Thematic WG 2 Security and Operations of tomorrow

WG 2 Innovation Milestones 2030

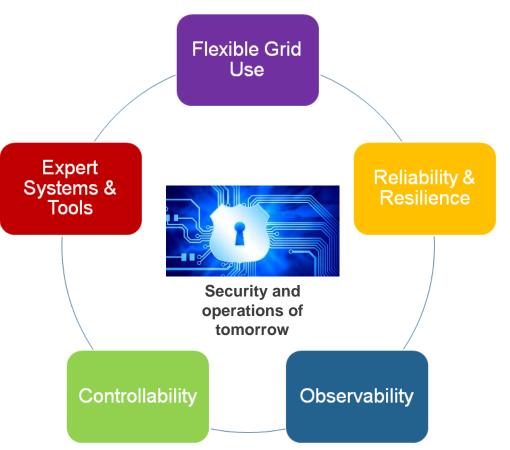
Flexible Grid Use

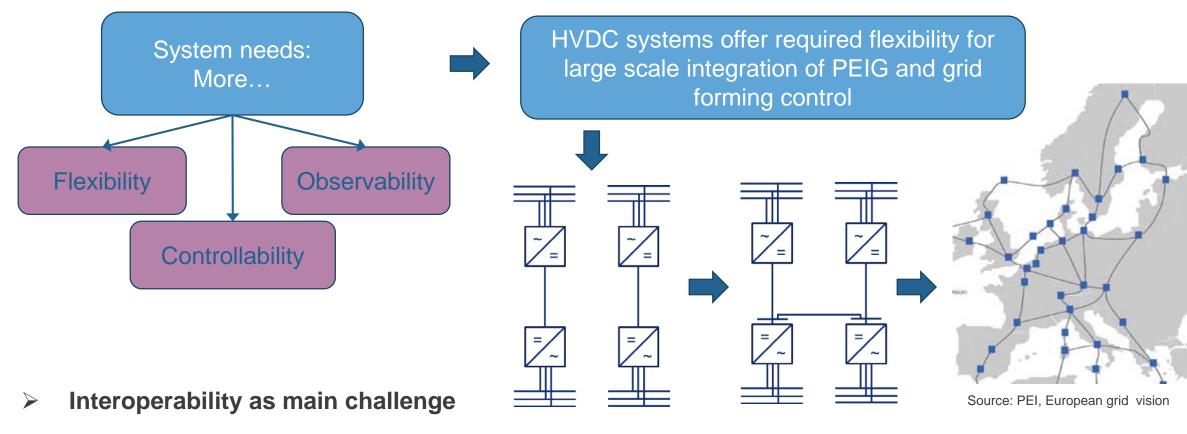
Demonstration of full scale interoperability of HVDC converter stations

Grid Observability

 Nearly full observability of the European transmission grid based on phasor measurement linear/hybrid state estimation

Grid Controllability


 Mature technological solutions tested and proved for the provision of increased controllability and flexibility on both TSO and DSO voltage levels


Expert Systems and Tools

 Further tool development within R&D project work, implementation of close to real-time support tools, using probabilistic algorithm, enhanced forecasting of RES

Reliability and Resilience

 Integration of methodologies and tools supporting the improved transmission network reliability and resilience in day to day business.

Today: Single Pointto-point connections Multi-terminal Systems DC Grids as backbone system for AC? entso@ 3

Flexible Grid

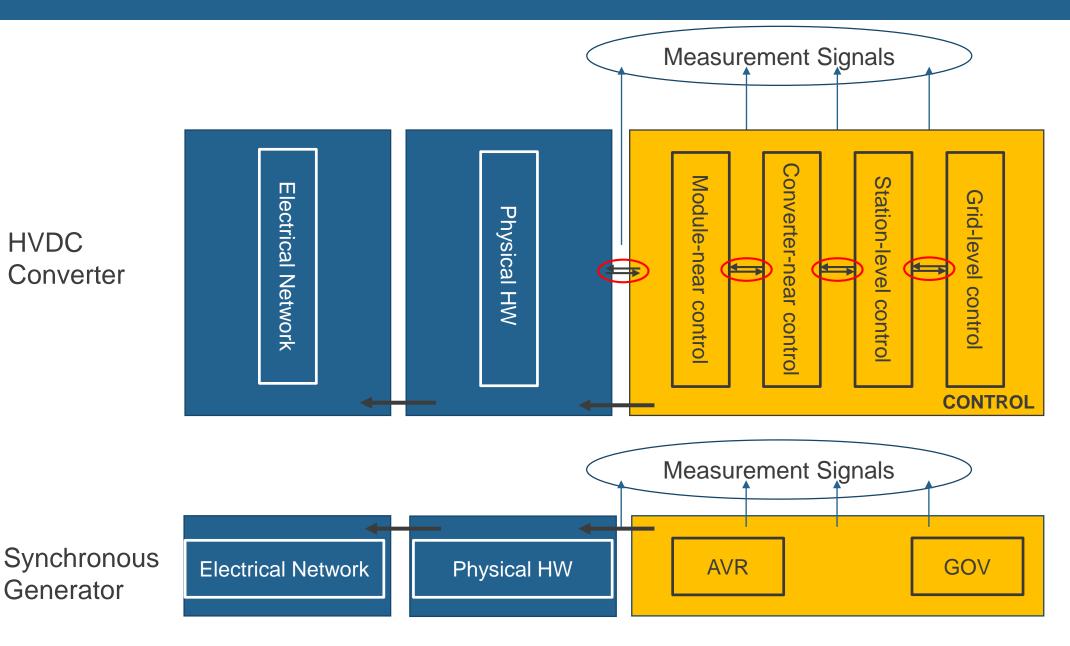
Use

Interoperability Work Stream

□ Important task: enlargement of possible share of renewables utilizing HVDC technology

Resulting challenges

- Integration of HVDC systems in AC and DC grids
- □ Large-scale interaction studies and compliance testing for assuring grid stability and security of supply
- Optimized interfaces and process are a must due to system scale and complexity


3-step approach

- Step 1: Build a solid foundation model requirements and ENTSO-E standard interface for HIL/PHIL and SIL Actual step: finalization and demonstration)
- Step 2: Prevent risks in existing grids multi-vendor AC-grid integration
- Step 3: Build new grids multi-vendor DC-grid integration

Step 1: Standard Control Interface Proposal – HIL/PHIL and SIL

entso\varTheta

Step 1: Status and next steps

Standard Control Interface definition & requirements proposed

- □ Interface architecture hardware interface/software interface are introduced
 - Describes the technical standards for such an interface
 - Out of scope: Requirements on data provision which is already given in NC HVDC (European Regulation 2016/1447)
- □ Relevant for (European) vendors to be more competitive in order to cope with the EC regulations
- Ensure good quality interaction studies and avoid expensive actions after commissioning
- □ Use cases for interaction performance studies are discussed
- System for demonstrating the Software and Hardware interface achieved
 - □ The operation of the interface was demonstrated on 29th of January already
 - Link to European Regulations: All parties shall contribute to the interaction studies and shall provide relevant data and models to meet the purpose of the study considering confidentiality obligations
- Next Steps
 - Drafting of the Entso-e standard control interface for HVDC converters
 - Definition of step 2 and step 3 of the interoperability Workstream

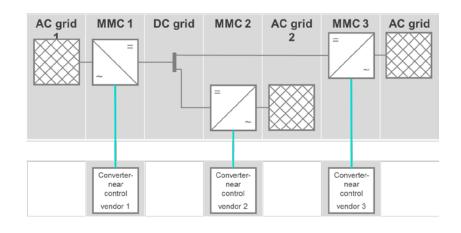
Step 2: Prevent risks in existing grids – multi-vendor AC-grid integration

Recent challenges for assuring grid stability and security of supply

- 1. Large-scale converter-converter interaction studies and compliance North Sea CE region
- Key aims for proposed demonstration project
 - Application of ENTSO-E standard interface for HIL/PHIL and SIL for HVDC in relevant scenarios

Additional aims for proposed demonstration project

- Demonstration of possible usage and extension of ENTSO-E standard interface for HIL/PHIL and SIL as standard interface between grid controller and digital twins
- □ Interaction study, scope, implementation, execution
- Cross Border EMT Realtime demonstrator including
 - □ Interoperability at the AC connection point(s)
 - □ SIL modelling
 - HIL P-HIL demonstration


Step 3: Prevent risks in multi-vendor DC-grid integration

Recent challenges for assuring grid stability and security of supply

- 1. Large-scale converter-converter interaction studies and compliance in Multi Vendor Multi Terminal Systems
- Key aims for proposed demonstration project
 - Application of ENTSO-E standard interface for HIL/PHIL and SIL for HVDC in relevant scenarios

Additional aims for proposed demonstration project

- Demonstration of a Multi vendor Multi Terminal DC system with at least 3 converters of different vendors
- Provide the standards in order to reach interoperability
- □ Show interoperability at the DC connection point(s)
 - □ Functional specification for plug and play of converters
 - □ HIL P-HIL demonstration
- □ Full size Demonstration project for interoperability
 - included in North Sea area

Conclusion

ENTSO-E standard interface for HVDC systems ready to use for large interaction studies

- □ Complete description of the control interface supporting interactions studies (NC HVDC, Art. 29)
- Modular approach, supports compliance simulation and compliance testing
- □ Allows maintenance of the HVDC model due to lifetime (NC HVDC, Art. 70)
- Provision of relevant data for the standard control interface is fully in line with NC HVDC, Art. 10 and Art. 29

Further steps towards a successful transition to a climate-neutral energy system by 2050

- CGMES HVDC Standard Interface" developed demonstrated for Loadflow and RMS calculations considering Hybrid AC-DC systems
 - HVDC models comply with the modular approach of the ENTSO-E standard control interface
- Demonstration proposed for large-scale converter-converter interaction studies and compliance
 - D Multi Vendor HVDC at AC connection point, methods and contents of interaction studies, justification of relevant data
 - □ HVDC models comply with the modular approach of the ENTSO-E standard control interface
- Demonstration proposed for Multi-Vendor-Multi-Terminal systems
 - □ HVDC models comply with the modular approach of the ENTSO-E standard control interface
 - □ Full size Demonstration project for interoperability

THANK YOU FOR YOUR ATTENTION

wilhelm.winter@tennet.eu

https://extra.entsoe.eu/ RDC/TWG2/Meeting% 20Documents/Forms/A Illtems.aspx

