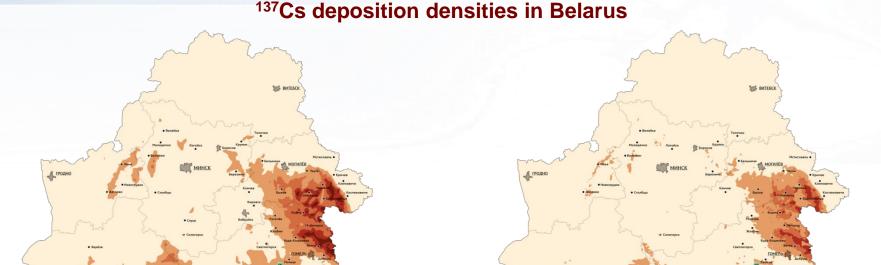


NATIONAL ACADEMY OF SCIENCES OF BELARUS Research Institute of Radiology (RIR)

Our contact:

16, ul. Fedyuninskogo, Gomel 246000, BELARUS

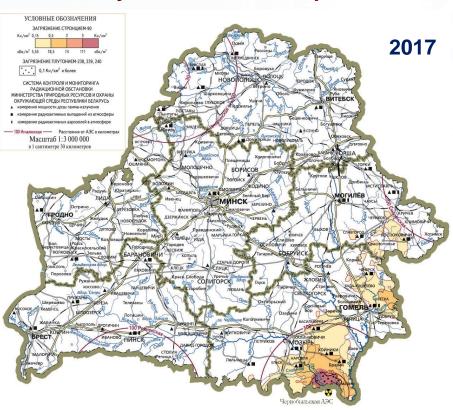
E-mail: office@rir.by
Web: www.rir.by


EXPERIENCE WITH THE MANAGEMENT OF LONG-TERM EXPOSURE AFTER A NUCLEAR ACCIDENT

Speaker:

Victoria Drobyshevskaya

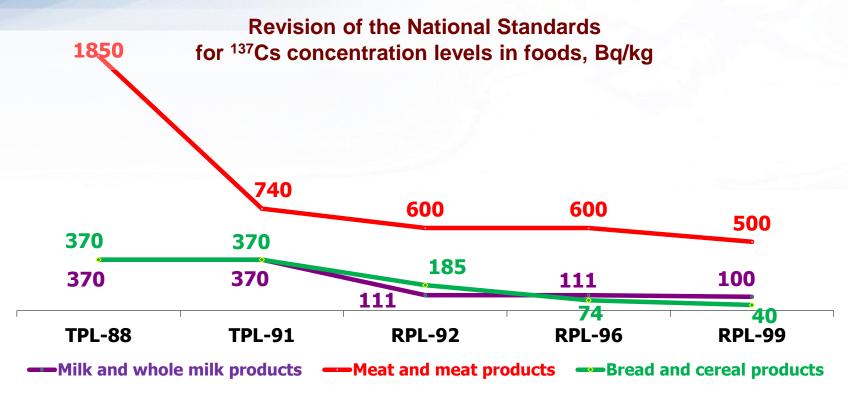
Research Institute of Radiology (RIR)


The present-time area of radionuclide contamination, due to natural decay, is reduced 1.7times as against initial deposition. Total contaminated area occupies 13 % Belarus territory. 2

kBq/m² Ci/km²

Research Institute of Radiology (RIR)

Belarus contamination by strontium-90 and plutonium--238,239,240



Research Institute of Radiology (RIR)

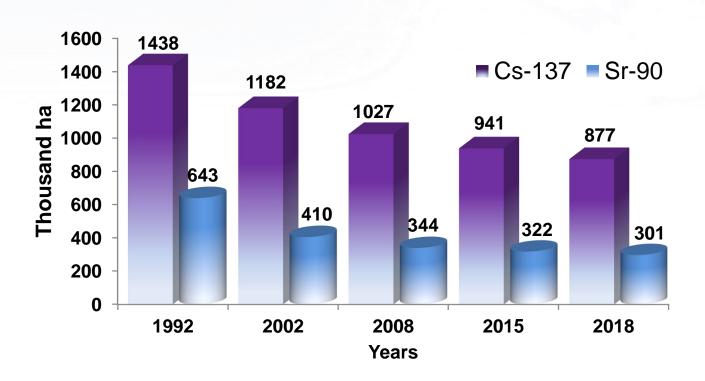
Reference Levels for ¹³⁷Cs concentrations in foods (Bq/kg, Bq/l)

Product	EC	Belarus	Russian Federation	Ukraine	CUSTOMS UNION TP TC 021/2011
Year of adoption	1986	1999	2001	1997, 2006	2011
Bread, flour and cereal products	600	40	40–60	20-50	40
Milk	370	100	100	100	100
Baby food	370	37	40-60	40	40
Dairy products	600	50–200	100–500	100-500	100
Meat and meat products	600	180–500	160-180	200-400	200
Fish	600	150	130	150	130
Eggs	600	-	80	100	-
Vegetables, fruits, potatoes, roots	600	40–100	40–120	40–70	80

NATIONAL ACADEMY OF SCIENCES OF BELARUS Research Institute of Radiology (RIR)

TPLs – Temporary Permissible Levels

RPLs – Republican Permissible Levels (RPL-99), current national standard for ¹³⁷Cs concentration levels in foodstuffs


Research Institute of Radiology (RIR)

Permissible Levels for 90Sr Concentrations in Food, Bq/kg, Bq/l

			Т
FOOD PRODUCT	BELARUS RPLs-99	FOOD PRODUCT	CUSTOMS UNION TP TC 021/2011
Drinking water	0,37	Drinking water	not defined
Milk and whole milk products	3,7	Milk and whole milk products	25
Condensed and concentrated milk	not defined	Condensed and concentrated milk	100
Rennet cheese and cream cheese spread	not defined	Rennet cheese and cream cheese spread	100
Butter	not defined	Butter	60
Fish and fish products	not defined	Fish and fish products	100
Bread and cereal products	3,7	Bread and cereal products	20
Potatoes	3,7	Potatoes	40
Vegetables	not defined	Vegetables	40
Baby food of any type (ready-to-eat)	1,75	Baby food of any type (ready-to-eat)	25

Dynamics of contamination of agricultural lands in Belarus during 1992-2015 (cesium-137 > 37 kBq/m², strontium-90 > 5,5 kBq/m²)

System of protective actions in agricultural production

Organizational

- Exclusion of lands from using;
- Change of agricultural specialization;
- Optimization of land usage and crop structure;
- Creation of cultural pastures and hayfields.

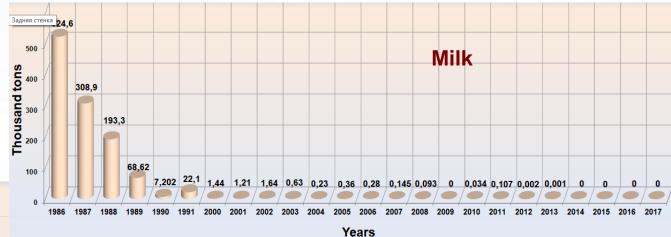
Technological

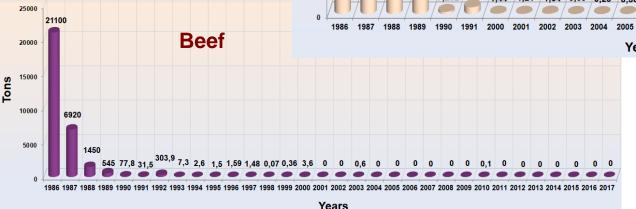
- Cleaning and washing of foods;
- Prior technological processing;
- Advanced technological processing.

Agrochemical

- Lime treatment of acid soils;
- Application of phosphoric and potash fertilizers;
- Application of organic fertilizers;
- Optimization of plant nutrition;
- Micro-fertilizers;
- Plant protection.

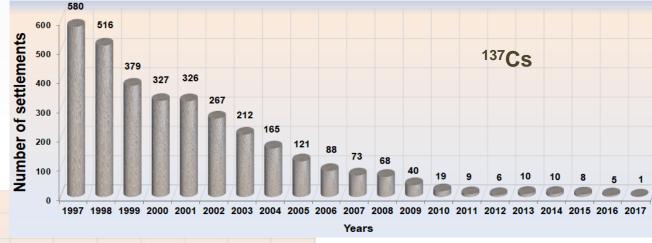
Veterinary


- Feed rations for different animals, based on their age and production purposes;
- Pasture control over the cattle raised for whole milk and raw milk production;
- Application of cesium binders and ferrocyne additives.



Dynamics of ¹³⁷Cs contamination above reference levels in milk and beef delivered to processing facilities from affected areas (public agri-sector)

Starting from 2014, there were no cases of >100 Bq/I ¹³⁷Cs concentration levels in milk delivered to dairy processing plants from affected areas.

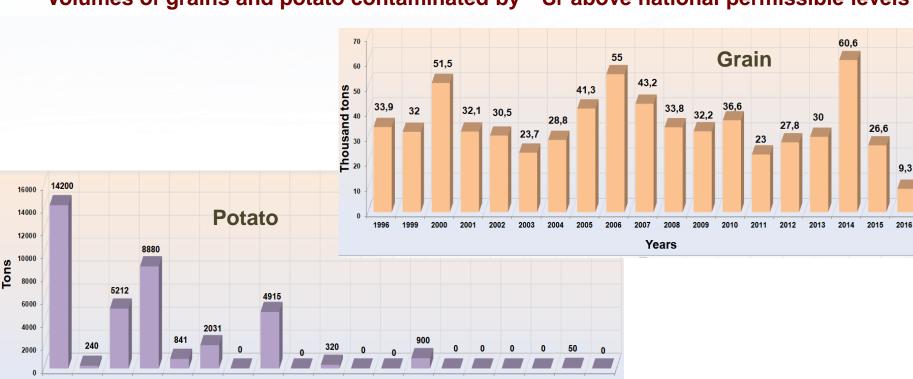

From 2011 on, meat processing facilities receive regulatory-clean beef with no excess cases.



Research Institute of Radiology (RIR)

Number of villages with detected cases of ¹³⁷Cs and ⁹⁰Sr contamination above the national permissible levels in milk (private agri-sector)

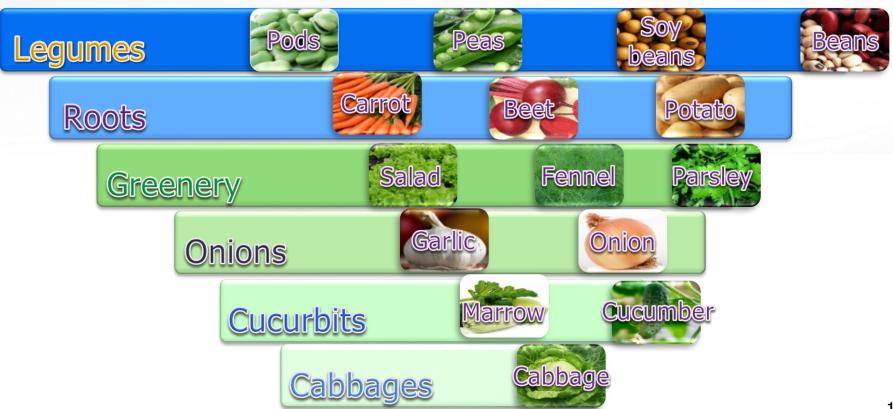
For the past six years, sanitary inspections detect excess levels of ¹³⁷Cs and ⁹⁰Sr in milk samples annually only in 6-9 villages



Research Institute of Radiology (RIR)

Volumes of grains and potato contaminated by 90Sr above national permissible levels

Years


Research Institute of Radiology (RIR)

Agro-technical and agro-chemical techniques towards reduction of ¹³⁷ Cs uptake by agricultural produce		137Cs reduction factor	
		During the first 5 years	Following the first 5 years
Ploughlands	Soil Treatment (real tillage, deep tillage)	5,0	1,5
	Lime Treatment	4,0	2,0
	Application of organic fertilizers	2,5	2,0
	Application of phosphate fertilizers	1,5	0,5
	Application of potassium fertilizers	3,5	3,0
	Optimization of nitrogen fertilization rates	2,5	1,5
	Selection of crop types with minimal uptake ability	30	5,0
Meadows	Root improvement (creation of new grasslands)	6,0	3,0
	Surface improvement (preserving natural grasslands with renewal of grass stands+fertilizers)	3,0	1,5
	Selection of grass mixtures	3,0	2,0

Research Institute of Radiology (RIR)

¹³⁷Cs uptake by vegetables (in descending order)

Research Institute of Radiology (RIR)

Application of cesium-binders

Giese Salt NH₄Fe[Fe(CN)₆]

Nigrovich salt KFe[Fe(CN)₆]

Research Institute of Radiology (RIR)

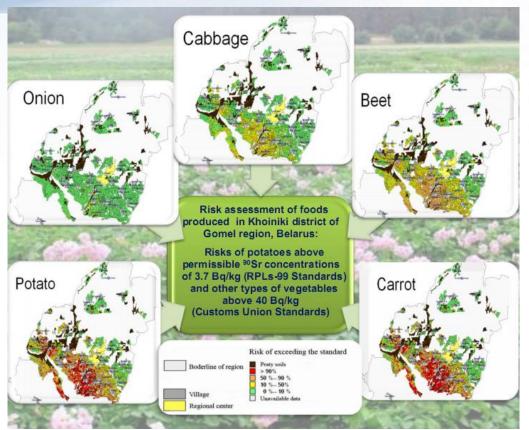
137Cs - 847 MBq 790Sr - 193 MBq

Milk, 400 t 137Cs – 67,6 MBq 90Sr – 2,9 MBq Collective doses, mSv ¹³⁷Cs - 880 ⁹⁰Sr - 232 1112

Feeds 500 tons Lowering collective doses from ¹³⁷Cs and ⁹⁰Sr as a result of switching from dairy to beef production

(assuming soil is contaminated 20 kBq/m² ⁹⁰Sr and 1 000 kBq/m² ¹³⁷Cs)

¹³⁷Cs - 847 MBq ⁹⁰Sr - 193 MBq


Meat, 37,3 t ¹³⁷Cs – 4,85 MBq ⁹⁰Sr – 0,04 MBq

Collective doses, mSv ¹³⁷Cs – 36,9 ⁹⁰Sr – 3 39,9

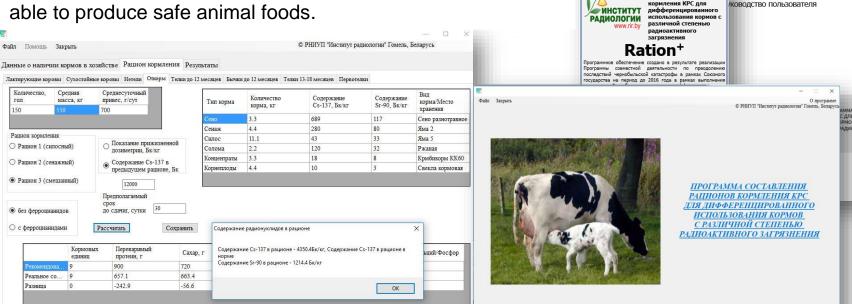


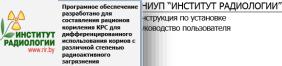
RISKAgro is a special forecast tool designed by RIR to make rapid, real-time predictions of radiation levels in major vegetables and assess risk of output contamination levels above the existing national and other food safety standards.

Research Institute of Radiology (RIR)

AgroOptimization tool: efficient use of arable lands

increase production outputs and improve the operating


efficiency of a farm enterprise


Research Institute of Radiology (RIR)

Differentiated use of feeds containing different contamination levels: Ration+ Calculation Model

This tool is designed to help farmers to optimize animal feeding rations using different types of forages containing different levels of ¹³⁷Cs and ⁹⁰Sr contamination, in order to be able to produce safe animal foods.

нструкция по установке

ДЛЯ ДИФФЕРЕНЦИРОВАННОГО МОВ С РАЗЛИЧНОЙ СТЕПЕНЬЮ RATION*

Research Institute of Radiology (RIR)

Radiation monitoring system in Belarus

Production-stages monitoring

Created and maintained to avoid production of foods, feeds and raw materials above permissible contamination levels

Research Institute of Radiology (RIR)

Radiation monitoring system in Belarus

Authorities responsible for nation-wide control:

Ministry for Emergency Situations

Health Ministry

Standardization Committee

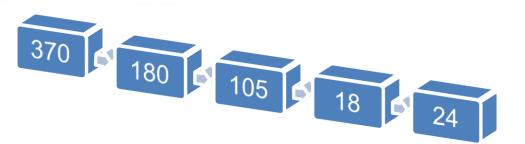
 Ministry of Natural Resources and Environmental Protection Authorities responsible for industrial control:

Ministry of Agriculture and Food

Ministry of Forestry

Ministry of Housing

 Belarusian Republican Community of Consumer Cooperatives

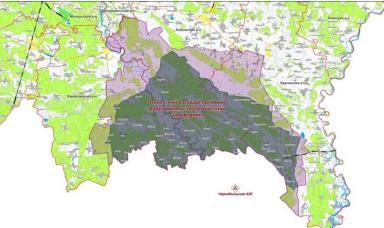

Research Institute of Radiology (RIR)

Monitoring at the local level

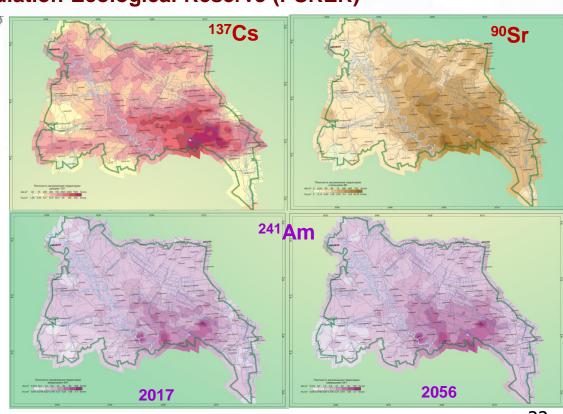
Centers for Practical Radiological Culture (CPRCs)

$$1992 \rightarrow 1995 \rightarrow 2003 \rightarrow 2010 \rightarrow 2018$$

The CPRCs are equipped with modern instrumentation for measuring radiation in foodstuffs and other environmental samples, as well as for measuring ambient dose rates



Establishment and maintenance of the Centers for Practical Radiological Culture in affected areas of Belarus


Research Institute of Radiology (RIR)

Polesie State Radiation-Ecological Reserve (PSRER)

Total PSRER area: 216 000 hectares

This sanctuary area embodies nearly 1/3
of all radioactive cesium,
> 70 % strontium and 97 % plutonium
deposited in Belarus after ChNPP accident


Polesie State Radiation-Ecological Reserve (PSRER)

No human presence and no anthropogenic activities altered ecological conditions this sanctuary resulting in thriving abundance of habitual and very rare species of animals and plants, which now have formed here their sustainably reproductive populations.

Radiation-Ecological Reserve: unique grounds for science and experimental activities

This area is a unique experimental site for studying the effects of radioactive contamination on natural ecosystems and former agricultural lands. Reserve's experimental facilities include the experimental grounds for wood processing, crop planting, horse farming and bee keeping

Research Institute of Radiology (RIR)

Summary and conclusions

Post-accident experience of Belarus following the Chernobyl NPP disaster has shown that agricultural protective measures were, in general, highly effective: about 40 percent averted internal radiation dose.

Implementation of countermeasures in agriculture revealed critical areas with prevailing boggy, sandy and peaty soils, where even relatively low soil contamination by long-lived radionuclides can lead to significant contamination of crops and animal products due to the increased transfer of radionuclides from soil into plants.

Protective measures such as improving soil fertility and maintaining soil properties at their optimal level are strategically important because of their long-term effect on ensuring regulation-wise clean food products.

Information-sharing and direct involvement of rural residents in the recovery processes and decision-making is an important added-value factor that contributes to overall optimization of protective measures and improvement of the life quality.

RIR address:

16, ul. Fedyuninskogo, Gomel 246000, BELARUS

E-mail: office@rir.by
Web: www.rir.by

Thank you for your kind attention!