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2G bioethanol and bio-chemicals production
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1G and 2G bioethanol production

1G YEAST

> e 1G Bioethanol

2G YEAST

> e 2G Bioethanol

* Biomass Main challenges

o Efficient xylose fermentation
e High inhibitor tolerance



Demonstration plant in upstart

* Renasci NV: demonstration plant in harbor of Ostend, Belgium; fully operational in Q2 2020

* Recycling of Municipal Solid Waste: all fractions recycled/valorised; 120,000 ton/year

Fermentation unit in design ¢
( L./
Organic fraction: mainly paper/cardboard (35,000 ton/year) ol (F /

- = 5 million L ethanol/isobutanol ~

« Conversion to ethanol, established (fed-batch, partial SSF, 8-10% v/v) _—— -

» Conversion to isobutanol, 2G isobutanol strain under development NovelYeast

Isobutanol - Isobutene - + Glycerol (from biodiesel production) > GTBE
(Glycerol Tertiary Butyl Ether: valuable fuel additive for diesel and gasoline
that improves engine performance and lowers harmful exhaust emissions)

Isobutanol - Biojetfuel

EU-project
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Demonstration plant

/ Upcycled plastics: PET, HDPE/PP

Recyclable

Z

— Metals, glass, textiles, rubber

Waste

Plastics = Nafta, diesel, chemicals

~

Non-recyclable

Organics: paper/cardboard - Biofuels

—
§j Residues = Inerts = building materials

Residues - Energy/Heat - Power for Plant

Efflux water/Exhaust gases - cleaned - Recycled in Plant

Fully integrated concept s Major synergies

7 MW of energy

Paper/cardboard - ethanol distillation

fermentation unit =2 isobutanol distillation (vacuum at low temperature)
—> water purification by evaporation



Paper pulp

Cellulose + Hemicellulose : 55-60% (w/w)
Lignin: 8-10% (w/v)
Filler: 25% CaCO,
Others: 3-5%

Sugar Glucose Xylose Arabinose
Concentration 9.3 2.1 0.02
(Yowlv)

Fed-batch = high solids loads

Al: 25 % (wlv) solids with 2.32 g Cellic CTEC 3
B1l: 27 % (w/v) solids with 2.51 g Cellic CTEC 3
C1: 30 % (w/v) solids with 2.79 g Cellic CTEC 3
D1: 33 % (w/v) solids with 3.07 g Cellic CTEC 3



Partial Simultaneous Saccharification and Fermentation

Enzymatic liquefaction/SSF DE4EVO24

=Y
o

Saccharification condition (55° C)

Concentration %(w/v)
O L N W » 01 O N O ©

18H 12.89 62.44

Time (h)

Fermentation condition (35° C)
—e—Glucose —e—Xylose —e—Ethanol

26H 13.217 64.00

36H 13.623 65.97 Time Ethanol Yield
(h) produced (%)

48H 16.993 82.29 % (v/v)

60H 18.103 87.66 42 9.1 78.0

24H 18.536 89.76 56 9.0 75.4
72 9.6 76.0

9oH 19.489 94.37



Major challenge in 2G bioethanol production
High cost of commercial enzyme cocktails

e Enzymatic hydrolysis of paper pulp
- £25 % of the cost of the ethanol

- . Enzymatic liquefaction at low solids load
e Slow fed-batch to increase solids load
e Switch to Simultaneous Saccharification and

Fermentation

‘ E2G yeast with secreted enzymes
- reduce enzyme requirement
- Holy grail: ‘Consolidated bioprocessing’
yeast: enzymatic hydrolysis + fermentation



Types of enzymes required

_ CLASSIC MODEL OF ENZYMATIC CELLULOSE DEGRADATION
Cellulolytic enzymes: @:‘é

« PB-glucosidase (BGL
g ( ) CBH Il @ EG%\- Cellulose @

« Endoglucanase (EG NS
0 (EC) QOO HT0 wn‘vooooo
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. Cellobiohydrolase | (CBH I) UR0202030265 020 "" ‘“"s" CHOCO0 Ox
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- Cellobiohydrolase Il (CBH II) ....... ‘QQQ.Q. R

L—Crystalline region — L——Amorphous region—J  L— Crystalline region—

O o-glucose  NR, nonreducing cellulose end 'CBH Il Exo-B-1,4-glucanase  |EG| Endo-B-1,4-glucanase
Hemicellulo |yt| C enzymes: OrO Cellobiose " "educing cellulose end acting on the NRend oy Exo-B-1,4-glucanase

\B-G| B-glucosidase acting on the R end
« B-xylosidase (B-XYL)

@ CLASSIC MODEL OF ENZYMATIC HEMICELLULOSE DEGRADATION
Xylanase (XYN) BXYL\ . @
\
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Consecutive integration of 4-5 copies of each gene

0.04-

\/ - Industrial xylose-fermenting inhibitor-tolerant S. cerevisiae strain I
MD4 | -4n-5n; aneuploid for some chromosomes 0.03-

<

- Genomic integration of B-glucosidase (BGL) of Trichoderma reesei at 1S2.1 in Chrll
AC1 | - Capacity for cellobiose hydrolysis

S

1
—
|_|

FPU (U/g DCW)
(—

\/ - Genomic integration of B-xylosidase (BXL) of Aspergillus niger at IS7.1 in ChrVII
AC6 | - Capacity for xylobiose hydrolysis 0.01-
\/ - Genomic integration of xylanase (XYL) of Aspergillus niger at 1S16.1 in ChrXVI |J-‘
- Capacity for breakdown of corncob and beechwood xylan
Al : - ’ 0.00 1 1 1 1 1 1 1 1
- Genomic integration of endoglucanase (EG) of Aspergillus oryzae at 1816.2 in ChrXVI @ vy YW Y'O VC Y,O

- Capacity for hydrolysis of amorphous regions of cellulose ‘

- Genomic integration of cellobiohydrolase I (CBHII) of Chrysosporium lucknowense at 1S4.2 in ChrIV
- Capacity for hydrolysis of non-reducing ends of cellulose

- Genomic integration of cellobiohydrolase I (CBHI) of Talaromyces emersonii at 1S4.1 in ChrIV
- Capacity for hydrolysis of reducing ends of cellulose; complete breakdown of cellulose

- Genomic integration of acetylxylan esterase/xylanase (AXE) of Clostridium cellulovorans at 1S16.3 in ChrXVI
- Improved breakdown of corncob xylan

v



Fermentation performance of AC12 (6 enzymes)

 Fermentation of YP with 2% glucose, 2% xylose, 2% cellobiose, 2%
corncob xylan and 2% CMC at 35° C, initial pitching of 1 g DCW/L
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» Monomeric substrates are utilized and converted to ethanol at the
same rate with AC12 as with MD4

» Polymeric substrates are consumed by AC12
« CMC breakdown is very slow 1



Polygenic analysis platform for complex traits:
pooled-segregant whole-genome segquence analysis

superior haploid  inferior haploid Diploid strain with Screen of S. cerevisiae

- X - superior trait S strain collection

Industrial diploid strain
diploid c s . .

with inferior trait

sporulation
S o] -
"-. ol — » : : F1 superior haploids
- -E Y min. == 30 segr.
F1 haploid segregants @
Pooled

U

Extraction of genomic DNA

2 parent strains —)> Whole-genome sequence analysis = QTL mapping

(lumina) (Quantitative
Trait Locus)



Acetic acid tolerance of fermentation

F1 segregants

F7 segregants

Known:

Haal: transcription factor
involved in acetic acid
tolerance

New:

Cup2: homolog of Haal
Dot5

Glol

Vma7

HAA1* : unique
mutation in acetic
acid tolerant strain




Insertion of G = A mutation in HAA1 (2 alleles) of T18

A 2.5 B 2.5

O T18

CO, production (%)
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Polygenic analysis of industrially important traits
for 2G bioethanol production

« Xylose fermentation rate

e Acetic acid tolerance

e Furfural tolerance

e HMF tolerance

« Thermotolerance

* Low glycerol/high ethanol production

‘ Portfolio of superior alleles for targeted
Industrial strain improvement



Industrial strains with high xylose fermentation capacity

Further improvement by evolutionary adaptation, genome shuffling, targeted
genetic engineering with superior alleles, whole-genome transformation
— steady improvement of performance

6

5- Semi-anaerobic static
. lucose
2 J ethanol fermentation in bagasse
= )y ——
S \ / hydrolysate
I Z=
® 3- /
= \
c y
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O O

xylose
1_
0 — —
0 24 48 72
Time (h)

‘ Goal for commercial E2G production
> 80% of sugar in 48 h with 1 g DW yeast/L and > 5% (v/v) ethanol titer



Production of muconic acid with glucose as substrate

Muconic Acid pathway
Glucose ——----- » PCA —— Catechol — Muconic acid
2000+ PCA 2000-

Muconic acid

mg/L

500~

‘ Muconic acid (2 — 2.5 g/L) toxicity limits muconic acid production

mm) [n situ removal of muconic acid during fermentation essential
‘ Appropriate solvent recently identified



Conclusions

2G bioethanol and bio-chemicals production

‘ Efficient industrial yeast strains for second-generation bioethanol production
available: xylose utilization + high inhibitor tolerance

‘ Further improvement for better performance in undetoxified lignocellulose
hydrolysates = cheaper pretreatment technologies

Demonstration plant for paper pulp = ethanol/isobutanol/GTBE
(Q3-4 2020/Q1-2 2021)

‘ Strong 2G platform strain for secreted enzyme expression
Reduction of enzyme load/cost = Partial Consolidated BioProcessing

‘ Strong platform for cell factory strains to produce bio-based chemicals with
lignocellulosic biomass



Thank you for your
attention
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