Annex 2

Slovak Report on winter wheat regarding Article 19(2) of Directive 2009/28/EC on the promotion of the use of energy from renewable sources

1 NUTS CLASSIFICATION OF THE SLOVAK REPUBLIC

In the Slovak Republic there are defined the following NUTS regions:

NUTS 1 - Slovak republic

NUTS 2 - aggregated regions (4)

NUTS 3 - regions (8)

NUTS 4 - districts (79)

NUTS 5 - municipalities (2 922)

NUTS 2 regions are represented by 4 combined regions: Bratislava, West Slovakia, Central Slovakia and East Slovakia. Spatial distribution of NUTS2 regions are provided in Fig. 1. Individual NUTS2 regions consist of following NUTS3 regions:

- Bratislava - Bratislava;

- West Slovakia – embracing the territory of Trnava, Trenčín and Nitra;

- Central Slovakia - embracing the territory of Žilina and Banská Bystrica;

- East Slovakia - embracing the territory of Prešov and Košice.

Table 1 Slovak NUTS area classification

NUTS 1	NUTS 2	NUTS 2	NUTS 3	NUTS3
	name	codes	name	codes
	Bratislava	SK01	Bratislava region	SK01
	West Slovekie		Trnava region	SK021
Slovak Republic SK0	WESt Slovakia	SK02	Trenčín region	SK022
			Nitra region	SK023
	Central	SV02	Žilina region	SK031
	Slovakia	SK05	Banská Bystrica region	SK032
	Fast Slovakia	SK04	Prešov region	SK041
	East Slovakia SK04		Košice region	SK042

Fig. 1 Allocation of NUTS 2 regions within Slovakia Territory

2 SOIL TYPES WITHIN AGRICULTURAL LAND

According to WRB 2006 within agricultural land are classified the following soil types groups:

- 1. Chernozems and Phaeozems
- 2. Luvisols
- 3. Eutric Cambisols
- 4. Dystric Cambisols
- 5. Albic Luvisols and Stagnosols and Planosols
- 6. Arenosols
- 7. Gleyic Chernozems and Gleyic Phaeozems
- 8. Fluvisols
- 9. Gleysols
- 10. Calcaric Cambisols and Rendzic Phaeozems
- 11. Podzols
- 12. Solonetz and Solonchacks
- 13. Leptosols
- 14. Anthrosols and Technosols

Table 2 Distribution of son types groups within aggregated regions (76)					
NUTS2 SK	SK01	SK02	SK03	SK04	
Cernozems and Phaeozems	24,9	35,6	0,3	1,3	
Luvisols	12,4	21,7	10,9	3,6	
Eutric Cambisols	4,0	8,6	36,3	33,4	
Dystric Cambisols	4,2	0,5	8,9	4,7	
Albic Luvisols and Stagnosols and Planosols	0,1	3,9	13,3	13,7	
Arenosols	12,7	1,5	0,0	0,7	
Gleyic Chernozems and Gleyic Phaeozems	18,9	7,7	1,5	2,1	
Fluvisols	16,4	13,9	10,0	18,8	
Gleysols	3,1	0,7	1,5	4,3	
Calcaric Cambisols and Rendzic Phaeozems	1,0	3,7	5,8	3,3	
Podzols	0,0	0,0	0,4	0,0	
Solonetz and Solonchacks	0,0	0,1	0,0	0,1	
Leptosols	0,1	1,9	10,9	14,0	
Anthrosols and Technosols	2,2	0,2	0,0	0,0	

Table 2 Distribution of soil types groups within aggregated regions (%)

3 CALCULATION OF EMISSIONS FROM CULTIVATION

$e_{ec} = e_{FERT} + e_{PPP} + e_{SEEDS} + e_{N2O} + e_{FUEL}$

 $\mathbf{e}_{\mathbf{FERT}}$ – emissions from production of fertilisers

e_{PPP} – emissions from application of plant protection products

 $\mathbf{e}_{\mathbf{SEEDS}}$ – emissions from seeds

 \mathbf{e}_{N2O} – direct and indirect emissions N2O according to IPCC 2006 Guidelines

 $\mathbf{e}_{\mathbf{FUEL}}$ – emissions from fossil fuel consumption

 $\mathbf{e}_{\mathbf{DRY}}$ – emissions from energy consumption for grain drying

Each item was calculated to kgCO2eq/ha.

In the end of the calculation there are the values converted to gCO2eq/MJ fuel. Calculation of particular items see below.

Input data

- <u>Average yields</u>

Average crop yields of the winter wheat at NUTS 2 level for years 2005 - 2009 (see Tab 5) were calculated as weighted averages of yields available at NUTS 3 level. Statistic data that were basis for the calculation were provided by the Central Control and Testing Institute for Agriculture, Bratislava.

- <u>Emission factors</u> - see table 3

Table 3 Emission factors

	Emission factor kgCO ₂ eq/kg	Source	
N fertilisers	6,065		
P ₂ O ₅ fertilisers	1,018	JEC 2007	
K ₂ O fertilisers	0,584		
Plant protection	10.97	BioGrace	
products	10,97		
Winter wheat seeds	0,2759	BioGrace	
Diesel	3,757	JEC 2007	
Natural gas	0,055	SPP*	

*SPP-Slovak Gas Industry

- <u>Biofuel yield</u> – see table 4

Table 4 Biofuel yield from winter wheat for production of bioethanol and allocation ratio for their production

Crop	Products	Average biofuel yield	Allocation ratio for biofuel based on energy content
Winter wheat	Bioethanol	3,3 kg winter wheat to 1 kg bioethanol	64 %

3.1 EMISSIONS FROM THE PRODUCTION OF FERTILIZERS E_{FERT}

Emissions form production of fertilisers was calculated by following equation: e_{FERT} (kgCO2eq/ha) = amount of fertiliser (kg/ha) x emission factor (kg CO₂eq/kg nutrient)

Nutrient off-take by average yield (see Table 5) is calculated for average crop yields in period 2005-2009. Application of fertilizers (N, P_2O_5 , K_2O) on yield unit is calculated as average value in period 2005-2009 (data from The Central Control and Testing Institute for Agriculture, Bratislava and Ministry of Agriculture SR).

	Yields	Average	application rat	e of fertilisers	kg/ha
NUTS2	kg/ha	Ν	P_2O_5	K ₂ O	Total
Winter wheat					
SK01	4084	95,43	18,51	19,51	133,45
SK02	4340	98,85	18,86	15,94	133,65
SK03	3590	81,23	12,53	10,23	103,99
SK04	3380	79,26	11,30	7,98	98,54

Table 5 Average nutrient off-take by yield of selected crops (kg/ha)

Emission factors from fertilizers are as follows:

N fertilisers	6065 g CO _{2eq} /kg N,	
P ₂ O ₅ fertilisers	1018 g CO _{2eq} /kg P2O5,	
K ₂ O fertilisers	584 g CO_2 eq/kg K_2O	(JEC, 2007)

Table 6 Emissions from fertiliser production

NUTS2	Emissions (CO _{2 eq} /kg per ha of nutrient)			Total
	Ν	P_2O_5	K ₂ O	kgCO _{2eq} /ha
Winter wheat				
SK01	578,78	18,84	11,39	609,02
SK02	599,53	19,20	9,31	628,03
SK03	492,66	12,76	5,97	511,39
SK04	480,71	11,50	4,66	496,88

3.2 EMISSIONS FROM PLANT PROTECTION PRODUCTS E_{PPP}

Emissions from plant protection products were calculated by following equation:

e_{PPP} (kgCO_{2eq}/ha) = amount of PPP (kg/ha) x emission factor (kgCO_{2eq}/kg)

The input of plant protection products (PPP) per area unit was calculated as an average value in 2005/2006-2008/2009 for the whole Slovak Republic (data from The Central Control and Testing Institute for Agriculture, Bratislava).

Table 7 Emissions from plant protection products

	Plant protection products			
NUTS2	Input kg/ha	Emission factor kgCO _{2eq} /kg nutrient (BioGrace)	Emissions gCO _{2eq} /ha	
Winter whea	at			
SK01-SK04	1,09	10,97	11,96	

3.3 EMISSIONS FROM SEEDS ESEEDS

Emissions from seeds were calculated by following equation:

e_{SEEDS} (kgCO_{2eq}/ha) = amount seeds (kg/ha) x emission factor (kgCO_{2eq}/kg seeds).

Seed rates for the selected crops: winter wheat 130 kg/ha

Emission factor from seeds is not watched in Slovakia. For the calculation we used the factors from BioGrace model:

winter wheat == $0,2759 \text{ kgCO}_{2eq}/\text{kg seeds}$ (BioGrace)

Table 8 Emissions from se	eeds	
NUTS2	Seed rate kg/ha	Emissio kgCO _{2ec}

NUTS2	Seed rate kg/ha	Emission factor kgCO _{2eq} /kg seeds	Emissions kgCO _{2eq} /ha
Winter wheat			
SK01	130	0,2759	35,867
SK02	130	0,2759	35,867
SK03	130	0,2759	35,867
SK04	130	0,2759	35,867

3.4 **EMISSIONS N₂O**

N₂O emissions were calculated according to the formula (IPCC 2006 Guideline):

N_2O emisions = $eN_2O_{DIRECT} + e N_2O_{INDIRECT}$

Table 9 Factors used for the calculation of direct and indirect N₂O emissions

Factor	Unit	Value	Source
EF_1 (direct) N_2O	kg N2O-N/kgN utilised	0.01 (0.003–0.03)	IPCC, 2006
EF ₄ (indirect N ₂ O resulting from volatiliza- tion and redeposition)	kg N2O-N/kg(NH3- N+NOx-N)	0.01 (0.002–0.05)	IPCC, 2006
EF ₅ (indirect in the result of leaching/runoff)	kg N2O–N/kg N leaked	0.0075 (0.0005-0.025)	IPCC, 2006
FRACGASF (N fraction, evaporating in the form of NH_3 and NO_x)	kg (NH3-N+NOx- N)/kgN utilised	0.1 (0.03–0,3)	IPCC, 2006
FRACLEACH (N fraction lost due to leakage)	kg N lost/kg N utilised	0.3 (0.1–0.8)	IPCC, 2006

The conversion from N₂O-N emissions to N₂O emissions were calculated according to the formula (IPCC 2006 Guideline):

$N_2O = N_2O - N \times 44/28$

Following values of different GHG were used to their conversion to gCO_{2eq} (Directive 2009/28/ES, Annex V, C.)

Table 10

Gas	Value after conversion to gCO _{2eq}
1 gCO_2	1 gCO _{2eq}
1 gCH ₄	25 gCO _{2eq}
1 gN ₂ O	296 gCO2 _{eq}

DIRECT EMISSIONS N2ODIRECT

Direct N2O emissions were calculated according to the formula (IPCC 2006 Guideline):

N_2O_{DIRECT} (kgCO2eq/ha) = (F_{SN} + F_{CR}) x EF₁ x 44/28

 F_{SN} = annual amount of synthetic fertiliser N applied to soils, kg N yr⁻¹

 F_{CR} = amount of N in crop residues (above- and below-ground), including N-fixing crops, and from forage/pasture renewal, returned to soils annually in regions where leaching/runoff occurs, kg N yr⁻¹

N₂O loses from applied N-fertilizers are assumed to be 1% of applied rate (IPPC, 2006).

Table 11 Direct N_2O emissions from applied N-fertilizers and from crop residues (yield by-product (*above ground*) + root residues (*below ground*))

NUTS 2	Average yield	Fertilizer N consumption	N2O-N losesN2O-N loses fromfromcrop residuesfertilizers(above + below ground)		N ₂ O loses total	N ₂ O emissions	
	(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)	(kg/ha)	kg CO _{2eq/ha}	
Winter [•]	wheat						
SK01	4084	95,43	0,95	0,23	1,85	548,87	
SK02	4340	98,85	0,98	0,24	1,92	567,47	
SK03	3590	81,23	0,84	0,20	1,63	483,75	
SK04	3380	79,26	0,79	0,19	1,54	455,84	

According to IPCC (2006) Vol 4, Chapter 11, table 11.2 the ratio of below - ground residues to above – ground biomass is assumed 0,23.

According to IPCC (2006) Vol 4, Chapter 11, table 11.2 the N content of winter wheat root residues is assumed to be 0.9%.

35 % of straw (by-product) is ploughed

Yield of by-product is calculated by ratio between main and by-product of yield. Straw/grain ratio for winter wheat is 1:1. The assumed value of N content in by-product of winter wheat is 5,5 kg N per tonne. Both these value were undertaken from the study BUJNOVSKÝ,R.: Efektívne hnojenie pôdy a poľných plodín (Effective fertilization of the soil and arable crops). Bratislava : ÚVTIP – NOI, 2002, 44 s. ISBN 80-89088-05-8.)

INDIRECT EMISSIONS N₂O_{INDIRECT}

These emissions from managed soils arising from agricultural inputs of N embrace synthetic N fertilizers and crop residues. Indirect N2O emissions are calculated by following formulas (according to IPPC 2006):

$N_2 O_{\underline{INDIRECT}} (kgCO_2 eq/ha) = N_2 O_{(ATD)} \cdot N + N_2 O_{(L)} \cdot N$

 $N_2O_{(ATD)}-N =$ annual amount of N_2O-N produced from atmospheric deposition of N volatilised from managed soils, kg N_2O-N yr⁻¹

 $N_2O_{(L)}-N$ = annual amount of N_2O-N produced from leaching and runoff of N additions to managed soils in regions where leaching/runoff occurs, kg N_2O-N yr⁻¹

$$N_2O_{(ATD)}$$
- $N = [(F_{SN} x Fracf_{GASF}) + (F_{ON} + F_{PRP}) x Frac_{GASM})] x EF_4$

 F_{SN} = annual amount of synthetic fertiliser N applied to soils, kg N yr⁻¹

 $Fracf_{GASF}$ = fraction of synthetic fertiliser N that volatilises as NH₃ and NO_X, kg N volatilised (kg of N applied)⁻¹

 F_{ON} = annual amount of managed animal manure, compost, sewage sludge and other organic N additions applied to soils, kg N yr⁻¹

 F_{PRP} = annual amount of urine and dung N deposited by grazing animals on pasture, range and paddock, kg N yr⁻¹

 $Frac_{GASM}$ = fraction of applied organic N fertiliser materials (F_{ON}) and of urine and dung N deposited by grazing animals (F_{PRP}) that volatilises as NH₃ and NO_X, kg N volatilised (kg of N applied or deposited)⁻¹

 EF_4 = emission factor for N₂O emissions from atmospheric deposition of N on soils and water surfaces, [kg N–N₂O (kg NH₃–N + NO_X–N volatilised)⁻¹]

$$N_2O_{(L)}$$
- $N = (F_{SN} + F_{ON} + F_{PRP} + F_{CR} + F_{SOM}) x Frac_{LEACH-(H)} x EF_5$

 F_{SN} = annual amount of synthetic fertiliser N applied to soils, kg N yr⁻¹

 F_{ON} = annual amount of managed animal manure, compost, sewage sludge and other organic N additions applied to soils in regions where leaching/runoff occurs, kg N yr⁻¹

 F_{PRP} = annual amount of urine and dung N deposited by grazing animals in regions where leaching/runoff occurs, kg N yr⁻¹

 F_{CR} = amount of N in crop residues (above- and below-ground), including N-fixing crops, and from forage/pasture renewal, returned to soils annually in regions where leaching/runoff occurs, kg N yr⁻¹ F_{SOM} = annual amount of N mineralised in mineral soils associated with loss of soil C from soil organic matter as a result of changes to land use or management in regions where leaching/runoff occurs, kg N yr⁻¹

 $Frac_{LEACH-(H)} =$ fraction of all N added to/mineralised in managed soils in regions where leaching/runoff occurs that is lost through leaching and runoff, kg N (kg of N additions)⁻¹ $EF_5 =$ emission factor for N₂O emissions from N leaching and runoff, kg N₂O–N (kg N leached and runoff)⁻¹

In the calculation we did not count in the factors F_{ON} (they are not used in cultivation of these crops), F_{PRP} (these crops are cultivated on arable land), F_{SOM} (these crops are not cultivated on such types of soil in Slovakia).

Usually, in the case of wither wheat, in areas where wheat is cultivated, nitrogen leaching does not occur and so this loss of nitrogen is not taken into account.

	Average	N fertilizer	volatilization and redeposition	Total indirect
NUTS 2	yield	consumption	(mineral fertilizer N)	Emissions
	(kg/ha)	(kg/ha)	N ₂ O-N(kg/ha)	kg CO _{2eq/} ha
SK01	4084	95,43	0,10	46,51
SK02	4340	98,85	0,10	45,98
SK03	3590	81,23	0,08	37,78
SK04	3380	79,26	0,08	36,87

Table 12	Indirect	emissions	if no	leaching	occurs
----------	----------	-----------	-------	----------	--------

3.6 FUEL FOR CULTIVATION E_{FUEL}

e_{FUEL}= fuel (L/ha) x density(kg/m3) x emission factor

Average consumption of diesel during the cultivation were in the range 60-65 L/ha (Agricultural Technical and testing Institute in Rovinka) what are the values commonly used in Slovakia. To calculate the emissions in kgCO_{2eq}/ha there was used the emission factor $3,757 \text{ kgCO}_2/\text{kg}$ (JEC2007).

4 FINAL RESULTS

Typical emissions = $e_{ec} = e_{FERT} + e_{PPP} + e_{SEEDS} + e_{N2O} + e_{FUEL}$

According to Direction 2009/28/EC the GHG emissions have to be in gCO2eq/MJ fuel (ethanol/FAME).

The values calculated in kgCO2eq/ha were converted to the values in gCO2eq/MJ according to the following equation:

Emission $(gCO_2eq/ha) x$ allocation f.

gCO2eq/MJ =

Crop vield (kg/ha) x fuel energy (MJ/kg)

Calculations of energy balance for maize were based on the estimates that 1 L pure ethanol is produced from 3,4 -3,3 kg winter wheat (Slovnaft VÚRUP, corp.). Energy content of ethanol is 21 MJ/L (Directive 2009/28/EC, Annex III). Density is 832 kg.m⁻³. Then the fuel energy content per unit mass was calculated to 7,98 MJ/kg. Em. Coff. kg CO₂/kg =3,757 (JEC 2007).

Allocation factor for biofuel based on energy content- 0,64

NUTS 2 name	Code	Fertilisers	Plant protection products	Seeds	N2O direct	N2O indirect	Fossil fuel for cultivation	Typical emissions	Directive
Bratislava region	SK01	11,21	0,82	0,66	10,10	0,86	0,22	23,88	
Western Slovakia	SK02	10,88	0,82	0,62	9,83	0,80	0,21	23,16	
Central Slovakia	SK03	10,71	0,82	0,75	10,13	0,79	0,25	23,46	23
Eastern Slovakia	SK04	11,05	0,82	0,80	10,14	0,82	0,27	23,90	
Slovakia	SK0	10,96	0,82	0,71	10,05	0,81	0,24	23,60	

Table 13 Calculation of typical emissions from winter wheat cultivation (g CO_{2eq}/MJ) for bioethanol

Table 14 Calculation of typical emissions from winter wheat cultivation (g CO_{2eq}/MJ) for bioethanol

NUTS 3 name	Code	Fertilisers	Plant protection products	Seeds	N2O direct	N2O indirect	Fossil fuel for cultivation	Typical emissions	Directive	
Bratislava region	SK010	11,21	0,82	0,66	10,10	0,86	0,22	23,88		
Trnava region	SK021	9,73	0,82	0,60	9,03	0,71	0,2	21,09		
Trenčín region	SK022	11,58	0,82	0,69	10,51	0,85	0,23	24,69		
Nitra region	SK023	11,39	0,82	0,58	10,28	0,83	0,19	24,10		
Žilina region	SK031	10,05	0,82	0,72	9,32	0,74	0,24	21,88	23	
Banská Bystrica region	SK032	11,41	0,82	0,79	10,47	0,85	0,26	24,61	-	
Prešov region	SK041	10,91	0,82	0,85	10,02	0,81	0,28	23,70		
Košice region	SK042	11,16	0,82	0,75	10,27	0,83	0,25	24,08		