Research needs, requirements for good quality studies and challenges; policy implications

Dr Ausrele Kesminiene, Deputy Head Section of Environment and Radiation

International Agency for Research on Cancer Lyon, France

EU scientific seminar, Luxembourg, 19 November 2013

summary of evidence and limitations

- From 1956 to present epidemiological studies linked diagnostic x-rays with cancer increase in patients:
 - in utero exposure continued debate whether 10 mGy could give rise to cancer; additional follow up is needed
 - Children ambivalent results perhaps due to some methodological limitations and not sufficiently long followup to assess risks in adulthood; new CT studies are trying to address limitations in dosimetry
 - Adults dose response associations with breast cancer, limited evidence for CML, limited number of studies, small size; no studies on newer technologies (e.g. CT)
 - Imaging healthy patients (screening) need for careful assessment since most of the screened patients will not develop the disease of interest: benefit vs. risk approach

summary of evidence and limitations (2)

- Dose response for cancer risks associated with radiotherapy is similar to A bomb survivors but the ERR/Gy is lower likely due to cell killing; complete information on competing treatment modalities is not always available; pooling of existing cohorts in Europe, particularly childhood cancer survivors, would be desirable to address exposure in childhood issue
- For newer treatment modalities (e.g. proton therapy, IMRT) – patients' registries are needed for setting up studies in the future
- Genetically susceptible populations with radiation sensitivity

 populations are small, it is essential that future studies
 are large in size to adequately address variation in
 demographic factors and include high-quality radiation
 exposure information

requirements for good radiation studies and challenges

- Large populations (e.g. children with CT scans)
- Non-differential and sufficiently long follow-up through disease registries (cancer and non-cancer)
- Good dosimetry (complete information on all diagnostic procedures = registry/patient's dose passport would be helpful)
- Information of confounding factors (e.g. indication for diagnostic procedure, etc.- not always available)
- Good quality of diagnosis
- Multidisciplinary approach to elucidate mechanisms behind the low does radiation effects

EPI-CT study: overall design

Slide courtesy of L. Krille

1. cohort study

2.: dosimetry study (individual organ doses) and optimization strategies

http://epi-ct.iarc.fr/

EPI-CT

3.: biological pilot study

International Agency for Research on Cancer

future plans and lessons learned

- Need for assessment of uncertainties in doses and their impact on risk estimates
- Coordination with ongoing and planned studies outside Europe – future pooling envisaged
- Development of a user-friendly tool for evaluating organ dose from paediatric CT, in collaboration with the US NCI
- Contribution to dose optimization strategies
- Full scale study of biomarkers of radiation sensitivity
- Continuous follow-up (subject to funding):
 After EPI-CT results on childhood leukaemia and all cancers become available in 2016, plans for studying other outcomes (meningiomas, cataracts, cardiovascular disorders, school performance...)