Article 14 of the Energy Efficiency Directive: Promotion of the efficiency of heating and cooling

### **Table of Contents**

| 1. | D     | escr          | iption of heating and cooling demand4                                                                                                                                             |  |  |  |  |  |  |
|----|-------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|    | 1.1   | C             | Description of district cooling demand4                                                                                                                                           |  |  |  |  |  |  |
|    | 1.2   | C             | Description of district heating demand4                                                                                                                                           |  |  |  |  |  |  |
| 2. | Cl    | han           | ge in district heating demand in the next ten years5                                                                                                                              |  |  |  |  |  |  |
|    | 2.1   | R             | Residential users                                                                                                                                                                 |  |  |  |  |  |  |
|    | 2.    | .1.1          | Current users 5                                                                                                                                                                   |  |  |  |  |  |  |
|    | 2.    | .1.2          | Inclusion of new users in district heating6                                                                                                                                       |  |  |  |  |  |  |
|    | 2.2   | Ν             | Ion-residential users                                                                                                                                                             |  |  |  |  |  |  |
|    | 2.    | .2.1          | Current users                                                                                                                                                                     |  |  |  |  |  |  |
|    | 2.    | .2.2          | Change in the number of users7                                                                                                                                                    |  |  |  |  |  |  |
|    | 2.    | .2.3          | Summary7                                                                                                                                                                          |  |  |  |  |  |  |
| 3. | Μ     | laps          | of the country showing existing and planned district heating potential                                                                                                            |  |  |  |  |  |  |
|    | 3.1   | F             | leating demand points                                                                                                                                                             |  |  |  |  |  |  |
|    | 3.    | .1.1          | Municipalities and conurbations with a building coverage of at least 30 %                                                                                                         |  |  |  |  |  |  |
|    | 3.    | .1.2          | Industrial zones with a total annual heating demand of more than 20 GWh                                                                                                           |  |  |  |  |  |  |
|    | 3.2   | E             | xisting and planned district heating infrastructure11                                                                                                                             |  |  |  |  |  |  |
|    | 3.3   | Ρ             | Potential heating distribution points12                                                                                                                                           |  |  |  |  |  |  |
|    |       | .3.1<br>nd e> | Electricity generation facilities with a total annual electricity output of over 20 GWh<br>xisting energy generation and district heating facilities listed in Part II of Annex I |  |  |  |  |  |  |
|    | 3.    | .3.2          | Waste incineration plants12                                                                                                                                                       |  |  |  |  |  |  |
|    | nd di | istri         | mination of the heating demand that may be met by high-efficiency cogeneration ct heating and determination of the supplementary high-efficiency cogeneration (points D and E)    |  |  |  |  |  |  |
| 5. | D     | eter          | mination of the energy efficiency potential of the district heating infrastructure. 13                                                                                            |  |  |  |  |  |  |
|    | 5.1   | R             | Replacement of primary pipelines13                                                                                                                                                |  |  |  |  |  |  |
|    | 5.2   | S             | eparation of heating centres13                                                                                                                                                    |  |  |  |  |  |  |
|    | 5.3   | lı            | nsulation and laying underground of overhead pipelines                                                                                                                            |  |  |  |  |  |  |
|    | 5.4   | C             | Connection of new consumers to district heating13                                                                                                                                 |  |  |  |  |  |  |
|    | 5.5   | E             | stablishment of a telemechanical system13                                                                                                                                         |  |  |  |  |  |  |
|    | 5.6   | F             | leat source upgrading (natural gas-fired peak load boilers)                                                                                                                       |  |  |  |  |  |  |

| 5.7            | Connection of heat sources13                                                                                                                                                                    |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.8            | Installation of biomass boilers14                                                                                                                                                               |
|                | order to meet the demand referred to in point D and to reach the potential stated in strategies, specialist policies and measures acceptable until 2020 and 2030                                |
| 6.1<br>genei   | Increasing the proportion of cogeneration within heating energy and electricity ration                                                                                                          |
| 6.2<br>the d   | Development of an efficient district heating infrastructure that is compatible with evelopment of high-efficiency cogeneration                                                                  |
| 6.3<br>indus   | Encouraging the construction of new heat-based electricity generation facilities and trial plants generating waste heat generating at sites where                                               |
| 6.4<br>estab   | Specialist policies to ensure that residential areas and industrial heat consumers are lished where waste heat is available                                                                     |
|                | Specialist policies to encourage that electricity generation facilities, waste recovery<br>ies and other industrial facilities generating waste heat are connected to the district<br>ng system |
| 6.6<br>facilit | Specialist policies to ensure that residential areas and heat-consuming industrial ies are connected to the district heating network                                                            |
|                | portion of high-efficiency cogeneration and potential and progress specified under e 2004/8/EC                                                                                                  |
| 8. Esti        | imation of required primary energy savings22                                                                                                                                                    |
| 9. Esti        | imate for possible State aid measures to be taken for heating purposes                                                                                                                          |
| 9.1            | Scenario 1: Minimum district heating22                                                                                                                                                          |
| 9.2            | Scenario 2: balanced use of district heating26                                                                                                                                                  |
| 9.3            | Scenario 3: Scenario assuming maximum use of district heating                                                                                                                                   |
| 9.4            | Comparison of scenarios                                                                                                                                                                         |
| Annexe         | s                                                                                                                                                                                               |
|                | x 1: Electricity generation facilities potentially exceeding an electricity output of Nh                                                                                                        |
| Anne           | x 2: Estimation of high-efficiency cogeneration and efficient district heating potential                                                                                                        |

# 1. Description of heating and cooling demand

The report treats the determination of district cooling and district heating potential as separate subjects. At present, the district cooling infrastructure in Hungary is extremely small, and based on operational experiences to date; it is not worth operating it under market conditions. Therefore, the report deals first with the description of district cooling demand and infrastructure. However, due to its limited penetration, the report does not deal with the district cooling infrastructure and potential estimation later outside the following section.

### 1.1 Description of district cooling demand

The theoretical potential for the district cooling of residences can be estimated on the basis of the quantity of heat used for heating, which is sold to the general public. Compared to heating demand, setting both peak capacity demand and cooling energy demand at 50 %, the theoretical cooling energy potential can be estimated at 25 % of heating demand, i.e. exactly 4 PJ/year, in the case of the general public. In the case of consumers other than the general public, setting peak capacity demand at 80 % and cooling energy demand at 65 % of heating demand, the theoretical cooling energy potential can be estimated at 52 % of heating demand, i.e. exactly 3 PJ/year.

The technical potential of district cooling is lower than this, because for economic and security of supply reasons, it is not warranted to establish heat-driven liquid coolers to meet peak load demand. The heat-driven liquid cooler capacity installed at half of peak cooling capacity demand may provide for meeting 80 % of cooling energy demand. Therefore, the technical potential can be put at 80 % of the theoretical potential.

The economic potential of district cooling is currently zero, because the energy costs of only heat-driven cooling clearly exceed the energy cost of cooling energy generated with traditional electric-driven compressor liquid coolers, not to mention capital load differences due to significantly higher capital costs.

There is currently no example for local trigeneration (a cogenerating and heat-driven liquid cooler at the same 'site') in domestic district heating systems. Heat-driven ('sorption') liquid coolers are installed at one consumer of each of the Tiszaújváros, Szentendre and Csepel (Budapest) district heating systems and a few users of the Debrecen district heating systems, but this equipment does not operate or hardly operates due to a driving energy price that has multiplied compared to the period of installation. Instead, cooling energy is generated with electric-driven machines.

### 1.2 Description of district heating demand

In 2015, Hungary had a district heating demand of 34.8 PJ. A significant part of this demand came from the residential sector (70%), while other consumers consumed 6.14 PJ. Other consumers include industrial consumers and the points of consumption of the public sector. The total network loss was 4.18 PJ.

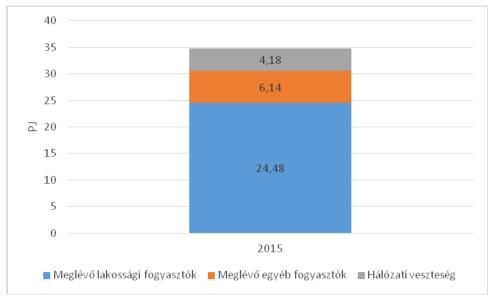



Figure 1 – District heating demand broken down by residential and other sectors, with an indication of network loss

| Meglévő lakossági fogyasztók | Existing residential consumers |
|------------------------------|--------------------------------|
| Meglévő egyéb fogyasztók     | Other existing consumers       |
| Hálózati veszteség           | Network loss                   |

### 2. Change in district heating demand in the next ten years

### 2.1 Residential users

### 2.1.1 Current users

For estimating the development of the residential use of district heating, forecasts relating to present consumers and possible new entrants have been prepared separately.

The expected development of consumption by current users is primarily affected by energy renovations. In this respect, the forecast has been prepared on the basis of the following premises:

- At present, 30 % of homes supplied with district heating have undergone energy upgrading (this includes nearly 200 000 homes).
- This ratio will increase to over 95 % during the review period.
- The drop in consumption achievable through complete upgrading is 50 % in respect of district heating.
- At the same time, with regard to renovation schedules, two alternatives appear due to their uncertainty:
  - assuming a faster schedule, the proportion of upgraded homes will reach 95 % by 2032;
  - if a slower schedule is implemented, the above percentage will be achieved only six years later.

In the past period, basically in connection to the installation of water meters, the amount of district heat used for domestic hot water production has substantially decreased. On the basis of the information received from the industry, the rate of use may decrease by an additional 10 % over the next 10 years, while there is no more reserve in the system.

Taking into account the current competitive position of district heating and the trends in the past period, this forecast does not reckon with the disconnection of residential users.

The effect of global warming has not been displayed separately either; in this regard, at the same time, it can be taken into account that a 1 °C increase in the average temperature will reduce the amount of district heat used by about 6 %.

### 2.1.2 Inclusion of new users in district heating

A slow increase in the number of homes supplied with district heating, 0.5 % per year, is reckoned with as of 2020 (i.e. the number of homes supplied with district heating will approach 720 000 by 2040). The expansion may be generated by the fact that:

- at present, district heat supply can be considered a competitive, convenient and environmentally-friendly heating method, even though primarily due to a 5 % VAT charged on it;
- at present, large areas (e.g. the inner districts of Budapest) are not involved in district heating at all;
- in the case of newly built blocks of freehold flats (especially if they are near housing estates), district heating is still considered a realistic alternative.

With respect to newly connected users, the calculation takes the specific energy use of homes that have undergone energy upgrading and lower hot water consumption as a basis.

The expansion primarily depends on the competitive situation of the individual heating modes relative to each other, but influenced by administrative means (official pricing, VAT rate, etc.).

### 2.2 Non-residential users

In respect of non-residential users, the forecasts of consumption associated with separately managed institutions as defined in Act XVIII of 2005 on district heat supply and that of other users were separated. In connection with the residential segment, the estimated change in use by current users of the service and the forecast of a change in the number of consumers were taken into account independently here, too.

### 2.2.1 Current users

In respect of use for heating purposes by separately managed institutions currently provided with district heating, the forecast reckoned with a decrease of 0.63 PJ in total during the period on the basis of the following assumptions:

- 30 % of separately managed institutions currently provided with district heating have undergone energy upgrading.
- This ratio will increase to 96.5 % during the review period.
- The drop in consumption achievable through complete upgrading is 40 % in respect of district heating.
- 75 % and 95 % of the current institutions will be refurbished by 2025 and 2035, respectively.

With respect to other non-residential users, assuming that due to typically profit-oriented operation, the possible steps aimed at savings have already been taken, the forecast does not reckon with a decrease in consumption.

### 2.2.2 Change in the number of users

The number of non-residential users has been slightly but continuously increasing since 2016 (separately managed institutions and business users by 1 % and 0.5 %, respectively). With respect to separately managed institutions, this may be based on the owner/maintainer's intent (according to this assumption, a significant part of separately managed institutions will be connected to the district heating network by 2040), and in the case of commercial sales, on the successful marketing policy of service providers, which may affect both existing and newly built properties.

With respect to newly joined separately managed institutions, the calculation is based on specific energy use by consumers that have undergone energy upgrading.

#### 2.2.3 Summary

In the light of this, as shown in the following figure, district heating demand is expected to decrease over the next ten years. While annual demand was 34.8 PJ in 2015, it will decrease to 31.3 PJ by 2020, then total district heating demand is expected to be 28.81 PJ in Hungary in 2025.

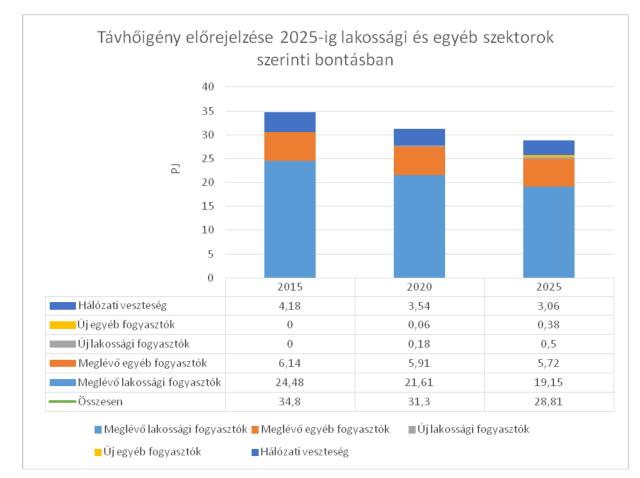
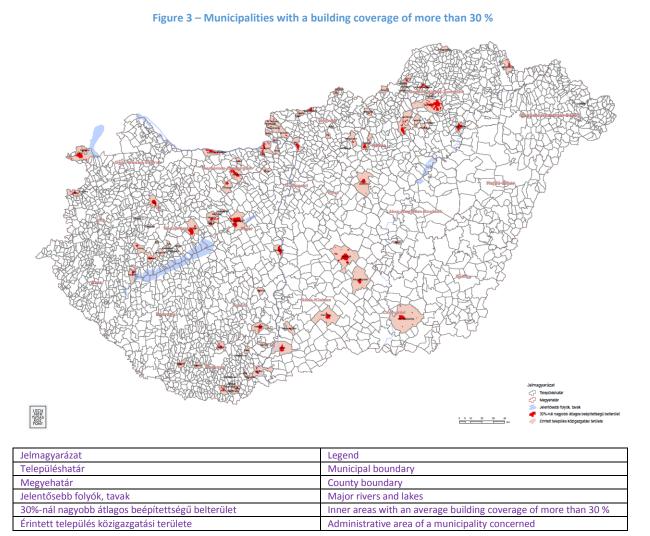


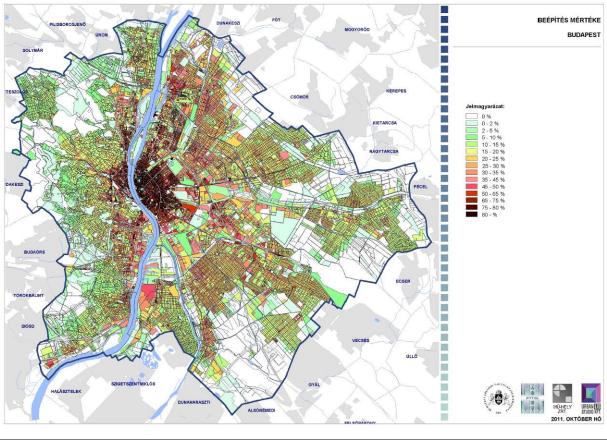

Figure 2 – Forecast of district heating demand by 2025 broken down by residential and other sectors

| Hálózati veszteség           | Network loss                   |  |
|------------------------------|--------------------------------|--|
| Új egyéb fogyasztók          | Other new consumers            |  |
| Új lakossági fogyasztók      | New residential consumers      |  |
| Meglévő egyéb fogyasztók     | Other existing consumers       |  |
| Meglévő lakossági fogyasztók | Existing residential consumers |  |
| Összesen                     | Total                          |  |
| Meglévő lakossági fogyasztók | Existing residential consumers |  |
| Meglévő egyéb fogyasztók     | Other existing consumers       |  |
| Új lakossági fogyasztók      | New residential consumers      |  |
| Új egyéb fogyasztók          | Other new consumers            |  |


| Hálózati veszteség | Network loss |
|--------------------|--------------|

# 3. Maps of the country showing existing and planned district heating potential

### 3.1 Heating demand points


### 3.1.1 Municipalities and conurbations with a building coverage of at least 30 %

The following figure includes a map illustration of municipalities and conurbations where the criterion for a building coverage of at least 30 % is met.



This is specially supplemented by a building coverage map of the city of Budapest, on the basis of which it can be established that neighbourhoods with a building coverage higher than 30 % are located primarily in the inner districts and, of the outer districts, primarily in housing estate neighbourhoods.

#### Figure 4 – Building coverage map of Budapest



| BEÉPÍTÉS MÉRTÉKE BUDAPEST | BUILDING COVERAGE, BUDAPEST |
|---------------------------|-----------------------------|
| Jelmagyarázat:            | Legend:                     |
| 2011. OKTÓBER HÓ          | OCTOBER 2011                |

### 3.1.2 Industrial zones with a total annual heating demand of more than 20 GWh

Under the Statistics Act, the exact amounts of heat consumed by the individual industrial zones are considered confidential business information in Hungary, and the nature of data collection does not allow such direct disclosure of data either. In order to eliminate this, units with a total rated heat input capacity of more than 20 MW<sub>th</sub> are stated in the report for all firing equipment found at one facility as defined in Annex 1 to Act CCXVII of 2012 on participation in the Community greenhouse gas emissions trading system and the implementation of the Effort Sharing Decision.

| Name of facility                                    | Address of facility     | Street and street number                        | Rated<br>capacity<br>(MW) |
|-----------------------------------------------------|-------------------------|-------------------------------------------------|---------------------------|
| WIENERBERGER Zrt., Kőszeg Brick Factory             | Kőszeg                  | Csepregi út 2.                                  | 11.52                     |
| DUNAFIN Paper Mill                                  | Dunaújváros             | Papírgyári út 42-46.                            | 12.52                     |
| HIGI Papírsoft ZRt., 'f.a.' (in liquidation)        | Szolnok                 | Piroskai u. 16.                                 | 14.02                     |
| WIENERBERGER Zrt., Solymár Brick Factory No I       | Budapest                | Solymárvölgy,<br>topographical lot No 142       | 16.568                    |
| WIENERBERGER Zrt., Balatonszentgyörgy Brick Factory | Balatonszent-<br>györgy | Balatonszentgyörgy,<br>topographical lot No 047 | 21.675                    |
| Leier Hungaria Kft., Mátraderecske Brick Factory    | Mátraderecske           | Baross Gábor út 51.                             | 22.49                     |

Table 1 – Facilities with firing equipment over 20 MW<sub>th</sub>

| Hartmann Hungary Kft.                                              | Ács                   | Hartmann u. 1.                                                               | 24      |
|--------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------|---------|
| Austria Juice Hungary Kft., Vásárosnamény Apple Juice<br>Plant     | Vásárosnamény         | Nyíregyházi út 3.                                                            | 25.828  |
| Agrana-Juice-Magyarország Kft., Anarcs Apple Juice<br>Plant        | Anarcs                | Széchenyi út 72.                                                             | 25.83   |
| Dunacell Dunaújvárosi Cellulózgyár Kft.                            | Dunaújváros           | Papírgyári u. 42-46.                                                         | 26      |
| STRABAG Általános Építő Kft., Illatos út Mixing Plant              | Budapest              | Illatos út 8.                                                                | 26.09   |
| Szarvas Sowing Seed Plant                                          | Szarvas               | Industrial Estate,<br>topographical lot<br>No 0718/18                        | 26.093  |
| Dreher Sörgyárak Zrt.                                              | Budapest              | Jászberényi út 7-11.                                                         | 27.45   |
| TEVA Gyógyszergyár Zrt., Gödöllő Boiler Building                   | Gödöllő               | Táncsics Mihály út 82.                                                       | 27.575  |
| ESZAT Kft., Apple Processing Plant                                 | Mátészalka            | Jármi út 57.                                                                 | 28      |
| EGIS Gyógyszergyár Zrt., Körmend Factory Unit                      | Körmend               | Mátyás király u. 65.                                                         | 28.706  |
| Szada Compressor Station                                           | Szada                 | topographical lot<br>No 0107/977                                             | 30      |
| WIENERBERGER Zrt., Tiszavasvári Brick Factory                      | Tiszavasvári          | Nánási út, topographical<br>lot No 0194/10                                   | 30.311  |
| BE-Optimum Kft.                                                    | Budapest              | Budafoki út 52.                                                              | 31.2    |
| ROCKWOOL Hungary Kft., Tapolca Factory                             | Tapolca               | Keszthelyi u. 53.                                                            | 32.06   |
| Creaton Hungary Kft.                                               | Lenti                 | Cserépgyár u. 1.                                                             | 33.124  |
| Nestlé Hungária Kft.                                               | Bük                   | Darling u. 1.                                                                | 35      |
| INOTAL Zrt., Inota Site                                            | Várpalota             | Fehérvári út 26.                                                             | 35.33   |
| Csaba Factory Unit                                                 | Békéscsaba            | Kétegyházi út 2631.                                                          | 37.25   |
| MÁV VASJÁRMŰ Járműjavító és Gyártó Kft. 'cs.a.' (in<br>bankruptcy) | Szombathely           | Szövő u. 85.                                                                 | 39.731  |
| SAPA Profiles Kft.                                                 | Székesfehérvár        | Verseci u. 1–15.                                                             | 41      |
| Rókus I Heating Plant                                              | Szeged                | Fűtőmű u. (topographical<br>lot No 16297/33)                                 | 41.834  |
| Univer-Product Zrt.                                                | Kecskemét             | Szolnoki út 35.                                                              | 42.345  |
| Pick Szeged Szalámigyár és Húsüzem Zrt., Central Site              | Szeged                | Szabadkai út 18.                                                             | 42.38   |
| Győri Szeszgyár és Finomító ZRt., Boiler Building                  | Győr                  | Budai u. 7.                                                                  | 44.14   |
| EGIS Gyógyszergyár Zrt., Central Site                              | Budapest              | Keresztúri út 30-38.                                                         | 44.258  |
| Ózdi Acélművek Kft.                                                | Ózd                   | Kovács Hagyó Gyula út 7.                                                     | 47      |
| Richter Gedeon Nyrt.                                               | Budapest              | Gyömrői út 19-21.                                                            | 49.2    |
| Borsodi Sörgyár Kft., Factory Site                                 | Bocs                  | Rákóczi Ferenc u. 81.                                                        | 51.4864 |
| SzBT-1 Compressor and Gas Conditioning Plant                       | Algyő                 | Outer areas,<br>topographical lot<br>No 884/18                               | 52.691  |
| Algyő Gas Plant                                                    | Algyő                 | topographical lot<br>No 01884/27                                             | 53.063  |
| TEVA Gyógyszergyár Zrt. Boiler Building and Small Gas              | Dahaa                 |                                                                              | 61.44   |
| Turbine Power Plant<br>Báta Compression Station                    | Debrecen<br>Báta      | Pallagi út 13.<br>topographical lot<br>Nos 020/7, 020/8, 020/9<br>and 020/10 | 64.77   |
| MOL Nyrt., Zala Refinery                                           | Zalaegerszeg          | Zrínyi M. u. 6.,<br>topographical lot<br>No 1871/7                           | 66.084  |
| Villeroy & Boch Magyarország Kft.                                  | Hódmezővásár-<br>hely | Erzsébeti út 7.                                                              | 67.308  |

| Hankook Tire Magyarország Kft., Tyre Factory                                | Rácalmás             | Hankook tér 1.                                             | 67.813   |
|-----------------------------------------------------------------------------|----------------------|------------------------------------------------------------|----------|
| FALCO Zrt., Szombathely Site                                                | Szombathely          | Zanati u. 26.                                              | 68.005   |
| Mercedes-Benz Manufacturing Hungary Kft.                                    | Kecskemét            | Mercedes út 1.                                             | 68.05    |
| Rába Futómű Kft., Airport Site                                              | Győr                 | Martin u. 1.                                               | 70.102   |
| Mosonmagyaróvár Compressor Station                                          | Mosonmagyar-<br>óvár | Outer areas                                                | 70.208   |
| Airport boiler plant                                                        | Győr                 | Martin u. 1.                                               | 71.2     |
| Magyar Földgáztároló Zrt., Hajdúszoboszló South<br>Natural Gas Storage Site | Nagyhegyes           | Nagyhegyes, outer areas,<br>topographical lot<br>No 0159/1 | 78.909   |
| Magyar Földgáztároló Zrt., Hajdúszoboszló South<br>Natural Gas Storage Site | Nagyhegyes           | Nagyhegyes, outer areas,<br>topographical lot<br>No 0159/1 | 79.569   |
| Zoltek Zrt.                                                                 | Nyergesújfalu        | Varga József tér 1.                                        | 83.087   |
| Nemesbikk Compression Station                                               | Nemesbikk            | Outer areas                                                | 87.68    |
| Budapest Airport Zrt.                                                       | Budapest             | <b>BUD</b> International Airport                           | 88       |
| FGSZ Földgázszállító ZRt., Hajdúszoboszló Compressor<br>Station             | Hajdúszoboszló       | Balmazújváros, roadside                                    | 89.6     |
| Hungarian Suzuki Zrt., Esztergom Factory                                    | Esztergom            | Schweidel J. u. 52.                                        | 96.2     |
| EVONIK Agroferm Zrt., Energy supply                                         | Kaba                 | Nádudvar, half road                                        | 102.42   |
| Audi Hungaria Motor Kft., Vehicle Factory                                   | Győr                 | Kardán u. 1.                                               | 103.127  |
| Bioethanol Plant – Dunaföldvár                                              | Dunaföldvár          | Sas u. 7.                                                  | 124.1    |
| Magyar Cukor Zrt., Kaposvár Sugar Factory                                   | Kaposvár             | Pécs u. 10-14.                                             | 128      |
| Magyar Cukor Zrt., Kaposvár Sugar Factory                                   | Kaposvár             | Pécs u. 10-14.                                             | 128      |
| Dunaferr Blast Furnace and Converter Steelworks                             | Dunaújváros          | Vasmű tér 1-3.                                             | 129.73   |
| Nitrogénművek Zrt.                                                          | Pétfürdő             | Hősök tere 14.                                             | 140      |
| MAL Zrt. 'f.a.' (in liquidation), Ajka Site                                 | Ajka                 | Factory Site,<br>topographical lot<br>No 598/15            | 141.266  |
| FGSZ Földgázszállító Zrt., Városföld Compressor<br>Station                  | Városföld            | Outer areas                                                | 155.1    |
| Danube Heat Generation Centre                                               | Százhalombatta       | Olajmunkás u. 2.                                           | 172      |
| Alcoa-Köfém Székesfehérvári Könnyűfémmű Kft.                                | Székesfehérvár       | Verseci u. 1-15.                                           | 211.34   |
| Hungrana Kft.                                                               | Szabadegyháza        | Industrial Estate,<br>topographical lot<br>No 0351/26      | 213.1    |
| FGSZ Földgázszállító Zrt., Beregdaróc Compressor<br>Station                 | Beregdaróc           | Outer areas                                                | 288.592  |
| DUNAFERR Hot Rolling Mill                                                   | Dunaújváros          | Vasmű tér 1-3.                                             | 386.168  |
| MOL Nyrt., Danube Refinery                                                  | Százhalombatta       | Olajmunkás u. 2.                                           | 843.734  |
| MOL Nyrt., Danube Refinery                                                  | Százhalombatta       | Olajmunkás u. 2.                                           | 941.7    |
| MOL Nyrt., Danube Refinery                                                  | Százhalombatta       | Olajmunkás u. 2.                                           | 941.7    |
| тук                                                                         | Tiszaújváros         | Gyári út 1.                                                | 1 044.43 |

### 3.2 Existing and planned district heating infrastructure

The existing district heating infrastructure broken down by city/town is available under the link below. We note that even more than one district heating area may operate within one city (e.g. in

the case of Miskolc and Szeged). The report of the Hungarian Energy and Public Utility Regulatory Authority is available at the following link:

http://www.mekh.hu/download/e/8a/10000/a\_magyar\_tavho\_szektor\_2014\_evi\_statisztikai\_adatai .xlsx





### 3.3 Potential heating distribution points

# 3.3.1 Electricity generation facilities with a total annual electricity output of over 20 GWh and existing energy generation and district heating facilities listed in Part II of Annex I

The exact electricity output of the individual installations is considered a trade secret, thus the report outlines approximate values. Electricity generation units subject to a licence, including central heating plants, are shown in Annex 1, together with the exact geographical coordinates of the facilities. The list has been cleaned, since facilities with no heat generation during the process have been deleted (e.g. hydropower plants, wind power plants). Small, about 2 MW power plants are included in the list; their output may only exceed 20 MW per year if they have a very high utilisation rate. In many cases, this is not likely; at the same time, because the smallest ones also include gas-fired heating power plants, they have not been deleted from the list. On the basis of the GPS coordinates in the table, the facilities can be shown in a map, and the table also includes the technologies applied, thus it also meets the reporting obligation in connection with the technologies listed in Part II of Annex I to the Directive.

### 3.3.2 Waste incineration plants

Only one waste plant that verifiably incinerates only municipal waste and does not incinerate hazardous waste during its operation operates in Hungary. This facility is the Metropolitan Waste-to-energy Plant, which has the following exact geographical coordinates: 47°34′56.9″N 19°08′03.4″E.

 Determination of the heating demand that may be met by high-efficiency cogeneration and district heating and determination of the supplementary high-efficiency cogeneration potential (points D and E)

They are determined on the basis of the study in Annex 2.

# 5. Determination of the energy efficiency potential of the district heating infrastructure

### 5.1 Replacement of primary pipelines

According to the district heating annals, the total route length of pipelines is 2 177 km, of which, calculating proportions on the basis of data sent for price regulation by the Professional Federation of Hungarian District Heating Suppliers, the route length of primary pipelines is estimated at 1 827 km, including about 55 % laid in protective ducts and about 7 % running overhead.

With respect to the replacement of primary pipelines, only the replacement of pipelines laid in reinforced concrete protective ducts have been reckoned with. Their service life is more than 30 years everywhere.

The reduction of heat loss depends on the condition of the pipelines and the primary schedule. In addition, the savings also depend on the fee for the heat generated/purchased.

In the case of network optimisation, it was cautiously assumed that the dimension could be reduced by one size in the case of half of the pipelines.

### 5.2 Separation of heating centres

The number of heat reception stations was approximated using the difference between the number of buildings and heating centres. Payback highly depends on the length of the primary pipelines to be constructed along with separation.

### 5.3 Insulation and laying underground of overhead pipelines

Re-insulation and laying underground were reckoned with for 90 % and 10 % of overhead pipelines, respectively. In this case, too, payback depends on the primary temperature gradient and the fee for the heat generated/purchased.

### 5.4 Connection of new consumers to district heating

The connection of new consumers corresponding to 10 % of current peak heat demand was taken into account.

### 5.5 Establishment of a telemechanical system

Our approximation considered that no telemechanical system or telemonitoring is established yet in one third of the heating centres.

### 5.6 Heat source upgrading (natural gas-fired peak load boilers)

Only the boilers of district heating providers were taken into account, with the assumption that about 50 % of the boilers have to be refurbished.

### 5.7 Connection of heat sources

Our calculations were based on the pilot project of FŐTÁV Zrt.

### 5.8 Installation of biomass boilers

Our calculations included new installations with a capacity of 250 MW.

| Activity                                                           | Quantity        |           |   | Capital<br>cost | Fuel heat<br>input<br>saved | Reducti<br>on in<br>green-<br>house<br>gas<br>emissio<br>ns | Increase in<br>the use of<br>renewable<br>energy<br>sources | Capital<br>cost<br>requireme<br>nt of<br>saving<br>1 GJ/year<br>of fuel<br>heat input | Capital<br>cost<br>requireme<br>nt of<br>1 tonne/<br>year<br>reduction<br>in green-<br>house gas<br>emissions | Ave-<br>rage<br>BMR | Note                                                                                                   |
|--------------------------------------------------------------------|-----------------|-----------|---|-----------------|-----------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------|
|                                                                    |                 |           |   | HUF<br>million  | GJ/year                     | tonne/<br>year                                              | GJ/year                                                     | HUF<br>thousand/<br>GJ/<br>year                                                       | HUF/<br>tonne/<br>year                                                                                        |                     |                                                                                                        |
| Replacement<br>of primary<br>pipeline with<br>original<br>diameter | Route<br>length | 1 014 289 | m | 182 572         | 5 521 037                   | 452 199                                                     |                                                             | 33.1                                                                                  | 403.7                                                                                                         | 5.8 %               | It depends<br>on the<br>primary<br>schedule<br>and the fee<br>for the heat<br>purchased/<br>generated. |
| Replacement<br>of the primary<br>pipeline (in                      | Route<br>length | 1 014 289 | m | 167 358         | 6 073 141                   | 497 419                                                     |                                                             | 27.6                                                                                  | 336.5                                                                                                         | 7.4 %               |                                                                                                        |

 Table 2 – Energy efficiency potential of the district heating system in Hungary

| Activity                                                               | Quantity                                   |       | Capital<br>cost | Fuel heat<br>input<br>saved | Reducti<br>on in<br>green-<br>house<br>gas<br>emissio<br>ns | Increase in<br>the use of<br>renewable<br>energy<br>sources | Capital<br>cost<br>requireme<br>nt of<br>saving<br>1 GJ/year<br>of fuel<br>heat input | Capital<br>cost<br>requireme<br>nt of<br>1 tonne/<br>year<br>reduction<br>in green-<br>house gas<br>emissions | Ave-<br>rage<br>BMR    | Note  |                                                                                                 |
|------------------------------------------------------------------------|--------------------------------------------|-------|-----------------|-----------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------|-------|-------------------------------------------------------------------------------------------------|
|                                                                        |                                            |       |                 | HUF<br>million              | GJ/year                                                     | tonne/<br>year                                              | GJ/year                                                                               | HOF<br>thousand/<br>GJ/<br>year                                                                               | HUF/<br>tonne/<br>year |       |                                                                                                 |
| the case of<br>reducible<br>diameters for<br>half of the<br>pipelines) |                                            |       |                 |                             |                                                             |                                                             |                                                                                       |                                                                                                               |                        |       |                                                                                                 |
| Separation of<br>heating<br>centres                                    | Number of<br>heat<br>reception<br>stations | 6 861 | qty             | 45 279                      | 1 503 059                                                   | 103 126                                                     |                                                                                       | 30.1                                                                                                          | 439.1                  | 4.9 % | It highly<br>depends on<br>the length<br>of the<br>primary<br>pipelines to<br>be<br>constructed |

| Activity                                            | Quantity        |         |   | Capital<br>cost | Fuel heat<br>input<br>saved | Reducti<br>on in<br>green-<br>house<br>gas<br>emissio<br>ns | Increase in<br>the use of<br>renewable<br>energy<br>sources | Capital<br>cost<br>requireme<br>nt of<br>saving<br>1 GJ/year<br>of fuel<br>heat input | Capital<br>cost<br>requireme<br>nt of<br>1 tonne/<br>year<br>reduction<br>in green-<br>house gas<br>emissions | Ave-<br>rage<br>BMR | Note                                                                                                                  |
|-----------------------------------------------------|-----------------|---------|---|-----------------|-----------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------|
|                                                     |                 |         |   | HUF<br>million  | GJ/year                     | tonne/<br>year                                              | GJ/year                                                     | HUF<br>thousand/<br>GJ/<br>year                                                       | HUF/<br>tonne/<br>year                                                                                        |                     |                                                                                                                       |
| Heat<br>insulation of<br>overhead<br>pipelines      | Route<br>length | 120 045 | m | 20 721          | 683 294                     | 40 764                                                      |                                                             | 30.3                                                                                  | 508.3                                                                                                         | 12.4<br>%           |                                                                                                                       |
| Laying of<br>overhead<br>pipelines in<br>the ground | Route<br>length | 13 338  | m | 2 387           | 82 654                      | 4 931                                                       |                                                             | 28.9                                                                                  | 484.1                                                                                                         | 12.7<br>%           | Only where<br>it is also<br>recommen<br>ded from<br>the point of<br>view of<br>cityscape or<br>property<br>protection |

| Activity                                                    | Quantity                      |         | Capital<br>cost | Fuel heat<br>input<br>saved | Reducti<br>on in<br>green-<br>house<br>gas<br>emissio<br>ns | Increase in<br>the use of<br>renewable<br>energy<br>sources | Capital<br>cost<br>requireme<br>nt of<br>saving<br>1 GJ/year<br>of fuel<br>heat input | Capital<br>cost<br>requireme<br>nt of<br>1 tonne/<br>year<br>reduction<br>in green-<br>house gas<br>emissions | Ave-<br>rage<br>BMR    | Note      |  |
|-------------------------------------------------------------|-------------------------------|---------|-----------------|-----------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------|-----------|--|
|                                                             |                               |         |                 | HUF<br>million              | GJ/year                                                     | tonne/<br>year                                              | GJ/year                                                                               | HUF<br>thousand/<br>GJ/<br>year                                                                               | HUF/<br>tonne/<br>year |           |  |
| Connection of<br>new<br>consumers to<br>district<br>heating | Heating<br>capacity<br>demand | 405 162 | kW              | 21 616                      | 525 232                                                     | 50 752                                                      |                                                                                       | 41.2                                                                                                          | 425.9                  | 12.1<br>% |  |
| Establishment<br>of a<br>telemechanica<br>I system          | Number of<br>heat<br>centres  | 4 251   | qty             | 3 903                       | 137 139                                                     | 8 284                                                       |                                                                                       | 28.5                                                                                                          | 471.1                  | 6.6 %     |  |
| Heat source<br>upgrading<br>(with a gas-<br>fired boiler)   | Installed<br>heat<br>capacity | 426 545 | kW              | 6 790                       | 256 817                                                     | 12 490                                                      |                                                                                       | 26.4                                                                                                          | 543.6                  | 14.3<br>% |  |

| Activity                                                                                                                    | Quantity             |         | Capital<br>cost | Fuel heat<br>input<br>saved | Reducti<br>on in<br>green-<br>house<br>gas<br>emissio<br>ns | Increase in<br>the use of<br>renewable<br>energy<br>sources | Capital<br>cost<br>requireme<br>nt of<br>saving<br>1 GJ/year<br>of fuel<br>heat input | Capital<br>cost<br>requireme<br>nt of<br>1 tonne/<br>year<br>reduction<br>in green-<br>house gas<br>emissions | Ave-<br>rage<br>BMR | Note      |                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------|---------|-----------------|-----------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------|-----------|-----------------------------------------------------------------------------------|
|                                                                                                                             |                      |         | HUF<br>million  | GJ/year                     | tonne/<br>year                                              | GJ/year                                                     | HUF<br>thousand/<br>GJ/<br>year                                                       | HUF/<br>tonne/<br>year                                                                                        |                     |           |                                                                                   |
| Increasing and<br>optimisation<br>of the<br>utilisation rate<br>of heat<br>sources by<br>connecting<br>heating<br>districts | Capacity<br>growth   | 200     | MW              | 35 572                      | 684 531                                                     | 192 197                                                     |                                                                                       | 52.0                                                                                                          | 185.1               | 14.0<br>% | It depends<br>on the fee<br>for the heat<br>produced<br>by the heat<br>source(s). |
| Installation of<br>a gas engine<br>heat storage<br>tank                                                                     | Storage<br>tank size | 100 000 | m³              | 5 822                       | 691 375                                                     | 39 147                                                      |                                                                                       | 8.4                                                                                                           | 148.7               | 11.3<br>% |                                                                                   |

| Activity                               | Q                             | Quantity |                | Capital<br>cost |                | Fuel heat<br>input<br>saved | Reducti<br>on in<br>green-<br>house<br>gas<br>emissio<br>ns | Increase in<br>the use of<br>renewable<br>energy<br>sources | Capital<br>cost<br>requireme<br>nt of<br>saving<br>1 GJ/year<br>of fuel<br>heat input | Capital<br>cost<br>requireme<br>nt of<br>1 tonne/<br>year<br>reduction<br>in green-<br>house gas<br>emissions | Ave-<br>rage<br>BMR | Note |
|----------------------------------------|-------------------------------|----------|----------------|-----------------|----------------|-----------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------|------|
|                                        |                               |          | HUF<br>million | GJ/year         | tonne/<br>year | GJ/year                     | HUF<br>thousand/<br>GJ/<br>year                             | HUF/<br>tonne/<br>year                                      |                                                                                       |                                                                                                               |                     |      |
| Installation of<br>a biomass<br>boiler | Installed<br>heat<br>capacity | 250 000  | kW             | 28 838          |                | 247 561                     | 3 756 704                                                   | 7.7                                                         | 116.5                                                                                 | 13.7<br>%                                                                                                     |                     |      |

- 6. In order to meet the demand referred to in point D and to reach the potential stated in point E, strategies, specialist policies and measures acceptable until 2020 and 2030
- 6.1 Increasing the proportion of cogeneration within heating energy and electricity generation
- 6.2 Development of an efficient district heating infrastructure that is compatible with the development of high-efficiency cogeneration ...
- 6.3 Encouraging the construction of new heat-based electricity generation facilities and industrial plants generating waste heat generating at sites where ...
- 6.4 Specialist policies to ensure that residential areas and industrial heat consumers are established where waste heat is available
- 6.5 Specialist policies to encourage that electricity generation facilities, waste recovery facilities and other industrial facilities generating waste heat are connected to the district heating system
- 6.6 Specialist policies to ensure that residential areas and heat-consuming industrial facilities are connected to the district heating network
- 7. Proportion of high-efficiency cogeneration and potential and progress specified under Directive 2004/8/EC

The report on high-efficiency cogeneration sent by the Hungarian Energy and Public Utility Regulatory Authority to the Commission under Directive 2004/8/EC contains the following information for 2013.

Table 3 – Report of the MEKH on CHP generation in Hungary sent to the Commission in connection with Directive 2004/8/EC

| Completely CHP Units (Efficiency > 75%) |            |           |             |           |           |             |           |            |           |
|-----------------------------------------|------------|-----------|-------------|-----------|-----------|-------------|-----------|------------|-----------|
|                                         |            | M         | aximum capa | icity     |           | Production  |           | Fuel Input | Number    |
|                                         |            | Elec      | tricity     | Heat      | Elec      | Electricity |           |            | of Units  |
| Type of cycle                           |            | CHP       | Gross       | Net       | CHP       | Gross       | CHP       |            |           |
|                                         |            | MW        | MW          | MW        | GWh       | GWh         | TJ        | TJ (NCV)   | n         |
|                                         |            | А         | В           | С         | D         | F           | G         | н          | 1         |
| Combined cycle (eff > 80%)              | 1          | 317.8     | 317.8       | 391.3     | 778.337   | 778.337     | 4 220.782 | 8 538.668  | 6         |
| Gas turbine with heat recovery          | 2          | 269.53    | 269.53      | 410.46    | 833.2887  | 833.2887    | 4 741.238 | 9 142.117  | 13        |
| Internal Combustion engine              | 3          | 350.136   | 350.136     | 369.065   | 1 123.048 | 1 123.048   | 4 260.362 | 10 250.28  | 195       |
| Steam: backpressure turbine             | 4          | 118       | 118         | 619.5141  | 226.2326  | 226.2326    | 5 976.549 | 7 691.289  | 13        |
| Steam: condensing turbine (eff > 80%)   | 5          | 96.1      | 96.1        | 174.5     | 94.03291  | 94.03291    | 1 220.261 | 1 862.024  | 3         |
| Others                                  | 6          | 0         | 0           | 0         | 0         | 0           | 0         | 0          | 0         |
| Subtotal (1 +2+3+4+5+6)                 | 7          | 1 151,566 | 1 151,566   | 1 964,839 | 3 054,939 | 3 054,939   | 20 419,19 | 37 484,37  | 230       |
| Units with a non-CHP component (Efficie | ncy < 75%) |           |             |           |           |             |           |            |           |
|                                         |            | Ma        | ximum capao | city      |           | Production  |           | Fuel Input | Number of |
| Type of cycle                           |            | Elect     | ricity      | Heat      | Electi    | ricity      | Heat      |            | Units     |
| Type of cycle                           |            | CHP       | Gross       | Net       | CHP       | Gross       | CHP       |            |           |
|                                         |            | MW        | MW          | MW        | GWh       | GWh         | LΤ        | TJ (NCV)   | n         |
| Combined cycle (eff > 80%)              | 8          | 250.7     | 534         | 303.2     | 400.6922  | 1 225.691   | 2 200.799 | 4 546.41   | 3         |
| Gas turbine with heat recovery          | 9          | 4.455     | 4.875       | 8.1       | 5.327667  | 5.769       | 34.872    | 71.38649   | 1         |
| Internal Combustion engine              | 10         | 84.90194  | 100.171     | 105.447   | 177.2702  | 257.1563    | 745.2918  | 1 961.799  | 84        |
| Steam: backpressure turbine             | 11         | 47.1446   | 47.547      | 347.7836  | 81.76446  | 102.0324    | 2 170.604 | 3 025.62   | 6         |
| Steam: condensing turbine (eff > 80%)   | 12         | 133.2388  | 1 258.2     | 426.2     | 159.8822  | 8 336.17    | 1 426.417 | 3 430.04   | 15        |
| Others                                  | 13         | 0         | 0           | 0         | 0         | 0           | 0         | 0          | 0         |
| Subtotal (8+9+10+11+12+13)              | 14         | 520.4403  | 1944.793    | 1 190.731 | 824.9368  | 9 926.818   | 6 577.984 | 13 035.25  | 109       |
| Total (7+14)                            | 15         | 1 672.006 | 3 096.359   | 3 155.57  | 3 879.876 | 12 981.76   | 26 997.17 | 50 519.63  | 339       |
| of which Autoproducers                  | 16         | 129.9502  | 136.927     | 333.3008  | 422.083   | 480.3089    | 4 711.39  | 7 837.751  | 96        |

## 8. Estimation of required primary energy savings

# 9. Estimate for possible State aid measures to be taken for heating purposes

The tables presented in this chapter reckon with a model for the establishment of renewable heat generation capacities, which is financed through 40% of non-reimbursable aid. Due to the uncertainty of the future, three scenarios were outlined in total. They differ in the extent to which district heating demand will change in the future.

### 9.1 Scenario 1: Minimum district heating

It is the alternative assuming the lowest overall rate of use of district heating, according to which:

- the district heating demand of current users will decrease along with a faster pace of upgrading;
- the number of users will remain at the current level in all reviewed segments.

The results of model calculations are shown in Table 4.

It can be established that if demand is met and the energy mix is realised in accordance with Scenario 1, the financiers of the district heating sector will realise savings of HUF 14 057 million in 2020 compared to 2015, which will increase about 2.5-fold (HUF 34 104 million) by 2040. It can be seen that, although significantly decreasing, the baseline of district heating aid may not be eliminated even in 2040 if Scenario 1 is implemented. The demand for the development of geothermal capacity is 150 MW in total until 2019 (HUF 45 billion), and an additional 216 MW until 2039 (HUF 64.8 billion).

In the case of the required biomass-based sources, it will be necessary to establish a capacity of 215 MW before 2020 (HUF 25.8 billion), which will continue to increase by about 199 MW by 2040 (HUF 23.8 billion).

If all savings in financing were spent on reducing the district heating cost of the general public (continuing utility rate cuts), it would allow a reduction of the initial HUF 3 900/GJ by HUF 651/GJ (16.7 %) in 2020 and HUF 2 034 (52.1 %) in 2040. If the projects do not receive any support, the price reduction potential for 2020 and 2040 will decrease to HUF 598/GJ and HUF 1 881/GJ, respectively.

Interpolating the value of district heating aid relative to residential consumption to 2021 (HUF 1 760/GJ), it can be established that when the aid will be removed as of 2022, the residential price of heat (if there is no change in the prices payable by other users) should be increased by about 45 % compared to today's price level in order to ensure lossless district heating.

### Table 4 – Calculations of the scenario assuming minimum use of district heating

| Description                                                             | 2015           | 2016    | 2017           | 2018    | 2019           | 2020           | 2025    | 2030   | 2035   | 2040          |
|-------------------------------------------------------------------------|----------------|---------|----------------|---------|----------------|----------------|---------|--------|--------|---------------|
|                                                                         |                | Sc      | enario 1       |         |                |                |         |        |        |               |
| Heat sold to residential consumers (PJ)                                 | 24.48          | 24.17   | 23.69          | 23.05   | 22.33          | 21.61          | 19.15   | 17.33  | 16.94  | 16.77         |
| Residential sales revenue (HUF million)                                 | 95 472         | 94 263  | 92 391         | 89 895  | 87 087         | 84 279         | 74 685  | 67 587 | 66 066 | 65 403        |
| Heat sold to KKKIs (PJ)                                                 | 2.45           | 2.42    | 2.39           | 2.34    | 2.28           | 2.21           | 2.03    | 1.91   | 1.83   | 1.82          |
| KKI sales revenue (HUF million)                                         | 14 333         | 14 157  | 13 982         | 13 689  | 13 338         | 12 929         | 11 876  | 11 174 | 10 706 | 10 647        |
| Commercial sales (PJ)                                                   | 3.69           | 3.69    | 3.69           | 3.69    | 3.69           | 3.69           | 3.69    | 3.69   | 3.69   | 3.69          |
| Commercial sales revenue (HUF million)                                  | 20 003         | 20 003  | 20 003         | 20 003  | 20 003         | 20 003         | 20 003  | 20 003 | 20 003 | 20 003        |
| Total consumer energy demand (PJ)                                       | 30.62          | 30.28   | 29.77          | 29.08   | 28.3           | 27.51          | 24.87   | 22.93  | 22.46  | 22.28         |
| Total consumer sales revenue (HUF million)                              | 129 808        | 128 423 | <b>126 376</b> | 123 587 | 120 428        | 117 211        | 106 564 | 98 764 | 96 775 | <i>96 053</i> |
| Network loss (PJ)                                                       | 4.18           | 4.08    | 3.95           | 3.81    | 3.66           | 3.51           | 2.95    | 2.72   | 2.67   | 2.64          |
| Total heat output (PJ)                                                  | 34.8           | 34.36   | 33.72          | 32.89   | 31.96          | 31.02          | 27.82   | 25.65  | 25.13  | 24.92         |
| Natural gas-based district heat generation (PJ)                         | 29.79          | 26.81   | 25.72          | 23.94   | 22.05          | 20.05          | 11.34   | 8.47   | 6.14   | 5.72          |
| cogenerated (PJ)                                                        | 13.41          | 12.8    | 12.28          | 11.43   | 10.53          | 9.57           | 5.41    | 4.65   | 3.37   | 3.14          |
| energy cost of cogenerated heat (HUF million)                           | 54 981         | 52 480  | 50 348         | 46 863  | 43 173         | 39 237         | 22 181  | 19 065 | 13 817 | 12 874        |
| generated by boilers (PJ)                                               | 16.38          | 14.01   | 13.44          | 12.51   | 11.52          | 10.48          | 5.93    | 3.82   | 2.77   | 2.58          |
| energy cost of heat generated by boilers (HUF million)                  | 72 891         | 62 345  | 59 808         | 55 670  | 51 264         | 46 636         | 26 389  | 16 999 | 12 327 | 11 481        |
| Energy cost of natural gas-based district heat generation (HUF million) | 127 872        | 114 825 | 110 156        | 102 533 | 94 437         | 85 873         | 48 570  | 36 064 | 26 144 | 24 355        |
| Total of renewable-based district heat generation (PJ)                  | 4.00           | 6.60    | 7.10           | 8.10    | 9.10           | 10.20          | 15.88   | 16.72  | 18.63  | 18.93         |
| geothermal district heat (PJ)                                           | 1.00           | 2.00    | 2.20           | 2.70    | 3.20           | 3.70           | 5.72    | 6.19   | 7.39   | 7.59          |
| energy cost of geothermal district heat (HUF million)                   | 2 600          | 5 200   | 5 720          | 7 020   | 8 320          | 9 620          | 14 872  | 16 094 | 19 214 | 19 734        |
| biomass-based district heat (PJ)                                        | 2.50           | 3.70    | 4.00           | 4.50    | 5.00           | 5.60           | 7.66    | 8.03   | 8.41   | 8.46          |
| energy cost of biomass-based district heat (HUF million)                | 8 500          | 12 580  | 13 600         | 15 300  | 17 000         | 19 040         | 26 044  | 27 302 | 28 594 | 28 764        |
| waste-based district heat generation (PJ)                               | 0.50           | 0.90    | 0.90           | 0.90    | 0.90           | 0.90           | 2.50    | 2.50   | 2.83   | 2.88          |
| energy cost of waste-based district heat generation (HUF million)       | 500            | 900     | 900            | 900     | 900            | 900            | 4 100   | 4 100  | 4 760  | 4 860         |
| Energy cost of renewable-based district heat generation (PJ)            | 11 600         | 18 680  | 20 220         | 23 220  | 26 220         | 29 560         | 45 016  | 47 496 | 52 568 | 53 358        |
| Other district heat generation (PJ)                                     | 1.00           | 0.95    | 0.90           | 0.86    | 0.81           | 0.77           | 0.60    | 0.46   | 0.36   | 0.28          |
| Energy cost of other district heat generation (HUF million)             | 2 200          | 2 090   | 1 980          | 1 892   | 1 782          | 1 694          | 1 320   | 1 012  | 792    | 616           |
| Total energy cost of district heat generation (HUF million)             | <b>141 672</b> | 135 595 | <b>132 356</b> | 127 645 | <b>122 439</b> | <i>117 127</i> | 94 906  | 84 572 | 79 504 | 78 329        |

| Cost of district heat generation without energy costs (HUF million)            | 42 136  | 41 334        | 41 150      | 40 789      | 40 427  | 40 027  | 38 551  | 38 250  | 37 706  | 37 620  |
|--------------------------------------------------------------------------------|---------|---------------|-------------|-------------|---------|---------|---------|---------|---------|---------|
| Total cost of district heat generation (HUF million)                           | 183 808 | 176 929       | 173 506     | 168 433     | 162 866 | 157 154 | 133 456 | 122 822 | 117 209 | 115 949 |
| Applications for district heat supply aid (HUF million)                        | 54 000  | 48 505        | 47 130      | 44 846      | 42 438  | 39 943  | 26 892  | 24 058  | 20 434  | 19 896  |
| Change in applications for district heat supply aid (HUF million/year)         | 0       | -5 495        | -6 870      | -9 154      | -11 562 | -14 057 | -2 7108 | -29 942 | -33 566 | -34 104 |
| Decrease in aid applications relative to residential heat consumption (HUF/GJ) | 0       | -227          | -290        | -397        | -518    | -651    | -1 416  | -1 728  | -1 981  | -2 034  |
|                                                                                | Capit   | al costs of i | enewable o  | capacities  |         |         |         |         |         |         |
| Renewable capacities to be newly established                                   |         |               |             |             |         |         |         |         |         |         |
| geothermal capacity (MW)                                                       |         | 56            | 11          | 28          | 28      | 28      | 112     | 26      | 67      | 11      |
| cumulative geothermal capacity (MW)                                            |         | 56            | 67          | 94          | 122     | 150     | 262     | 288     | 355     | 366     |
| geothermal capacity development cost (HUF million)                             | 16 667  | 3 333         | 8 333       | 8 333       | 8 333   |         | 33 667  | 7 833   | 20 000  | 3 333   |
| cumulative geothermal capacity development cost (HUF million)                  | 16 667  | 20 000        | 28 333      | 36 667      | 45 000  | 45 000  | 78 667  | 86 500  | 106 500 | 109 833 |
| biomass capacity (MW)                                                          |         | 83            | 21          | 35          | 35      | 42      | 143     | 26      | 26      | 3       |
| cumulative biomass capacity (MW)                                               |         | 83            | 104         | 139         | 174     | 215     | 358     | 384     | 410     | 414     |
| biomass capacity development cost (HUF million)                                | 10 000  | 2 500         | 4 167       | 4 167       | 5 000   |         | 17 167  | 3 083   | 3 167   | 417     |
| cumulative biomass capacity development cost (HUF million)                     | 10 000  | 12 500        | 16 667      | 20 833      | 25 833  | 25 833  | 43 000  | 46 083  | 49 250  | 49 667  |
|                                                                                | Change  | e in costs o  | ther than e | nergy costs | ;       |         |         |         |         |         |
| Savings on non-energy costs due to VNT (HUF million/year)                      |         |               |             |             |         |         |         |         |         |         |
| geothermal capacities (HUF million/year)                                       | 0       | 267           | 53          | 133         | 133     | 133     | 539     | 125     | 320     | 53      |
| biomass capacities (HUF million/year)                                          | 0       | 160           | 40          | 67          | 67      | 80      | 275     | 49      | 51      | 7       |
| Savings on non-energy costs due to scaled-back capacities (HUF                 | 0       | 375           | 91          | 161         | 161     | 188     | 663     | 126     | 174     | 26      |
| million/year)                                                                  | 0       | 575           | 91          | 101         | 101     | 199     | 003     | 120     | 1/4     | 20      |
| Change in home equivalents (qty)                                               |         | 0             | 0           | 0           | 0       | 0       | 0       | 0       | 0       | 0       |
| Increase in non-energy costs due to the entry of new users (HUF million/year)  | 0       | 0             | 0           | 0           | 0       | 0       | 0       | 0       | 0       | 0       |

### 9.2 Scenario 2: balanced use of district heating

In the balanced scenario:

- the district heating demand of current users will decrease along with a faster pace of upgrading;
- the number of users will continuously increase in all reviewed segments.

The results of model calculations are shown in Table 5.

It can be established that if demand is met and the energy mix is realised in accordance with Scenario 2, the financiers of the district heating sector will realise savings of HUF 14 124 million in 2020 compared to 2015, which will significantly (HUF 35 776 million) increase by 2040. This means that, although significantly decreasing, the baseline of district heating aid may not be eliminated even in 2014 if Scenario 2 is implemented. The demand for the development of geothermal capacity is 150 MW in total until 2019 (HUF 45 billion), and an additional 274 MW until 2039 (HUF 82.3 billion).

In the case of the required biomass-based sources, it will be necessary to establish a capacity of 215 MW before 2020 (HUF 25.8 billion), which will continue to increase by about 265 MW by 2040 (HUF 31.8 billion).

If all savings in financing were spent on reducing the district heating cost of the general public (continuing utility rate cuts), it would allow a reduction of the initial HUF 3 900/GJ by HUF 651/GJ (16.7 %) in 2020 and HUF 1 924 (49.3 %) in 2040.

Interpolating the value of district heating aid relative to residential consumption to 2021 (HUF 1 747/GJ), it can be established that when the aid will be removed as of 2022, the residential price of heat (if there is no change in the prices payable by other users) should be increased by about 44.7 % compared to today's price level in order to ensure lossless district heating.

| Description                                                             | 2015    | 2016    | 2017           | 2018           | 2019           | 2020    | 2025    | 2030          | 2035    | 2040          |
|-------------------------------------------------------------------------|---------|---------|----------------|----------------|----------------|---------|---------|---------------|---------|---------------|
|                                                                         |         | Sc      | enario 2       |                |                |         |         |               |         |               |
| Heat sold to residential consumers (PJ)                                 | 24.48   | 24.17   | 23.69          | 23.05          | 22.33          | 21.69   | 19.65   | 18.26         | 18.31   | 18.59         |
| Residential sales revenue (HUF million)                                 | 95 472  | 94 263  | 92 391         | 89 895         | 87 087         | 84 591  | 76 635  | 71 214        | 71 409  | 72 501        |
| Heat sold to KKKIs (PJ)                                                 | 2.45    | 2.44    | 2.42           | 2.4            | 2.35           | 2.31    | 2.21    | 2.19          | 2.22    | 2.32          |
| KKI sales revenue (HUF million)                                         | 14 333  | 14 274  | 14 157         | 14 040         | 13 748         | 13 514  | 12 929  | 12 812        | 12 987  | 13 572        |
| Commercial sales (PJ)                                                   | 3.69    | 3.71    | 3.73           | 3.75           | 3.77           | 3.79    | 3.88    | 3.98          | 4.08    | 4.18          |
| Commercial sales revenue (HUF million)                                  | 20 003  | 20 112  | 20 220         | 20 329         | 20 437         | 20 546  | 21 033  | 21 576        | 22 118  | 22 660        |
| Total consumer energy demand (PJ)                                       | 30.62   | 30.32   | 29.84          | 29.2           | 28.45          | 27.79   | 25.74   | 24.43         | 24.61   | 25.09         |
| Total consumer sales revenue (HUF million)                              | 129 808 | 128 649 | 126 768        | 124 264        | 121 272        | 118 650 | 110 597 | 105 601       | 106 514 | 108 733       |
| Network loss (PJ)                                                       | 4.18    | 4.08    | 3.96           | 3.83           | 3.68           | 3.54    | 3.06    | 2.9           | 2.92    | 2.98          |
| Total heat output (PJ)                                                  | 34.8    | 34.4    | 33.8           | 33.03          | 32.13          | 31.33   | 28.8    | 27.33         | 27.53   | 28.07         |
| Natural gas-based district heat generation (PJ)                         | 29.79   | 26.85   | 25.8           | 24.06          | 22.22          | 20.35   | 12.15   | 9.18          | 6.58    | 6.8           |
| cogenerated (PJ)                                                        | 13.41   | 12.82   | 12.32          | 11.49          | 10.61          | 9.72    | 5.8     | 5.04          | 3.61    | 3.73          |
| energy cost of cogenerated heat (HUF million)                           | 54 981  | 52 562  | 50 512         | 47 109         | 43 501         | 39 852  | 23 780  | 20 664        | 14 801  | 15 293        |
| generated by boilers (PJ)                                               | 16.38   | 14.03   | 13.48          | 12.57          | 11.61          | 10.63   | 6.35    | 4.14          | 2.97    | 3.07          |
| energy cost of heat generated by boilers (HUF million)                  | 72 891  | 62 434  | 59 986         | 55 937         | 51 665         | 47 304  | 28 258  | 18 423        | 13 217  | 13 662        |
| Energy cost of natural gas-based district heat generation (HUF million) | 127 872 | 114 996 | 110 498        | 103 046        | 95 166         | 87 156  | 52 038  | 39 087        | 28 018  | 28 955        |
| Total of renewable-based district heat generation (PJ)                  | 4.00    | 6.60    | 7.10           | 8.10           | 9.10           | 10.20   | 16.05   | 17.70         | 20.60   | 21.00         |
| geothermal district heat (PJ)                                           | 1.00    | 2.00    | 2.20           | 2.70           | 3.20           | 3.70    | 5.75    | 6.72          | 8.52    | 8.64          |
| energy cost of geothermal district heat (HUF million)                   | 2 600   | 5 200   | 5 720          | 7 020          | 8 320          | 9 620   | 14 950  | 17 472        | 22 152  | 22 464        |
| biomass-based district heat (PJ)                                        | 2.50    | 3.70    | 4.00           | 4.50           | 5.00           | 5.60    | 7.80    | 8.48          | 9.13    | 9.41          |
| energy cost of biomass-based district heat (HUF million)                | 8 500   | 12 580  | 13 600         | 15 300         | 17 000         | 19 040  | 26 520  | 28 832        | 31 042  | 31 994        |
| waste-based district heat generation (PJ)                               | 0.50    | 0.90    | 0.90           | 0.90           | 0.90           | 0.90    | 2.50    | 2.50          | 2.95    | 2.95          |
| energy cost of waste-based district heat generation (HUF million)       | 500     | 900     | 900            | 900            | 900            | 900     | 4 100   | 4 100         | 5 000   | 5 000         |
| Energy cost of renewable-based district heat generation (PJ)            | 11 600  | 18 680  | 20 220         | 23 220         | 26 220         | 29 560  | 45 570  | 50 404        | 58 194  | 59 458        |
| Other district heat generation (PJ)                                     | 1.00    | 0.95    | 0.90           | 0.86           | 0.81           | 0.77    | 0.60    | 0.46          | 0.36    | 0.28          |
| Energy cost of other district heat generation (HUF million)             | 2 200   | 2 090   | 1 980          | 1 892          | 1 782          | 1 694   | 1 320   | 1 012         | 792     | 616           |
| Total energy cost of district heat generation (HUF million)             | 141 672 | 135 766 | <b>132 698</b> | <b>128 158</b> | <b>123 168</b> | 118 410 | 98 928  | <i>90 503</i> | 87 004  | <i>89 029</i> |

| Cost of district heat generation without energy costs (HUF million)            | 42 136                                | 41 346       | 41 173       | 40 823      | 40 473  | 40 117  | 38 800  | 38 444  | 37 833  | 37 928  |
|--------------------------------------------------------------------------------|---------------------------------------|--------------|--------------|-------------|---------|---------|---------|---------|---------|---------|
| Total cost of district heat generation (HUF million)                           | 183 808                               | 177 111      | 173 871      | 168 981     | 163 641 | 158 526 | 137 727 | 128 947 | 124 837 | 126 956 |
| Applications for district heat supply aid (HUF million)                        | 54 000                                | 48 462       | 47 103       | 44 717      | 42 369  | 39 876  | 27 130  | 23 346  | 18 323  | 18 224  |
| Change in applications for district heat supply aid (HUF million/year)         | 0                                     | -5 538       | -6 897       | -9 283      | -11 631 | -14 124 | -26 870 | -30 654 | -35 677 | -35 776 |
| Decrease in aid applications relative to residential heat consumption (HUF/GJ) | 0                                     | -229         | -291         | -403        | -521    | -651    | -1 367  | -1 679  | -1 949  | -1 924  |
|                                                                                | Capital costs of renewable capacities |              |              |             |         |         |         |         |         |         |
| Renewable capacities to be newly established                                   |                                       |              |              |             |         |         |         |         |         |         |
| geothermal capacity (MW)                                                       |                                       | 56           | 11           | 28          | 28      | 28      | 114     | 54      | 100     | 7       |
| cumulative geothermal capacity (MW)                                            |                                       | 56           | 67           | 94          | 122     | 150     | 264     | 318     | 418     | 424     |
| geothermal capacity development cost (HUF million)                             | 16 667                                | 3 333        | 8 333        | 8 333       | 8 333   |         | 34 167  | 16 167  | 30 000  | 2 000   |
| cumulative geothermal capacity development cost (HUF million)                  | 16 667                                | 20 000       | 28 333       | 36 667      | 45 000  | 45 000  | 79 167  | 95 333  | 125 333 | 127 333 |
| biomass capacity (MW)                                                          |                                       | 83           | 21           | 35          | 35      | 42      | 153     | 47      | 45      | 19      |
| cumulative biomass capacity (MW)                                               |                                       | 83           | 104          | 139         | 174     | 215     | 368     | 415     | 460     | 480     |
| biomass capacity development cost (HUF million)                                | 10 000                                | 2 500        | 4 167        | 4 167       | 5 000   |         | 18 333  | 5 667   | 5 417   | 2 333   |
| cumulative biomass capacity development cost (HUF million)                     | 10 000                                | 12 500       | 16 667       | 20 833      | 25 833  | 25 833  | 44 167  | 49 833  | 55 250  | 57 583  |
|                                                                                | Change                                | e in costs o | ther than ei | nergy costs |         |         |         |         |         |         |
| Savings on non-energy costs due to VNT (HUF million/year)                      |                                       |              |              |             |         |         |         |         |         |         |
| geothermal capacities (HUF million/year)                                       | 0                                     | 267          | 53           | 133         | 133     | 133     | 547     | 259     | 480     | 32      |
| biomass capacities (HUF million/year)                                          | 0                                     | 160          | 40           | 67          | 67      | 80      | 293     | 91      | 87      | 37      |
| Savings on non-energy costs due to scaled-back capacities (HUF million/year)   | 0                                     | 375          | 91           | 161         | 161     | 188     | 701     | 238     | 282     | 80      |
| Change in home equivalents (qty)                                               |                                       | 1 134        | 1 143        | 1 152       | 1 161   | 4 410   | 22 435  | 23 091  | 23 768  | 24 468  |
| Increase in non-energy costs due to the entry of new users (HUF million/year)  | 0                                     | 11           | 11           | 12          | 12      | 44      | 224     | 231     | 238     | 245     |

### 9.3 Scenario 3: Scenario assuming maximum use of district heating

According to the alternative assuming the highest overall rate of use of district heating:

- the district heating demand of current users will decrease along with a slower pace of upgrading;
- the number of users will continuously increase in all reviewed segments.

The results of model calculations are shown in Table 6.

It can be established that if demand is met and the energy mix is realised in accordance with Scenario 3, the financiers of the district heating sector will realise savings of HUF 13 673 million in 2020 compared to 2015, which will significantly (HUF 35 941 million) increase by 2040. This means that, although significantly decreasing, the baseline of district heating aid may not be eliminated even in 2014 even if Scenario 3 is implemented. The demand for the development of geothermal capacity is 150 MW in total until 2019 (HUF 45 billion), and an additional 278 MW until 2039 (HUF 83.3 billion).

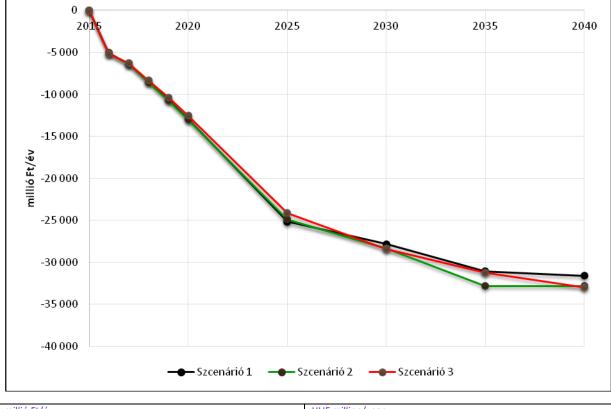
In the case of the required biomass-based sources, it will be necessary to establish a capacity of 215 MW before 2020 (HUF 25.8 billion), which will continue to increase by about 276 MW by 2040 (HUF 33.2 billion).

If all savings in financing were spent on reducing the district heating cost of the general public (continuing utility rate cuts), it would allow a reduction of the initial HUF 3 900/GJ by HUF 616/GJ (15.8 %) in 2020 and HUF 1 910/GJ (49 %) in 2040.

Interpolating the value of district heating aid relative to residential consumption to 2021 (HUF 1 725/GJ), it can be established that when the aid will be removed as of 2022, the residential price of heat (if there is no change in the prices payable by other users) should be increased by about 44.2 % compared to today's price level in order to ensure lossless district heating.

### Table 6 – Calculations of the scenario assuming the highest rate of use of district heating

| Description                                                             | 2015           | 2016    | 2017     | 2018           | 2019           | 2020           | 2025    | 2030    | 2035           | 2040           |
|-------------------------------------------------------------------------|----------------|---------|----------|----------------|----------------|----------------|---------|---------|----------------|----------------|
|                                                                         |                | Sci     | enario 3 |                |                |                |         |         |                |                |
| Heat sold to residential consumers (PJ)                                 | 24.48          | 24.17   | 23.77    | 23.3           | 22.74          | 22.19          | 20.55   | 19.25   | 18.79          | 18.82          |
| Residential sales revenue (HUF million)                                 | 95 472         | 94 263  | 92 703   | 90 870         | 88 686         | 86 541         | 80 145  | 75 075  | 73 281         | 73 398         |
| Heat sold to KKKIs (PJ)                                                 | 2.45           | 2.44    | 2.42     | 2.4            | 2.35           | 2.31           | 2.21    | 2.19    | 2.22           | 2.32           |
| KKI sales revenue (HUF million)                                         | 14 333         | 14 274  | 14 157   | 14 040         | 13 748         | 13 514         | 12 929  | 12 812  | 12 987         | 13 572         |
| Commercial sales (PJ)                                                   | 3.69           | 3.71    | 3.73     | 3.75           | 3.77           | 3.79           | 3.88    | 3.98    | 4.08           | 4.18           |
| Commercial sales revenue (HUF million)                                  | 20 003         | 20 112  | 20 220   | 20 329         | 20 437         | 20 546         | 21 033  | 21 576  | 22 118         | 22 660         |
| Total consumer energy demand (PJ)                                       | 30.62          | 30.32   | 29.92    | 29.45          | 28.86          | 28.29          | 26.64   | 25.42   | 25.09          | 25.32          |
| Total consumer sales revenue (HUF million)                              | 129 808        | 128 649 | 127 080  | <b>125 239</b> | 122 871        | <b>120 600</b> | 114 107 | 109 462 | <b>108 386</b> | <i>109 630</i> |
| Network loss (PJ)                                                       | 4.18           | 4.08    | 3.97     | 3.86           | 3.73           | 3.6            | 3.16    | 3.02    | 2.98           | 3.01           |
| Total heat output (PJ)                                                  | 34.8           | 34.4    | 33.89    | 33.31          | 32.59          | 31.89          | 29.8    | 28.44   | 28.07          | 28.33          |
| Natural gas-based district heat generation (PJ)                         | 29.79          | 26.85   | 25.9     | 24.34          | 22.68          | 20.91          | 13.13   | 9.65    | 7.68           | 6.82           |
| cogenerated (PJ)                                                        | 13.41          | 12.82   | 12.37    | 11.62          | 10.83          | 9.98           | 6.27    | 5.3     | 4.22           | 3.74           |
| energy cost of cogenerated heat (HUF million)                           | 54 981         | 52 562  | 50 717   | 47 642         | 44 403         | 40 918         | 25 707  | 21 730  | 17 302         | 15 334         |
| generated by boilers (PJ)                                               | 16.38          | 14.03   | 13.53    | 12.72          | 11.85          | 10.93          | 6.86    | 4.35    | 3.46           | 3.08           |
| energy cost of heat generated by boilers (HUF million)                  | 72 891         | 62 434  | 60 209   | 56 604         | 52 733         | 48 639         | 30 527  | 19 358  | 15 397         | 13 706         |
| Energy cost of natural gas-based district heat generation (HUF million) | 127 872        | 114 996 | 110 926  | 104 246        | 97 136         | 89 557         | 56 234  | 41 088  | 32 699         | 29 040         |
| Total of renewable-based district heat generation (PJ)                  | 4.00           | 6.60    | 7.10     | 8.10           | 9.10           | 10.20          | 16.08   | 18.33   | 20.03          | 21.23          |
| geothermal district heat (PJ)                                           | 1.00           | 2.00    | 2.20     | 2.70           | 3.20           | 3.70           | 5.75    | 7.00    | 8.00           | 8.70           |
| energy cost of geothermal district heat (HUF million)                   | 2 600          | 5 200   | 5 720    | 7 020          | 8 320          | 9 620          | 14 950  | 18 200  | 20 800         | 22 620         |
| biomass-based district heat (PJ)                                        | 2.50           | 3.70    | 4.00     | 4.50           | 5.00           | 5.60           | 7.83    | 8.83    | 9.28           | 9.58           |
| energy cost of biomass-based district heat (HUF million)                | 8 500          | 12 580  | 13 600   | 15 300         | 17 000         | 19 040         | 26 622  | 30 022  | 31 552         | 32 572         |
| waste-based district heat generation (PJ)                               | 0.50           | 0.90    | 0.90     | 0.90           | 0.90           | 0.90           | 2.50    | 2.50    | 2.75           | 2.95           |
| energy cost of waste-based district heat generation (HUF million)       | 500            | 900     | 900      | 900            | 900            | 900            | 4 100   | 4 100   | 4 600          | 5 000          |
| Energy cost of renewable-based district heat generation (PJ)            | 11 600         | 18 680  | 20 220   | 23 220         | 26 220         | 29 560         | 45 672  | 52 322  | 56 952         | 60 192         |
| Other district heat generation (PJ)                                     | 1.00           | 0.95    | 0.90     | 0.86           | 0.81           | 0.77           | 0.60    | 0.46    | 0.36           | 0.28           |
| Energy cost of other district heat generation (HUF million)             | 2 200          | 2 090   | 1 980    | 1 892          | 1 782          | 1 694          | 1 320   | 1 012   | 792            | 616            |
| Total energy cost of district heat generation (HUF million)             | <b>141 672</b> | 135 766 | 133 126  | <b>129 358</b> | <b>125 138</b> | <b>120 811</b> | 103 226 | 94 422  | <i>90 443</i>  | 89 848         |


|                                                                                | 10 100  | 44.946        | 44 470      | 40.000      | 40.470  | 10 11 - |         | 00.044  | 07.045  | 07.044  |
|--------------------------------------------------------------------------------|---------|---------------|-------------|-------------|---------|---------|---------|---------|---------|---------|
| Cost of district heat generation without energy costs (HUF million)            | 42 136  | 41 346        | 41 173      | 40 823      | 40 473  | 40 117  | 38 788  | 38 214  | 37 945  | 37 841  |
| Total cost of district heat generation (HUF million)                           | 183 808 | 177 111       | 174 299     | 170 181     | 165 611 | 160 927 | 142 014 | 132 635 | 128 388 | 127 689 |
| Applications for district heat supply aid (HUF million)                        | 54 000  | 48 462        | 47 218      | 44 942      | 42 740  | 40 327  | 27 907  | 23 173  | 20 002  | 18 059  |
| Change in applications for district heat supply aid (HUF million/year)         | 0       | -5 538        | -6 782      | -9 058      | -11 260 | -13 673 | -26 093 | -30 827 | -33 998 | -35 941 |
| Decrease in aid applications relative to residential heat consumption (HUF/GJ) | 0       | -229          | -285        | -389        | -495    | -616    | -1 270  | -1 601  | -1 809  | -1 910  |
|                                                                                | Capit   | al costs of I | renewable   | capacities  |         |         |         |         |         |         |
| Renewable capacities to be newly established                                   |         |               |             |             |         |         |         |         |         |         |
| geothermal capacity (MW)                                                       |         | 56            | 11          | 28          | 28      | 28      | 114     | 69      | 56      | 39      |
| cumulative geothermal capacity (MW)                                            |         | 56            | 67          | 94          | 122     | 150     | 264     | 333     | 389     | 428     |
| geothermal capacity development cost (HUF million)                             | 16 667  | 3 333         | 8 333       | 8 333       | 8 333   |         | 34 167  | 20 833  | 16 667  | 11 667  |
| cumulative geothermal capacity development cost (HUF million)                  | 16 667  | 20 000        | 28 333      | 36 667      | 45 000  | 45 000  | 79 167  | 100 000 | 116 667 | 128 333 |
| biomass capacity (MW)                                                          |         | 83            | 21          | 35          | 35      | 42      | 155     | 69      | 31      | 21      |
| cumulative biomass capacity (MW)                                               |         | 83            | 104         | 139         | 174     | 215     | 370     | 440     | 471     | 492     |
| biomass capacity development cost (HUF million)                                | 10 000  | 2 500         | 4 167       | 4 167       | 5 000   |         | 18 583  | 8 333   | 3 750   | 2 500   |
| cumulative biomass capacity development cost (HUF million)                     | 10 000  | 12 500        | 16 667      | 20 833      | 25 833  | 25 833  | 44 417  | 52 750  | 56 500  | 59 000  |
|                                                                                | Change  | e in costs o  | ther than e | nergy costs | 5       |         |         |         |         |         |
| Savings on non-energy costs due to VNT (HUF million/year)                      |         |               |             |             |         |         |         |         |         |         |
| geothermal capacities (HUF million/year)                                       | 0       | 267           | 53          | 133         | 133     | 133     | 547     | 333     | 267     | 187     |
| biomass capacities (HUF million/year)                                          | 0       | 160           | 40          | 67          | 67      | 80      | 297     | 133     | 60      | 40      |
| Savings on non-energy costs due to scaled-back capacities (HUF                 | 0       | 275           | 01          | 161         | 161     | 100     | 700     | 220     | 190     | 122     |
| million/year)                                                                  | 0       | 375           | 91          | 161         | 161     | 188     | 709     | 339     | 180     | 122     |
| Change in home equivalents (qty)                                               |         | 1 134         | 1 143       | 1 152       | 1 161   | 4 410   | 22 435  | 23 091  | 23 768  | 24 468  |
| Increase in non-energy costs due to the entry of new users (HUF                | 0       | 11            | 11          | 12          | 12      | 44      | 224     | 231     | 238     | 245     |
| million/year)                                                                  | 0       | 11            | 11          | 12          | 12      | 44      | 224     | 231     | 230     | 245     |

### 9.4 Comparison of scenarios

Figure 6 and Figure 7 show the change in the total volume of district heating aid for the three reviewed scenarios, assuming the cases of 0 % and 40 % of non-reimbursable investment grant aid. It can be seen that the three scenarios show similar results in both reviewed alternatives of the project VTN in terms of effect on the development of the total district heating aid. The results of the three scenarios hardly differ until 2025. The decrease in aid demand will slow down in the last 15 years.

The fundamental reason for a slower than expected pace of aid needs is that the capital and energy costs of new renewable technologies result in a rather high cost to generate district heat compared to the prices of natural gas-based technologies to be replaced, which grant aid available for the project can only alleviate.





| millió Ft/év | HUF million/year |
|--------------|------------------|
| Szcenárió 1  | Scenario 1       |
| Szcenárió 2  | Scenario 2       |
| Szcenárió 3  | Scenario 3       |

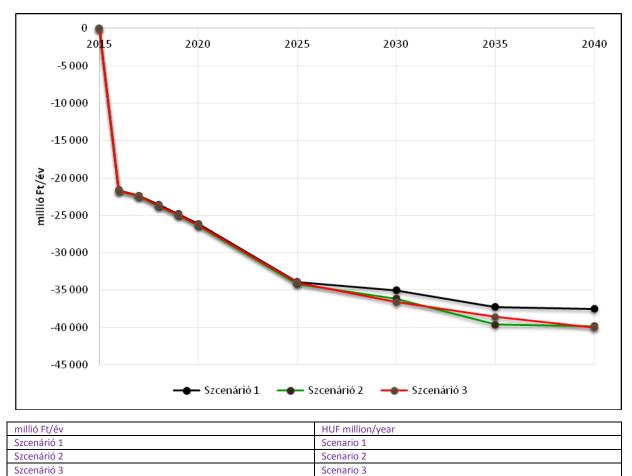



Figure 7 – Change in applications for district heat aid compared to the base year 2015, reckoning with 40 % of non-refundable aid for projects

### Annexes

Annex 1: Electricity generation facilities potentially exceeding an electricity output of 20 GWh

Annex 2: Estimation of high-efficiency cogeneration and efficient district heating potential