

Organ Dose Variability with Gender, Age and BMI

Dr Ted Lazo CRPPH Scientific Secretariat

Article 31 Meeting, 17 May 2017, Luxembourg

© 2017 Organisation for Economic Co-operation and Development

Background

- The ICRP system uses a generalised, gender and age averaged weighting factors to convert absorbed dose to equivalent dose and effective dose
- These represent the risk of radiological detriment (5% per Sievert)
- Individuals have specific age and gender, thus effective dose is not directly representative of an individual's risk
- Effective dose is an input to population protection decisions for managing exposures prospectively, and for assessing risks for generic populations retrospectively
- Effective dose is of limited practical use for providing an individual with an understanding of their radiological risk

Communications and Planning?

- There is a broad "public" assumption that children are more sensitive risks from radiation exposure than are adults
- Protection of children is extremely high on the list of "values" that drive radiological protection decisions.
- Parents are concerned with risk to their children

RP Toolbox

- A better understanding of how effective dose relates to an individual's risk is needed
- It could be useful for discussions with:
 - parents in post-accident situations
 - patients
- The CRPPH is investigating part of this issue: Variability of organ dose with age, gender and BMI

Organ Dose Variability Project

Objective: To model the range of variation in external-source organ dose with gender, age and BMI.

- Tasks:
 - Use UF phantom library to study the variability of organ dose with age, gender, BMI
 - Compare results with those of ICRP representative phantoms
 - Compare results with those of other phantom libraries
 - Compare results with those of "voxelised CT scans" of real individuals
 - Explore organ dose uncertainty in individuals by varying phantom organ size and shape

Project Participants

Work being performed by:

- Dr Wes Bolch, University of Florida
- Dr Shaheen Dewji, Oak Ridge National Laboratory
- Dr Maria Zankl, Helmholtz Zentrum München

Application of Reference Phantoms

Age	Height (cm)		Mass (kg)	
	Male	Female	Male	Female
Newborn	51	51	3.5	3.5
1 year	76	76	10	10
5 years	109	109	19	19
10 years	138	138	32	32
15 years	167	161	56	53
Adult	176	163	73	60

Organ / w _τ	ICRP 26	ICRP 60	ICRP 103
Bladder		0.05	0.04
Bone marrow	0.12	0.12	0.12
Brain			0.01
Breast	0.15	0.05	0.12
Colon		0.12	0.12
Endosteum	0.03	0.01	0.01
Esophagus		0.05	0.04
Liver		0.05	0.04
Lung	0.12	0.12	0.12
Skin		0.01	0.01
Salivary Glands			0.01
Stomach		0.12	0.12
Thyroid	0.03	0.05	0.04
Gonads	0.25	0.20	0.08
Remainder	0.30	0.05	0.12

ICRP Publications 89 and 103

Current Work at University of Florida Transport of photons and electrons from emission sites in the environment.

- Transport of photons and electrons from emission sites in the environment. These particles are scored (tallied) at the surface of a phantom coupling cylinder
- Step 2 Re-transport these particles from the surface of the coupling cylinder to different phantoms placed within the coupling cylinder

NOTE

This approach allows efficient consideration of different phantoms exposed to the same radiation environment without having to retransport particles for each phantom considered.

Non-Reference Phantoms

- A patient-specific voxel
- B patient-dependent hybrid
- C reference hybrid
- D reference stylised

UF/NCI Phantom Library - Children

CLEAR ENERGY AGENCY

Phantom for each height/weight combination further matching average values of body circumference from CDC survey data

85 pediatric males 73 pediatric females

UF/NCI Phantom Library - Adults

Phantom for each height/weight combination further matching average values of body circumference from CDC survey data

100 adult males 93 adult females

EA

NUCLEAR ENERGY AGENCY

Example Calculations – CT Imaging

EA

UCLEAR ENERGY AGENCY

Study Output Objective

- Expanded library of dose conversion coefficients for individual orangs
- Organ dose only, not effective dose
- Four sub-libraries over a broad range of gender, age and BMI
 - Adult males
 - Adult females
 - Pediatric males
 - Pediatric females

Study Output Use

- Provide perspective with respect to the variability of organ dose for different types of "individuals"
- Provide more highly "individualised" organ dose values than the 12member ICRP phantom library
- While based upon U.S. body morphometries, the phantom library is scalable and can thus be applied to any exposed population/nationality

Thank you for your attention

More information @ <u>www.oecd-nea.org</u> All NEA reports are available for download free of charge. Follow us: **f c in**