

Biomass to Aviation Fuel

B2A

Kumar R Rout^{1,2} De Chen¹

¹Norwegian University of Science and Technology, Norway ²SINTEF Industry, Norway

Renewable inclusion in aviation transport fuel

Aviation transport is irreplaceable for long distance travel

Renewable H₂ produced fired fuel cell

- size of hydrogen tanks
- weight of the plane

Renewable produced Electric battery

• feasible for short distance travel

Nuclear fired airplane/ US air force

- Acute radiation syndrome
- safety, crush
- acceptance

Liquids transport fuels (C_8-C_{16})

- Most reliable and sustainable
- Currently >90 % from Fossil sources
- Advanced biofuels

(conversion of used vegetable oil)

Patented **B2A** by NTNU/SINTEF

PCT/EP2020/050929, GB1900553.7

B2A mini-pilot plant specification

- Depending on the requirements, the pilot plant could work only with FHP and HDO reactors in dual/serial mode or just in serial mode.
- Solid biomass will be stored (up to 2 kg) in a 12 L hopper and then introduced at the top of the reactor under gravity through a screw feeder. Feed rate is covered from 90 to 800 g/h for biomass.
- The FHP reactor is a tubular type with approximate dimensions of 1.5" ID 600 mm length and can operate maximum 600C.
- This HDO reactor is a tubular type with approximate dimensions of 1.0" ID 600 mm length and can operate maximum 400C.
- The whole pilot plant can operate up to 20 bar pressure.
- The pilot plant has liquid level control unit, hence this system helps to study the catalyst activity as function of time.
- The pilot unit measures biogas and biofuel with time, so that carbon balance can be done in order to optimize the biochar/biofuel production.