Particle emissions and contrails
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Formation of ice crystals in an aircraft plume
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How do contrails form?
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e persistent contrails

: short-living contrails

Formation depends on

Atmospheric condition
Temperature/Humidity

Too dry/warm
—> No contrails

water vapour partial pressure [Pa]

no clouds

Too humid/cold
=> Cirrus already exists
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Contrail formation probability and persistence

Contrail formation probability
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Ice supersaturation - persistence
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No contrails are formed in 300 hPa in the
tropics. In extratropics contrail formation
possible over much of the upper
troposphere. Contrails persistinice
supersaturated areas. Contrail persistence
lowest in subtropics.




Contrail cirrus coverage and optical depth for current

air fleet
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Large contrail cirrus coverage over
Europe and the East Coast of the US.

Large optical depth over tropics
—>Contrail cirrus have larger radiative
iImpact over tropics/subtropics than in the
extratropics.

Burkhardt and Karcher, 2011



Contrail cirrus radiative forcing and feedback natural
clouds
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Net radiative forcing (balance
between long wave and short
wave changes) ~ 38 mW/m? and
exceeds over Europe and the USA
0.3 Wm-2and over parts of south
east Asia 0.1 Wm~2

Net radiative forcing due to
reduction in natural cirrus
coverage ~ - 7 mW/m? partly
compensates the radiative forcing
due to contrail cirrus.

Short life time of contrail cirrus
make them ideal aim for mitigation
efforts



Climate impact of current air traffic (2005)

Aviation Radiative Forcing Components in 2005
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Increase in global mean contrail cirrus radiative
forcing with air traffic
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Global contrail cirrus radiative forcing does not increase linearly with air traffic due to
saturation in well travelled areas.
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Change in formation conditions
altitude 344 hft
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Effect of changes in particle emissions
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In soot-poor regime droplets / ice crystals are also formed on ambient and
volatile plume particles particularly at low temperatures

fewer aerosols - fewer ice crystals —>decreased albedo
- larger sedimentation = lower ice water content = lower rad. effects
- larger ice crystals = shorter life time

->smaller contrail radiative forcing?
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In-situ Measurements

» Ground-based engine tests

* Investigation of fuel effects on emissions
characteristic
» Comparison of fuel-effects on emissions from
real engine and DLR spray-burner
10"

B737 in flight PM emissions
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107  ultrafine
aerosols

ECLIF — Emission and Climate
impact of alternative fuels —
planned DLR project / NASA
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« Airborne campaigns

* Investigation of fuel effects on emissions in flight

» Characterization of exhaust composition in young plumes
relevant to ice formation

» Microphysical properties of contrail ice crystals and ice
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Change in soot emissions:

Effect on ice particle concentrations in contrails

3

—
3

[ (a) 223K, t=1s

T high

[ — total
E —— mixed
F . — .- liquid

I
current level

ice particle concentration, cm

—_—

-3

B13K t=1s

—_
O

—
O

ice particle concenlralion, cm

\/

/

—
_‘O

0

12 10

10"

1016

Initial ice crystal number controlled
by soot number emission index.

At lower temperatures (higher flight
levels) more ice crystals form at
constant soot emissions

Decrease in soot emissions

-> more entrained background liquid
aerosol particles (mainly sulfuric acid
and organics) freeze

At low temperatures liquid plume
particles (sulfuric acid, nitric acid and
low volatile, soluable organics)
freeze additionally

soot emission index, (kg-fuel)”’

Karcher and Yu, 2009
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Change in soot emissions:
Effect on ice particle concentrations in contrails
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At low temperatures liquid plume
particles (sulfuric acid, nitric acid
and low volatile, soluable organics)
freeze additionally
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Change in soot emissions:

Effect on ice particle concentrations in contrails
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as fuel contains sulfur (and maybe condensable organlcs).
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Conclusions

Soot, ultrafine plume particles and ambient aerosol particles can act as ice
nuclei within an exhaust plume forming contrails

Contrail cirrus (originating from line shaped contrails) are largest radiative
forcing component from air traffic — increases with air traffic l[imited due to
saturation behavior

Soot emissions control over a large range contrail ice particle
concentrations and therefore contrail optical depth and possibly life time

Characterization of emissions on ground and during flight necessary in
order to estimate impact of contrail changes due to emissions

At low temperatures in soot-poor regimes smaller particles, such as volatile
plume particles and ambient aerosols, nucleate forming ice crystals

Impact of soot reductions on contrail cirrus radiative forcing needs to be
studied — model under development

Caution: In order to evaluate climate impact of biofuels all radiative forcing
components and the whole biofuel life cycle including the response of the
regional climate to land use changes have to be evaluated
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