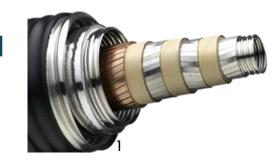
SUPERCONDUCTORS FOR BULK POWER TRANSFER

Who are SuperNode?

Missio


To **Decarbonise** the Global Economy

To harness the best Renewables

To Build and Grow the Renewable Industry

Technology

Superconductor based transmission technologies

People O'Connor, Founder

(Executive Chairman, Mainstream Renewable Power)

(President of EU Parliament 2002-04)

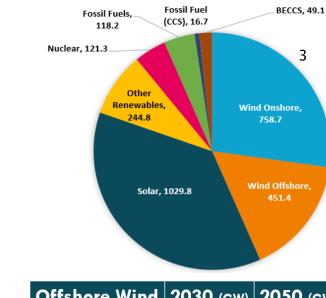
John Fitzgerald, CEO

(Dir. Grid Development and Interconnection EirGrid 2013-18)

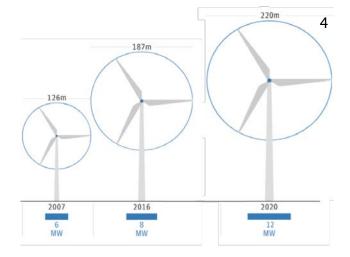
Growing Technical Team - currently 10

(Global experience in renewable energy technology and projects,

offshore generation and transmission)



Market opportunity – 2050 zero Carbon Supply breakdown


Offshore Wind Resource

Offshore Wind	2030 (GW)	2050 (GW) ⁵
EU	70	480
USA	22	86
Rest of World	49	247
	141	813

Capacity profiles

2015

DolWin2

916MW

DolWin3 900MW

2019

2023

BorWin3 900MW

DolWin6 900MW

2017

3 EU Commission 2050

12+

Wind

100m

(m/s)

4. https://www.boem.gov/National-Offshore-Wind-Strategy/

5. https://www.boem.gov/National-Offshore-Wind-Strategy/

Offshore connections competition

Offshore wind electrical connection competition

Huge Offshore Platforms

- Expensive
- Onshore equipment 'marinized'
- Slow supply chain
- Upper limits on power capacity

Man-made Islands

- Onshore equipment 'on an island'
- State-level support required
- Vast material source required
- Shallow water only e.g. NSWPH

Lower capacity MVDC/MVAC

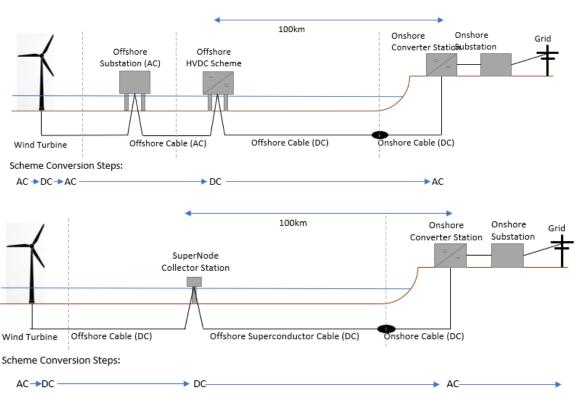
- x100s onshore connections
- Public resistance
- Planning Uncertainty
- Limits on power capacity 300MW/link

Offshore Hydrogen

- Hydrogen/ammonia production
- Large offshore power platform required
- Use of existing gas networks unproven
- Offshore production

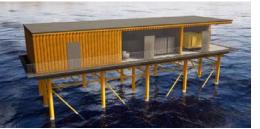
Dolwin 3 Specifications:

Capacity: 1 GW


Volume: ~120,000 m³

Weight: >20,000 tons

Cost: >€1BN


SuperNode DC Connection concept

Superconducting cables enable high current transmission

- > Obviate HVDC platforms
- > Facilitate higher power capacity transmission

SuperNode Collector Specifications:

Capacity: 2 GW

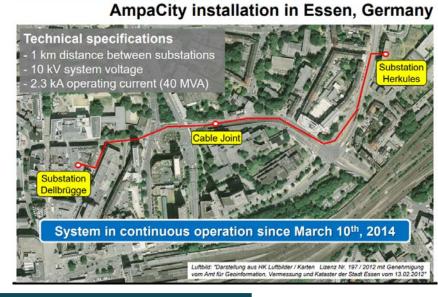
Voltage: 100kV_{DC}

Volume: ~5000 m³

Weight: ~500 tons

Cost: <€100M

Superconducting transmission demonstrations

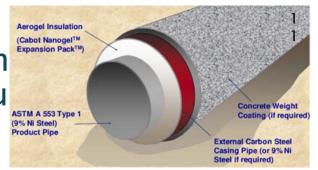

Superconducting transmission demos:

- Ampacity, Essen. [10kV, 40MVA]
- Shingal, Seoul. [50MVA, 23kV]
- REG, Chicago (under construction).
- Superlink, Munich (planned). [500MVA, 110kV]
- Horizon's 'Best Paths' Project [3.2GW, 320kV]

SuperNode are developing this technology

- > to connect offshore renewable resources
- for longer distance transmission

7. https://www.semanticscholar.org/paper/Update-on-world's-first-superconducting-cable-and-a-Stemmle-Merschel



BEST PATHS PROJECT		
Structure	Monopole	
Power	3.2GW	
Voltage	320kV	
Current	10kA	
Cooling	LN2 & He	
Fault rating	35kA for 100ms	

SuperNode Cable System Development

SuperNode's R&D program is developin Superconducting cable technology focu on:

- >MVDC, 2GW+, 100km offshore transmis
- >Marine deployment
- > Marine environment O&M
- >Optimal loss management
- >Cooling and pumping stations
- > Reliability & robustness

^{9.} https://www.bbc.com/news/technology-44368813

^{10.} https://advancedtech.airliquide.com/turbo-brayton-cryogenic-systems

Cost comparison with HVDC

- Lower Totex costs for typical offshore connections
- Value proposition increases with capacity

2GW DC 100km offshore transmission link lifecycle costs 200km Connection system to bring renewables to the backbone grid at 50% cost MVDC HTS HVDC 50 450 100 150 200 250 300 350 500 Total distance [km]

Superconducting Cable Challenges

- Superconducting cable system development & qualification program
- Deployment / Demonstration projects
- DC connection system to supply Superconducting cable
- Industry collaboration
- Funding

QUESTIONS?

If you have any question, please contact: Eoin.Hodge@supernode.energy

