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Expanded simple tandem 

repeat (ESTR) loci 

= microsatellite loci  

ESTR mutation rates were evaluated in the germline of: 

 irradiated F0 males = mutation induction 

 non-exposed F1 offspring = transgenerational instability 

From: Dubrova et al., 2000, Nature 405, 37 

Let’s go transgenerational… 



Transgenerational germline instability in the F1 offspring of 

CBA/H male mice exposed to 0.5 Gy of fission neutrons 

5.6-fold 

4.5-fold 

The non-exposed offspring of  

irradiated parents are unstable 



Is transgenerational instability 

strain-specific? 
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CBA/H 

BALB/c 

C57BL/6J 

Fission neutrons, 0.4 Gy: CBA/H; C57BL/6 

Acute X-rays, 2 Gy:         CBA/H 

Acute X-rays, 1 Gy:         BALB/c 

From: Barber et al., 2002, PNAS 99, 6877-82 



Transgenerational instability in three inbred mouse strains 

C57BL CBA/H BALB/c
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ESTR mutation rates are elevated in 

both generations of all inbred strains 

From: Barber et al., 2002, PNAS 99, 6877-82 



Is transgenerational instability 

tissue-specific? 



Transgenerational instability in the germline & somatic tissues 

BALB/c 

CBA/Ca 

From: Barber et al., 2006, Oncogene 25, 7336-42; 2009, Mutat Res 664, 6-12 

ESTR mutation rates are equally elevated 

in the germline & somatic tissues 

Early developmental onset of instability 



Is transgenerational instability 

specific for tandem repeat loci? 



CBA/Ca BALB/c
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Transgenerational instability 

at the mouse hprt locus 

Chromosome aberrations in the 

F1 offspring of irradiated rats 

From: Barber et al., 2006, Oncogene 25, 7336-42 From: Vorobtsova, 2000, Mutagenesis 15, 33-38 

hprt is X-linked gene  

♂ ♀ 

♂ ♂ ♀ ♀ 

XY XX 

XY XY 

A genome-wide destabilisation 



Is transgenerational instability 

sex-specific? 



The offspring of irradiated females are stable 

Irradiated in utero  Adult irradiation 

From: Barber et al., 2009, Mutat Res 664, 6-12;  

Abouzeid Ali  et al., 2012, Mutat Res 732, 21-5 



Can paternal exposure to chemical mutagens  

destabilise the F1 genomes? 



Anticancer drug cyclophosphamide, CPP 

alkylated monoadducts & crosslinks 

results in base substitutions 

crosslinks can result in DSBs after replication/repair 

Alkylating agent ethynitoesurea, ENU 

mostly base damage 

results in base substitutions 

~ no ENU-induced DSBs 

Anticancer drug mitomycin C, MMC 

alkylated monoadducts & crosslinks 

base substitutions  

crosslinks can result in DSBs 

Anticancer drug procarbazine, PCH 

alkylated monoadducts 

free radical species 

base substitutions & SSBs  



ESTR instability in the F1 offspring of mutagen-treated male mice 

sperm 

bone marrow 

Instability signal is initiated by 

a generalised DNA damage  

From: Barber et al., 2002, PNAS 99, 6877-82 

Dubrova et al., 2008, Environ Mol Mutagen 49, 308-11 

Glen, Dubrova 2012, PNAS 109, 2984 



Mechanisms 



♂ 

Transmission of an epigenetic 

instability signal to the 

offspring & its manifestation 

F1 

♂ 

F0 

Initiation of an epigenetic 

instability signal in the directly 

exposed male germ cells 



Endogenous DNA damage in controls 

& the F1 offspring of irradiated males 
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2.3-fold 

1.7-fold 

Single-strand DNA breaks 

Comet assay, bone marrow 

Double-strand DNA breaks 

γ-H2AX assay, spleen 

From: Barber et al., 2006, Oncogene 25, 7336-42 



DNA repair in the F1 offspring of irradiated males 
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The efficiency of DNA repair in 

the offspring is not compromised 

From: Barber et al., 2006, Oncogene 25, 7336-42 



Oxidative stress 
 

DNA damage: 

 modified bases 

 single-strand breaks 

 double-strand breaks 

 

Hallmark: 

Accumulation of  

oxidatively damaged  

nucleotides in DNA 

 The efficiency of DNA in the F1 offspring is OK 

 No sign of oxidative stress in the F1 offspring 

 What else? 

CBA/Ca BALB/c
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Oxidative DNA damage in the F1 offspring (FPG Comet) 

From: Barber et al., 2006, Oncogene 25, 7336-42 
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The effects of paternal irradiation on F1 gene expression  
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GO categories: 

GO:0048511 Rhythmic process, 6 genes P = 1.25 x 10-9 

GO:0007623 Circadian rhythm, 5 genes P = 1.52 x 10-7 

GO:0006355 Regulation of transcription, P = 1.62 x 10-6 

       DNA-dependent, 11 genes From: Gomes et al., Mutat Res 787, 33-37 



Circadian trascriptome & circadian metabolism in mice 

Circadian transcriptional regulators in liver Circadian transcripts  

in mouse liver 

Among them those involved in: 

 DNA replication, recombination & repair 

 cell division & cell death 

From: Koike et al., 2012, Science 338, 349; Akhtar et al., 2002, Curr Biol 12, 540;  

           Maywood et al., 2007, Cold Spring Harb Symp Quant Biol 72, 85            



And what is transmitted? 



From: Taudt et al., 2016, Nat Rev Genet 17, 319-332 

What can we expect to find? 



Spermatogenesis in mice & humans 

Diploid spermatogonia 

Meiotic primary spermatocytes 

Meiotic secondary spermatocytes 

Post-meiotic spermatids 

Sperm cells 

Transcription 

X 
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Sperm 

♂ ♀ 

Instability? 

Adult 



3 weeks 

Spermatids 

♀ ♂ 

Instability? 

Adult 



6 weeks 

Spermatogonia 

♀ ♂ 

Instability? 

Adult 



Primordial stem cells 

♀ ♂ 

Instability? 

in utero 
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From: Barber et al., 2002, PNAS 99, 6877-82; 2006, Oncogene 25, 7336-42; 

           2009, Mutat Res 664, 6-12; Hatch et al., 2007, Oncogene, 26, 4720-4           

Transgenerational effects manifest 

in the offspring regardless 

the stage of paternal irradiation 



Potential transgenerational mechanisms involving sperm RNAs 

Extacellular vesicles, Evs may be regarded as  

the transgenerational messenger 

From: Chen et al., 2016, Nat Rev Genet 17, 733-743 



And so what? 



Transgenerational effects in the children of irradiated parents 

Childhood cancer survivors 

survivors 

partners 

children 

Stable? 

Stable? 

control families 

irradiated families 

Chernobyl clean-up workers 

Unstable? 

From: Tawn et al., 2005, Mutat Res 523, 198-206; Aghajanyan & Suskov, 2009, Mutat Res 523, 52-7 



♂ ♀ 

Sperm, brain, bone marrow 

Experiment one: 

Male mice exposed to 

10 – 100 cGy acute γ-rays 

or 100 cGy chronic γ-rays 

Experiment two: 

Male mice exposed to 

clinically-relevant doses 

of 3 anticancer drugs: 

Cyclophosphamide 

Mitomycin C 

Procarbazine 

From mice to humans.... 



From: Mughal et al., 2012, PLoS ONE 7, e41300 

Paternal exposure to acute & chronic γ-rays 
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Paternal exposure to anticancer drugs 

From: Glen & Dubrova, 2012, PNAS 109, 2984 

Dose per single 

radiotherapy  

procedure 

Doses per single chemotherapy procedure 

Instability may not exist among the 

children of irradiated cancer patients 

The children of cancer patients 

treated by these drugs may be unstable 



Conclusions 

 High-dose acute paternal exposure to a number of mutagens can significantly    

    destabilise the genomes of their offspring 

 Transgenerational instability is a genome-wide phenomenon which affects the  

    frequency of chromosome aberrations and gene mutations 

 Transgenerational instability is triggered in the directly exposed germ cells by a  

    stress-like response to a generalised DNA damage 

 Transgenerational instability is attributed to the presence of a persistent subset of     

    endogenous DNA lesions 

 Transgenerational instability is attributed to the epigenetic changes affecting the  

    expression of a subset of genes, involved in rhythmic process & regulation of    

    transcription  

 Transgenerational instability may represent an important component of the 

     long-term genetic risk of human exposure to mutagens, but we need  

     HUMAN data to prove it! 
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