
- High inhibitor tolerance

Demonstration plant in upstart

- Renasci NV: demonstration plant in harbor of Ostend, Belgium; fully operational in Q2 2020
- Recycling of Municipal Solid Waste: all fractions recycled/valorised; 120,000 ton/year

Fermentation unit in design

Organic fraction: mainly paper/cardboard (35,000 ton/year)

- $\rightarrow \pm 5$ million L ethanol/isobutanol
- Conversion to ethanol, established (fed-batch, partial SSF, 8-10% v/v)
- Conversion to isobutanol, 2G isobutanol strain under development

Isobutanol \rightarrow Isobutene \rightarrow + Glycerol (from biodiesel production) \rightarrow GTBE (Glycerol Tertiary Butyl Ether: valuable fuel additive for diesel and gasoline that improves engine performance and lowers harmful exhaust emissions) Isobutanol \rightarrow Biojetfuel

Demonstration plant

Efflux water/Exhaust gases \rightarrow cleaned \rightarrow Recycled in Plant

Fully integrated concept Major synergies

7 MW of energy

 \rightarrow ethanol distillation

Paper/cardboard fermentation unit

- \rightarrow isobutanol distillation (vacuum at low temperature)
- \rightarrow water purification by evaporation

Paper pulp

Cellulose + Hemicellulose : 55-60% (w/w) Lignin: 8-10% (w/v) Filler: 25% $CaCO_3$ Others: 3-5%

Sugar	Glucose	Xylose	Arabinose
Concentration (%w/v)	9.3	2.1	0.02

Fed-batch \rightarrow high solids loads

- A1: 25 % (w/v) solids with 2.32 g Cellic CTEC 3
- B1:27% (w/v) solids with 2.51 g Cellic CTEC 3
- C1: 30 % (w/v) solids with 2.79 g Cellic CTEC 3
- D1: 33 % (w/v) solids with 3.07 g Cellic CTEC 3

Partial Simultaneous Saccharification and Fermentation

DE4EVO24

Major challenge in 2G bioethanol production High cost of commercial enzyme cocktails

- Enzymatic hydrolysis of paper pulp
 → ±25 % of the cost of the ethanol
 - Enzymatic liquefaction at low solids load
 - Slow fed-batch to increase solids load
 - Switch to Simultaneous Saccharification and Fermentation

E2G yeast with secreted enzymes

- reduce enzyme requirement
- Holy grail: 'Consolidated bioprocessing' yeast: enzymatic hydrolysis + fermentation

Types of enzymes required

Cellulolytic enzymes:

- β-glucosidase (BGL)
- Endoglucanase (EG) ۲
- Cellobiohydrolase I (CBH I)
- Cellobiohydrolase II (CBH II)

Hemicellulolytic enzymes:

- **β-xylosidase (β-XYL)**
- Xylanase (XYN)

CLASSIC MODEL OF ENZYMATIC HEMICELLULOSE DEGRADATION

Consecutive integration of 4-5 copies of each gene

Fermentation performance of AC12 (6 enzymes)

Fermentation of YP with 2% glucose, 2% xylose, 2% cellobiose, 2% corncob xylan and 2% CMC at 35° C, initial pitching of 1 g DCW/L

- Monomeric substrates are utilized and converted to ethanol at the same rate with AC12 as with MD4
- Polymeric substrates are consumed by AC12
- CMC breakdown is very slow

Polygenic analysis platform for complex traits: pooled-segregant whole-genome sequence analysis

Acetic acid tolerance of fermentation

F1 segregants

F7 segregants

Known:

Haa1: transcription factor involved in acetic acid tolerance

New:

Cup2: homolog of Haa1 Dot5 Glo1 Vma7

HAA1*: unique mutation in acetic acid tolerant strain

Insertion of $G \rightarrow A$ mutation in HAA1 (2 alleles) of T18

2.5

 Time (h)

Α

2.5

1% Acetic acid

1.4% Acetic acid

Time (h)

Time (h)

Polygenic analysis of industrially important traits for 2G bioethanol production

- Xylose fermentation rate
- Acetic acid tolerance
- Furfural tolerance
- HMF tolerance
- Thermotolerance
- Low glycerol/high ethanol production

Portfolio of superior alleles for targeted industrial strain improvement

Industrial strains with high xylose fermentation capacity

Further improvement by evolutionary adaptation, genome shuffling, targeted genetic engineering with superior alleles, whole-genome transformation \rightarrow steady improvement of performance

Goal for commercial E2G production

> 80% of sugar in 48 h with 1 g DW yeast/L and > 5% (v/v) ethanol titer

Production of muconic acid with glucose as substrate

Conclusions

2G bioethanol and bio-chemicals production

➡ Further improvement for better performance in undetoxified lignocellulose hydrolysates → cheaper pretreatment technologies

Demonstration plant for paper pulp → ethanol/isobutanol/GTBE (Q3-4 2020/Q1-2 2021)

Strong 2G platform strain for secreted enzyme expression Reduction of enzyme load/cost → Partial Consolidated BioProcessing

Strong platform for cell factory strains to produce bio-based chemicals with lignocellulosic biomass

Thank you for your attention