

Technology factsheet: Competitiveness of clean energy technology – Direct Solar Fuels

Key emerging technologies and uses

While demonstration projects already exist, this technology is not yet available commercially, with the exception of some pilot projects.

Technological Readiness Level (TRL) 3-5: Photosynthetic devices; Solar microbial cell factories; solar-thermochemical conversion; sustainable ammonia (electrochemical and plasma-assisted ammonia synthesis, solar microbial cell factories); direct electro-reduction of CO₂; direct solar-thermochemical conversion of water and CO₂

TRL 6-7: Two stage electrochemical water splitting; thermoelectric conversion

December 2023

TRL 8-9: Advanced electrolysis

Key facts

Fact 1

Solar fuel technologies are still at a relatively early stage of development, and no commercial systems are available. Solar fuels, and more generally "sunlight-to-X" technologies, are an emerging class of sustainable alternative fuels and chemicals that are set to play an important long-term role in all net-zero carbon scenarios for the energy system.

Fact 2

Laboratory solar-to-hydrogen (STH) efficiency of solar-to-hydrogen photoelectrochemical devices is 10 to 15%. This value would need to increase to near the 22% theoretical limit.

Fact 3

The SUNERGY initiative on fossil-free fuels and chemicals brings together 300+ stakeholders from academia, industry, public institutions, and civil society in Europe and provides a strategic lead on planning research and innovation activities. The project's overnight investment costs will decrease significantly in the coming decade. By 2035, a decrease of around 60% is foreseen for gaseous synfuels and about 65% for liquid synfuels compared to 2020.

Scan QR code for more information on direct solar fuels

