

European Commission Directorate-General for Transport and Energy

Under the Multiple Framework Services Contract for Impact Assessments and Evaluations TREN/A2/143-2007 Lot 1

The revision of the trans-European energy network policy (TEN-E)TREN/A2/143-2007/SI2.544824

Appendices

21October2010

Cambridge Econometrics Covent Garden Cambridge CB1 2HT

 Tel
 +44 1223 533100

 Fax
 +44 1223 533101

 Email
 hp@camecon.com

 Web
 www.camecon.com

Imperial College London

Revision and Authorisation History

Version	Date	Authorised for release by	Description
5.0	21/10/10	Sudhir Junankar	Appendices to final report – revised with final date of submission.
4.0	25/08/10	Rachel Beaven	Appendices to final report – revised to address comments made by Commission.
3.0	12/08/10	Sudhir Junankar	Appendices to revised Draft Final Report
2.0	31/03/10	Sudhir Junankar	Appendices to Revised interim report submitted in response to changes requested by the client (letter of 2/03/10 sent to COWI)
1.0	12/02/10	SJ	Version submitted

Contents

		Page
1	Appendix I: New Power Transmission Projects	1
2	Appendix II: Size of Power Transmissions Equipment	29
3	Appendix III: TradeWind Study Results	30
4	Appendix IV: TEN-E Projects Eligible for Grants	33
5	Appendix V: Literature Review of Electricity Infrastructure Requirements	37
6	Appendix VI: Data & Calculations for Appendix V	63
7	Appendix VII: Background Data to Chapter 4	64
8	Appendix VIII: Chapter 4 Tables Expressed in Mtoe	112
9	Appendix IX: E3ME and KEMA Model Descriptions	116

1 Appendix I: New Power Transmission Projects

Co de	Countries	Project	Description	Status	Expected Date	Comments
50	France - Luxembour g	Moulaine (FR) – Beval (LX) line	Creation of a 225 kV	Permitting	2010	Region: Central West TSO in charge: RTE & SOTEL Project driver: consumer connection Source: UCTE
3	France - Belgium	Moulaine (FR) – Aubange (BE)	Upgrade of the existing 225 kV line Moulaine (FR) – Aubange (BE)	Permitting	2010	Region: Central West Project driver: congestion remediation Scope: Installation of a 2 nd circuit and replacement of conductors Studies are being carried out Project driver: Congestion on the 225 kV line between the Lorraine area (FR) and Belgium TSOs in charge: RTE & ELIA Source: UCTE
52	Netherlands – United Kingdom	BritNed HVDC link	New HVDC link between (Isle of Grain, Kent) and the Netherlands (Maasvlakte), Transmission capacity 1320 MW, length 260 km.	Under construction	2012	Region: Central West Project driver: Security of Supply Scope: enhancing diversity and security of supply for both markets: open access for all market parties by explicit auction and market coupling; increase of interconnection capacity

						TSOs in charge: TenneT TSO and National Grid Source: UCTE
53	Luxembour g - Belgium	New interconnector in the southern section of the LU grid	New 220 kV underground cable between substations of Bascharage (LU) and Aubange (BE)	Design & permitting	2012	Region: Central West Project driver: security of supply for the public grid Scope: - TSOs in charge: Cegedel Net & Elia Source: UCTE
17	Netherlands - German	Line Doetinchem (NL) – Niederrhein (DE)	60 km new double circuit 400 kV OHL	Planned	Earliest 2013	Region: Central West Project driver: Congestion in the area around German – Dutch border during peak hours and wind in- feed Scope: - TSOs in charge: TenneT & RWE TSO
3	France - Belgium	Interconnection France - Belgium	Strengthening of present interconnectio n or new interconnectio n project	Under consideratio n (study in progress)	2012-2015	Region: Central West Project driver: constraints appear on the France – Belgium border due to development in generation in Northern France TSOs in charge: RTE & ELIA Source: UCTE
35	Germany - Norway	NORD.LINK	HVDC transmission system 700 – 1400 MW	Under consideratio n (feasibility study performed by Statnett and EON.Netz)	>2015	Region: Central West Project Driver: coupling the hydro- dominated Norwegian electricity system and the wind and thermal dominated electricity system in the northern

						Germany Scope: first Norway-Germany interconnector Source: UCTE
54	Belgium – United Kingdom	Belgium – United Kingdom Interconnector	HVDC link	Under study with National Grid	To be determined	Region: Central West Project driver: creating trading capacities by coupling the Belgian grid (ELIA) and the British grid (NG) Scope : establishing a direct power exchange capacity TSOs in charge: ELIA & National grid Source: UCTE
55	Germany - Belgium	Investigation of grid extension options	New interconnectio n between the 400 kV ELIA nd RWE TSO grids on the central Western European market	Under consideratio n	To be determined	Region: Central West Project Driver: establish a direct exchange capacity TSOs in charge: ELIA & RWE TSO Source: UCTE
7	Germany - France	Esdorf (DE) – St. Avold (FR) line	Identification of possibilities to improve the Ensdorf (DE) – St. Avold (FR) interconnectio n	Under consideratio n	To be determined	Region: Central West Project driver: increase the power exchange capacity on the DE-FR border TSOs in charge: RWTE & RWE TSO Source: UCTE
56	Netherlands - Danemark	Cobra project	HVDC link Capacity 600- 700 MW in both directions Total length	Under consideratio n	2016	Region: Central West Project driver: Market coupling Denmark – Netherlands

			of about 350 km			Scope: To allow exchange and integration of wind energy and increase value of renewable energy into the Dutch and Danish Power systems and to increase security of supply TSOs in charge: TenneT TSO and Energinet.dk Source: UCTE
6	Germany - Denmark	Strengthening AC interconnections	Under study	Under consideratio n	To be determined	Region: Central West Project driver: Strengthening AV interconnections Scope: identification of possibilities to increase capacity on AC interconnections TSOs in charge: E.ON Netz & Energinet.dk Source: UCTE
5	CzechRepu blic - Germany	Hradec (CZ) – Vernerov (CZ) – Vitkov (CZ) – Mechlenreu th (DE)	New 400 kV double circuit overhead interconnectio n line through two 400 kV substations	Under consideratio n	First planning is due on 2016	Region: Central East Project driver: increasing the current power exchange capacity between the CzechRepublic and Germany Scope: interconnector between Germany and the CzechRepublic TSOs in charge (to be confirmed): CEPS, E.ON Netz & VE-T. Source: UCTE

5	CzechRepu blic- Germany	Increase of interconnection capacity on the Czech – German border	Possible new overhead line (new route) or reinforcement of expositing OHL Hradec (CZ) – Röhsdorf (DE)	Under consideratio n	After 2016	Region: Central East Project driver: Increasing the (n-1) security and interconnection capacity on the border Scope: maintain the security of supply and support the Central Eastern Europe Market development TSOs in charge: VE Transmission and CEPS Source: UCTE
4	Austria - Germany	Increasing the current power exchange capacity between Austria and Germany	New 380 kV double circuit line St. Peter (AT) – Isar/Pleinting (DE)	Under consideratio n	2017	Region: Central East Project driver: increasing the current power exchange capacity Scope: Interconnector Austria-Germany TSOs in charge: E.ON Netz & APG Source: UCTE
24	Hungary - Slovakia	Increasing power exchange capacity on Hungary – Slovakia border	OVH 400 kV double lines (3 options)	Joint negotiations are in progress	After 2014	Region: Central East Project drivers: Improve the security and reliability of the network of both partners Increase transmission capacity in the North-South direction Scope: one of the following options: Scope: one of the following options: Scope: one of the following options: Regional Scope: One of the following options: Network Sobota (SK) 400 kV double line or Network Scope: One of the following options: Regional Scope: One of the following options: Network Sobota (SK) 400 kV double line or Network Scope: One of the following options: Network Sobota (SK) 400 kV double line or Scope: One of the following options: Network Sobota (SK) 400 kV double line or Scope: One of the following options: Network Sobota (SK) 400 kV double line (this

						project replaces interconnection Moldava (SK)) - Sajoivanka (HU) or 3. Sajoivank a (SK) - Gabcikovo (HU) 400 kV double line TSOs in charge: MAVIR & SEPS Source: UCTE
19	Poland - Germany	Increasing the power exchange capacity through the upgrading of existing cross border interconnection lines	Upgrading of transmissions lines Krajnik (PL) – Vierranden (DE) (including PST installation in Krajnik (PL) and Mikulowa (PL)	Planned Financing scheme not yet decided	Before 2013	Region: Central East Project driver: increase of the security and interconnection capacity on PL-DE border Scope: Conversion of the existing 220kV double circuit line into a 400 kV line together with phase Shifting transformers installation on 400 kV lines: Krajnik (PL) – Vierranden (DE- and Mikulowa (PL) – Hagenwerder (DE). The project will decrease the loop flow from DE to PL and to CZ/SK, stimulate the market development and prepare for the RES integration TSOs in charge: VE T (DE) and PSE Operator (PL) Source: UCTE
19	Poland - Germany	Increasing power exchange capacity across the Poland –	Construction of the third 400 kV interconnectio	Under consideratio n Financing	After 2015	Region: Central East Project driver: Possible effect of

		Germany border	n line between Baczyna/Plew iska (PL) and Eisenhuttensta dt (DE) with reinforcement of the Polish grid	scheme not yet decided		the project will be evaluated in joint studies Scope: It is expected that the project will support the CEE market development, RES integration and maintain security of supply. TSOs in charge: VE T (DE) and PSE Operator (PL) Source: UCTE
25	Poland - Slovakia	Increasing power exchange capacity across the Poland – Slovak	New interconnectio n between Byczyna (PL) and Varin (SK) with reinforcement of the Polish internal grid	Under consideratio n Joint negotiations are in progress. Financing scheme in preparation	After 2018	Region: Central East Project driver: Possible effect of the project will be evaluated in joint studies Scope: - TSOs in charge : SEPS (SK) & PSE- Operator (PL) Source: UCTE
57	Poland - Lituania	Interconnection between Poland and Lithuania	Construction of a new 400 kV double circuit interconnectio n between Elk (PL) and Alytus (LT) together with back-to-back 1000 MW power station in Alytus (LT) and reinforcement of internal Polish and Lithuanian grids	Planned Financing scheme in preparation	1 st step: 2015 2 nd step: 2020	Region: Central East Project driver: Incorporation of Baltic states into Internal electricity Market (IEM) of EU Possible effect of the project will be evaluated in joint studies Scope: Implementation in 2 steps: • Reinforce ment of internal PL and LT transmission grids to make possible power import capacity of 600 MW from Lithuania to

						Poland; • Addition al reinforcement of PL ant LT transmissions grids to reach 1000 MW of transfer capacity. TSOs in charge: PSE Operator (PL) & Lietuvos Energia (LT) Source: UCTE
58	Pologne - Ukraine	Resumption of existing and not used interconnection	resumption and renovation of the existing 750 kV interconnectio n between Rzeszow (PL) and Khmelnitskay a (UA)	Planned Financing scheme not yet decided	After 2010	Region: Central East Project driver: installation of back-to-back 2*600 MW – convertors in Rzeszow (PL) substation Scope: - TSOs in charge: PSE Operator (PL) and Ukrainian TSO Source: UCTE
45	Slovakia - Ukraine	Increasing power exchange capacity through the Slovakia and Ukraine border	2*400 kV line V. Kapusany (SK) – Muchchevo (UA) (Conditionalit y: the interconnectio n between Velké Kapusany (SK) and Hungary is not realized)	Under consideratio n Financing scheme not yet decided	After 2014	Region: Central East Project driver: increasing power exchange capacity Scope: reinforcing the existing 400 kV interconnection between Ukraine and Slovakia with circuit doubling. If the interconnection between Velké Kapusany (SK) and Hungary is realized, the reinforcement of existing interconnection between Slovakia and Ukraine will not be taken into account TSOs in charge:

						subject to discussion Source: UCTE
59	Slovakia - Austria	New interconnection line between Austria and Slovakia	2*400 kV tie- line Stupava (SK) – Bisamberg / Wien (AT)	Under consideratio n Further common negotiations needed	After 2020	Region: Central East Project driver: developing power exchange capacities Scope: possible effects will be evaluated in joint studies. Another possible option would be a new interconnection between SK and AT via Gabcikovo substation (SK) – Vienna (AT) in combination with the project Gabcikovo (SK) - Gabcikovo (SK) - Gabcikovo (SK) - Gabcikovo (SK) - Uienna (AT) in combination with the project Gabcikovo (SK) - Cabcikovo (SK) - Gabcikovo (SK) - Cabcikovo (SK) - Gabcikovo (SK) - Cabcikovo (SK) - Ca
9	Austria - Hungary	Increasing the transmission capacity of the existing tie-line Wien SO (AT) – Györ/Sombathel y (HU)	Tie-line Wien SO (AT) – Gyor/Szombat hely (HU) 2 nd system	Design & permitting	2010	Region: Central East Project driver: Increase the security and transmission capacity on the Austria – Hungary border Scope: installation of a 2 nd circuit on the existing tie line from Wien SO (AT) to border

						(both systems have been already installed on the HU side, one connected to Györ, the other to Szombathely) TSO in charge: APG Source: UCTE
11	France - Italie	Upgrading of the 220 kV line from Trinite Victor (FR) to Camporosso (IT)	Installation of a PST in Italy	Design & permitting	2011	Region: Central South Project driver: alleviating the congestion, allowing for closed operation of this 220 kV line Scope: Optimizing the utilization capacity of the line TSOs in charge: TERNA & RTE
11	France - Italie	Increasing transfer capacity through the France – Italy border (Albertville (FR) – Rondissone/Pios sasco (IT)	Replacement of existing circuits by high temperature conductors of the existing 400 kV line.	French side: Design & permitting Italian side: Under construction	2012	Region: Central South Project driver: Taking the best advantage of the existing network and increasing the capacity on this axis which limits the transmission capacity towards Italy. Scope: includes in particular the rehabilitation of a 400 kV line currently out of use (Albertville (FR) – Grande Ile n°3 (FR) with high temperature conductors and connection existing Albertville

							bar in the existing Albertville (FR) substation TSOs in charge: RTE & TERNA Source: UCTE
21	7	Italy - Slovenia	Increasing transmission capacity on the Italian – Slovenian border	New 380 kV double circuit line between Udine Ovest (IT) and Okrogolo (SI)	Planned	Long term	Region: Central South Project driver: congestion on Italian – Slovenian border has a low security level and a low transfer capacity; the 380 kV Redipugnlia (IT) – Divaca (SI) line is particularly congested, limiting power exchanges with Slovenia. TEN –E Project Scope: Increasing the capacity of the current interconnection of the North-Eastern Italian border TSOs in charge: TERNA & ELES Source: UCTE
1(0	Italy - Austria	Increasing transmission capacity on Italy-Austria border	New 220 kV PST in Lintz (AT)	Design & permitting	2011	Region: Central South Project diver: congestion on the Italian – Austrian border Scope: increase n-1 security and capacity on Italian – Austrian border TSOs in charge: APG & TERNA Source: UCTE
1	0	Italy - Austria	Increasing transmission capacity on Italy-Austria border	New 380 kV interconnectio n between Italy and Austria	Under consideratio n	Long term	Region: Central South Project driver: constraints on the Italian – Austrian

						border Scope: An optimized route of existing 220 kV Soverzene (IT) – Lienz (AT) interconnection line would be used to minimize environmental impact TSOs in charge: APG & TERNA Source: UCTE
10	Italy - Austria	Increasing transmission capacity on Italy-Austria border	New 380 kV GIL Insbruck (AT) – Bressanone (IT) through the planned Brenner Basel Tunnel	Under consideratio n	Long term	Region: Central South Project driver: Iimitation of transmission capacities Scope: In the 2003 TEN-E Study, the possibility of increasing the transfer capacity between Austria and Italy was investigated. The GIL solution seems the most feasible, using the planned pilot Tunnel of the Brenner Base Tunnel. TSOs in charge: TERNA & TIWAG – Netz AG Source: UCTE
10	Italy - Austria	Increasing transmission capacity on Italy-Austria border	New 220 kV tie-line Reschenpass	Under consideratio n	Long term	Region: Central South Project driver: Constraints on Italian – Austrian border Scope: 380 kV/220 kV substation directly located at the border and

						erection of 220 kV connection till Graun and upgrade of the existing line Graun-Glorenza. Additional connection of 110 kV distribution grid in Austria at new substation. TSOs in charge: TERNA & APG & TIWAH-Netz AG Source: UCTE
10	Italy - Austria	Increasing transmission capacity on Italy-Austria border	110 kV/132 kV line Prati di Vizze (IT) – Steinach (AT)	Design & permitting	Long term	Region: Central South Project driver: Constraints on Italian – Austrian border Scope: In order to increase transfer capacity between Italy and Austria, a new link across the Valico de Brennero (Brennerpass) could be renewed. The project on both sides (IT & AT) comprises the upgrading of the existing line Prati di Vizze (IT) – Steinach (ATcurrently operated at medium voltage and the installation of a 110 kV/132 kV PST in Steinach (AT) TSOs in charge: TERNA & APG & TIWAH-Netz AG Source: UCTE
24	ltaly Switzerland	Increasing transmission capacity on	380 kV line between Lavorgo (CH)	Under consideratio n	Long term	Region: Central South Project driver:

		Italy-Switzerland border	and Morbegno (IT)			Increase the current power exchange and evacuation of future generation capacities in Switzerland Scope: various options are envisaged TSOS in charge: RTE, Swissgrid (& TERNA) Source: UCTE
60	France - Switzerland	Increasing transmission capacity on Italy-Switzerland border	Different options are currently studied	Under consideratio n	Long term	Region: Central South Project drivers: • eliminati on of current bottlenecks on the French – Swiss border • evacuati on of future generation capacities in Switzerland • Increase of power exchange capacity between france and switzerland Scope: to be dtermined TSOs in charge: RTE, Swissgrid & TERNA Source: UCTE
11	France-Italy	Increasing transmission capacity on French-Italy- border	New HVDC cable Piossasco (IT) – Grande Ile (FR)	Planned	Long term	Region: Central South Project driver: Scope: underground cable of 1000 MW capacity. In the 2005 TEN-E Study, the possibility to increase the transfer capacity from France to Italy was investigated. The

						HVDC seems the most feasible, using the existing infrastructure corridors TSOs in charge: TERNA & RTE
4	Germany - Austria	Increasing power exchange capacity between Germany and Austria	Upgrading the 220 kV grid from Oberbachern (DE) and Silz (AT)	Under consideratio n	Long term	Region: Central South Project driver: to be clarified Scope: to be determined TSOs in charge: project suggested by TIWAG Netz, E.ON Netz (not yet confirmed) Source: UCTE
4	Germany - Austria	Increasing power exchange capacity between Germany and Austria	Interconnectio n between Germany and the Alpine region	Under consideratio n	Long term	Region: Central South Project driver: transmission and evacuation of the future generation capacity in the Alps Scope: to be determined TSOs in charge ENBW TNG, RWE TSO, Swissgrid & VKW Netz Source: UCTE
61	Germany - Switzerland	Increasing power exchange capacity between Germany and Austria	Interconnectio n between Germany and the Alpine region	Under consideratio n	Long term	Region: Central South Project driver: transmission and evacuation of the future generation capacity in the Alps Scope: to be determined TSOs in charge ENBW TNG,

						RWE TSO, Swissgrid & VKW Netz Source: UCTE
62	Italy - Malta	Interconnection line between Italy and Malta	New submarine cable between Italy and Malta	Under consideratio n	Mid-term	Region: Central South Project driver: In June 2008, Terna and EneImalta signed a cooperation agreement on a feasibility study for a new link between the two countries Scope: to be specified TSOs in charge: TERNA and ENELMALTA Source: UCTE
63	Italy - Tunisia	Interconnection between Italy and Tunisia	New HVDC submarine cable between Cape Bon (TU) and Sicily (IT) Double submarine cable with 170 km length, 1000 MW transmission capacity	Design & permitting	2016	Region: Central South Project driver: reinforcing supply security of Italy Scope: building up interconnection capacities in line with the construction of a new power plant in EI Houaria (TU). The plant will generate 1200 MW, 800 MW of WW, 800 MW of WW, 800 MW of italy and 400 MW towards Tunisia TSOs in charge: TERNA & STEG Source: UCTE
64	Italy - Montenegro	Establishing East-West Corridor in South Eastern Europe	400 kV interconnectio n from Tivat (ME) and Villanova (IT) OHL & DC	Planned	Mid-term	Region: South East Project driver: Increase Italy's import from the Balkans (BG, RO) Scope: sub-sea

			cable			cable total length 375 km. To be realized together with ongoing interconnection projects between MK and BG and future project between MK and AL. TSOs in charge: TERNA (IT) & EPCG (ME) Source: UCTE
65	Hungary – Croatia (HR)	Building up transmission capacities across Hungarian and Bosnian border	400 kV double line Pecs (HU) – Ernestinovo (HR)	Under construction	2010	Region: South East Project driver: strengthening East- West and North- South corridors and increase the transmission capacity Scope: project carried out complementary to another 400 kV line between HU and RO already completed (2008) TSOs in charge: HEP-OPS & MAVIR Source: UCTE
8	Greece - Bulgaria	Northern Borders	New 400 kV Iine N. Santa (GR) – Maritsa (BG) Length 130 km	Design and Permitting	2012-2015	Region: South East Project driver: alleviation of imports limitations from northern interconnections mainly due to the sparse structure of the Blakan networks Scope: complement the already completed project dedicated to the interconnection from Turkey to

						Greece TSOs in charge: HTSO and NEK Source: UCTE
24	Slovenia - Hungary	East Border	New 400 kV double line Cirkovce (SI) – Pince (HU border) for connections Cirkovce (SI) – Heviz (HU) and Circovce (SI) – Zerjavinec (HR)	Design & permitting	2013	Region: South East Project driver: connection to new power systems and increase of power exchange capacity Scope: first interconnection line between SI and HU; the line already exist on HU and creation sides TSOs in charge: ELES Source: UCTE
12	Italy - Greece	Increase interconnection capacity	Second HVDC link between Greece & Italy	Under consideratio n	To be determined	Region: South East Project driver: N/A Scope: N/A TSOs in charge: TERNA & HTSO Source: UCTE
66	Croatia - Italy	Interconnection between Croatia and Italy	New direct 400 kV HVDC sub- sea cable between HR and IT	Under consideratio n	Mid-term	Region: South East Project driver: The interconnection would be of regional importance of the Internal Electricity Market Scope: N/A TSOs in charge: TERNA & HEP- OPS Source: UCTE
67	Romania - Turkey	South East border	400 kV HVDC submarine cable from Constanza (RO) to Pasakoy (TR) Length: 400 km	Planned	2018	Region: South East Project driver: Enable the power export to Turkey Scope: N/A TSOs in charge: Transelectrica & TEIAS

						Source: UCTE
42	Romania – Serb Republic	Eastern corridor	400 kV line Sacalaz (RO) - Novi Sad (RS) Length: 128 km	Under consideratio n	2018	Region: South East Project driver: increase security of entire interconnection operation Scope: pre- feasibility study carried out on the RO side. EMS got donation to carry out the project design, prefeasibility and environmental studies TSOs in charge: Transelectrica & EMS Source: UCTE
25	Portugal - Spain	Portugal – Spain Douro interconnection reinforcement	New 400 kV single circuit interconnectio n Aldeadavila (ES) -Lagoaça (PT) and associated changes in the topology and cables of some 220 kV lines of the area Length 400 kV: 1 km in ES, 60+40+5 km in PT Length 220 kV: 1 km ES, 5 + 12 km PT	Constructio n (PT) or permitting (almost under construction (ES))	2010	Region: South West Project driver: alleviate the congestion of the 220 kV network in the Douro area making possible the reception of a new amount of power under construction (500 MW) or under permitting process (300 MW) in the Douro River System Scope: includes new substations in Lagoaça (PT) and Armamar (PT) and a new double line on river crossing. The other corridors on this area will be used to build the 400 kV single circuit line. At

						Lagoaça (PT) substation, several existing 220 kV lines will be opened. TSOs in charge: REN & REE Source: UCTE
25	Portugal - Spain	Portugal - Spain Southern interconnection	New OHL 400 kV line South interconnectio n Guillena (ES) – Puebla de Guzman (ES) – Tavira (PT) Transmission capacity : 1700 MVA (winter) Length : 153 km in ES (Guillena- border), 110 km in PT (Portimao- border)	Under construction : Guillena (ES) - P.Guzman (ES) Permitting: (P.Guzman (ES) - Tavira (PT)	2011	Region: South West Project driver: Alleviate the congestion on existing 400 kV line Alqueva (ES) – Brovales (PT) at low levels of exportation from Spain to Portugal. Besides, the project enables the total integration of ES inside MIBEL Scope: The project involves a combination of single and double circuit lines as well as two new 400 kV substations in P. Guzman (ES) and Tavira (PT) TSOs in charge: REN & REE Source: UCTE
28	Spain - France	Cross-border interconnection	New HVDC interconnectio n line in the eastern part of the border Transmission capacity: being defined Length: 28 km in Spain, 40 km in France	Design & permitting Political agreement on a new underground HVDC line between Baixas (FR) and Santa Llogaia (ES)	2014	Region: South West Project driver: The total interconnection faces a high congestion level limiting the transmission capacity. Limitations in particular on the production of wind-power energy

						in the Iberian system Scope: included in the priority Interconnection Plan (TEN-E Guidelines). A European coordinator has been appointed for this project. TSOs in charge: RTE & REE Source: UCTE
25	Portugal - Spain	Portugal – Spain Northern interconnection	New 400 kV Northern interconnectio n Transmission capacity: 1700 MVA (Winter) Length: 110 km in ES (Cartelle- border), 112 km in PT (Recarei- border)	Design & Permitting	2013/2014	Region: South West Project driver: alleviate the congestion on the existing 400 kV line Cartelle (ES) – Lindoso (PT) at low exportation levels from ES to PT. Besides, the project enables the total integration of ES and PT in MIBEL Scope: included in the priority Interconnection Plan (TEN-E Guidelines). TSOs in charge: REN & REE Source: UCTE
36	Sweden - Norway	South West link	New 1200 MW HVDC	Included in in the	2013 (SE)/- 15/-16 (NO)	Region: Nordel Project driver:
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		connection reinforcing the grids between the southern and central parts of Sweden and Norway	Nordic Grid Master Plan 2008 Under developmen t	(Earliest commissioni ng)	Increasing the effectiveness of the Nordic electricity market and increase the system reliability Scope: Additional capacity between NO and SE will be

						1200 MW at the highest. Project complemented with an additional AC line in SE TSO in charge: N/A Source: Nordel.
36	Sweden -	North – South	New 420 kV	Included in	2013	Region: Nordel
	Norway	axis	Iine Orskok- Fardal	in the Nordic Grid Master Plan 2008	(Earliest Commission ing)	Project driver: Increasing the effectiveness of the Nordic electricity market and increase the system reliability Scope: Will strengthen the the SE/NO north- South capacity and at the same time decrease potential capacity problems related to cross- section 2 in Sweden TSO in charge: N/A Source: Nordel
30	Sweden - Finland	Interconnection Sweden-Finland	New AC line between Northern Finland and Northern Sweden	Studies started	To be determined	Region: Nordel Project driver: Increasing the effectiveness of the Nordic electricity market and increase the system reliability Scope: N/A TSO in charge: Fingrid & Svenska Kraftnät Source: Nordel
68	Norway -	NorNed	New HVDC	N/A	Commission	Region: Nordel
	Netherlands		link between Norway and the Netherlands		ed in 2008	Project driver: N/A Scope: N/ANord.Link TSO in charge:

			Transmission capacity: 700 MW			N/A Source: Nordel
69	Norway - Germany	Nord.link	New HVDC line between Southern Norway and Northern Germany	Feasibility study in preparation (a consortium of investors has started the licensing process)	To be determined	Region: Nordel Project driver: N/A Scope: The result of the study is expected to form the basis for a decision entering into a re-licensing phase. Link expected capacity into the range of 700 MW – 1400 MW. TSOs in charge: Statnett (NO) & E.ON Netz (GE) Source: Nordel
6, 29	Denmark – Germany - Sweden		AC lines: phase shifting transformers on the two 220 kV lines Jutland- Germany	Svenska Krafnät, Vattenfall Europe Transmissio n & Energinet.dk are conducting a pre- feasibility study	2012	Region: Nordel Project driver: Increasing market capacity Scope: This will increase the market capacity from 950/1500 MW to approximately 1500/2000 MW (import/export) which includes the off-shore farms potential development TSOs in charge: Source: Nordel
56	Denmark - Netherlands	Cobra	600 MW HVDC link between the Netherlands and Jutland	Business case under process	To be determined	Region: Nordel Project driver: N/A Scope: N/A TSOs in charge: TenneT & Energinet.dk Source: Nordel
2	Estonia-	Estlink 2	From Anttila	Planned	2014	Region: Baltic
	Finiand		The project	authorizatio		integration of the

			includes a 400-500 kV DC OHL 14km (FI), sea cable around 130-135 km and underground cable in terrestrial section of Estonia 13,5 km Transmission capacity: 650 MW	n processes in both FI & EE Environmen tal assessment approved in 2009 (EE); still to be carried out in F1		future power market of the Baltic Member States with Nord Pool; - enhancement of the security of supply, particularly in the BALTSO area, thanks to possible power import from Nordic countries in emergency conditions; - increased reliability of the Estonian power system, - decrease of the dependency of Estonian and other Baltic republics from Russia power supply. Scope: The AC reinforcements to be built upward and downward the interconnector to exploit its full capacity are: 1. Extensio n of Antiltila substation needed (FI side) and reinforcement of Püssi substation is needed (ES side) 2. No new lines needed upward and downward from Püssi or Anttila substations TSOs in charge: Põhivõrk (EE) &
70	Sweden - Latvia	Ambergate	HVDC line	Planned Implementat	2018 (starting	Region: Baltic Project driver:

	Norrköping	ion time	commissioni	- Improvement of
	(SE) to	impacted	ng)	the security of
	Ventspils	by:		supply of Latvian
	(LV)	EIA		consumers and
	Transit	implementat		improvement of the
	capacity: 700	ion;		system operation
	MW	definition of		service provision.
	The following	routing and		As a matter of fact,
	possible	land		Latvian power
	routes of	expropriatio		supply system has
	Interconnectio	n on SE		the most negative
	n Latvia –	side;		balance situation in
	Sweden were	construction		whole EU.
	considered in	of new AC		with overall lower
	the	lines and		average electricity
	Assessment	substations		prices and higher
	report	in LT		competitiveness
	prepared by			(this justification is
	AS			in fact common to
	Latvenergo			the other
	and AS			interconnection
	Augstspriegu			alternatives
	ma t•kls (Fig.			EstLink 2 and
	6-5):			SwedLit);
	1. Ventspils –			- Fostering the
	Norrköping			development of
	(390 km);			wind power
				generation;
	2. Ventspils –			- Better
	Stockholm			exploitation of the
	(310 km);			generation
	3. Ventspils –			endowment in
	Ygne –			Latvia by
	Oskarshamn			transferring
	(325 km);			through the new
	4. Grobina			Latvia-Sweden
	(Liepaja) –			interconnection the
	Oskarshamn			excess energy from
	(300 km);			the planned
	5. Grobina			Kurzeme TPP
	(Liepaja) –			(coal+biomass) to
	Nybro (325			the Nordic power
	km).			systems if the
				market prices will
				allow for that;
				- Improvement of
				the local security
				of power supply in
				Kurzeme (western

						Latvia), especially in the big transiting sea-ports of Liepaja and Ventspils; - Lower risk of dependency of electricity import from Russia, who might exert the role of the dominating power supplier and dictate the electricity prices. Scope: Need to build the 330 kV lines Ventspils- Globina and Ventspils-Imanta and related substations; No information available from the SE side TSOs in charge: Augstsprieguma T•kls. (LV) & Svenska Kraftnät (SE)
71	Sweden - Lituania	SwedLit	HVDC submarine line from Nybro to Hemsjï- Klaipeda Transit capacity: cable 700- 1000 MW 330 kV 340 km	- SPV InterLinks, UAB created; - Cable route and connection point on Lithuanian side located; - Seabed survey initiated; - Technical requirement	2017	Region: Baltic Project drivers: - Development of Baltic electricity market and increased competition (justification in common with the other interconnection alternatives EstLink 2 and AMBERGATE); - Increased security of supply; - Better utilization

				converter station issued by TSO Lietuvos Energija - Environmen tal impact assessment procedure started; - Land acquisition issues are being solved		possibilities of Kruonis HPSPP (900 MW installed capacity) for balancing load. Scope: 82 km of 330 kV line in Lithuania (Telsiai- Klaipeda). In addition a second AC line Musos PP- Panevezys shall be built TSOs in charge: Lietuvos Energija AB (LT) & Svenska Kraftnät (SE)
57	Lituania - Poland	LitPol	AC OHL line From Elk to Alytus Capacity: 500/1000 MW	Possible developmen t in stages	2020	Region: Baltic Project drivers: Scope: AC reinforcement on the LT grid: 330 KV line Alytus- Kruonis and Ignalina-Kruonis; the exploitation of the full capacity of the interconnector is constrained by heavy AC reinforcement within Poland TSOs in charge: Lietuvos Energija AB (LT) & PSE operator SA (PL) Source: CESI
13	Latvia - Estonia	Latvia - Estonia Interconnection	Line Harku- Sindi-Riga For the HVAC solutions the rated capacity is 1000-1200	Economic, technical study and line route selection in progress. Final	2020 of after	Region: Baltic Project driver: fostering the penetration of wind generation in the western regions of Latvia and Estonia

			MVA For the HVDC solutions the rated capacity is 600 MW	investment decision for this connection not made.		(Saaremaa island). Scope: The new Latvia-Estonia interconnection shall warrant an increase of NTC equal to 500-600 MW. The interconnector embed itself the upwards/downward s reinforcements TSOs in charge: Lietuvos Energija AB (LT) Source: CESI, BALTSO
19	Germany - Poland	DE-PL first project	2*1630 MVA Vierranden(D E) – Krajnik (PL)		2013	Region: Baltic Project driver: • need for increased transfer capacities because high volatile and unpredictable flows caused by wind generation in Germany and in the Baltic area • Increasin g the security of supplies Scope: TSOs in charge: Source: CESI, BALTSO
19	Germany - Poland	DE-PL Second project	400 kV double circuit Eisenhüttensta dt (DE) – Bazcyna/Plew iska (PL) Capacity: To be defined	Routing activities started	N/A	Region: Baltic Project driver: need for increased transfer capacities for smoothing the congestion level in Northern and Southern PL-DE interconnection Scope: TSOs in charge: PSE operator SA (PL) Source: CESI, BALTSO

2 Appendix II: Size of Power Transmissions Equipment

From 💌	To 💌	Upstream connection	Downstream connection	AC OHL	DC underground	DC Subse 💌	Status	Expected date	Type 💽	Length (km 💌	Region 💽
Austria	Germany	St. Peter (AT)	Isar/Pleinting (DE)	380 kV			Under consideration	2017	New	110	Central East
Austria	Germany	Silz (AT)	Oberbachern (DE)	220 kV			Under consideration	Long term	Upgrade	223	Central South
Austria	Italy	Lints (AT)		220 kV			Desian & permitting	2011	New	70	Central South
Austria	Italy			380 kV			Under consideration	Longterm	New	80	Central South
Austria	Italy	Insbruck (AT)	Bressanone (IT)		380 kV		Under consideration	Longterm	Reinforcement	83	Central South
Austria	Italy			220 kV			Under consideration	Longterm	Reinforcement	250	Central South
Austria	Italy	Steinach (AT)	Prati di Vizze (IT)	110kV/132kV			Desian & permitting	Longterm	New	50	Central South
Austria	Slovakia	Bisamberg / Wien (AT)	Stupava (SK)	2*400 kV			Under consideration	2020	New	11	Central East
Austria	Slovakia	Wien SO (AT)	Gvör/Sombathely (HLI)	N/A			Design & permitting	2010	Reinforcement	255	Central East
Relaium	France	monoo (m)	cychrodinoutiery (ito)				Under consideration	2015	N/A	9	Central West
Belgium	Germany			400 kV			Under consideration	To be determined	New	153.8	Central West
Belgium	Luxembourg	Aubange (BE)	Bascharage (III)	100111	220 kV		Design & permitting	2012	N/A	10	Contral West
Belgium	United Kingdom	Auburige (DE)	bascharage (EO)		22011	N/A	Under study	To be determined	New	250	Central West
Bulgaria	Greece	Maritsa (BG)	Santa (GP)	400 kV		N/A	Design & permitting	2015	New	130	South Fast
Croatia	Hundary	Franstinovo (HP)	Pers (HI)	400 KV			Under construction	2010	New	104	South East
Croatia	Italy	Encountry (Inc)	1003(110)			NI/A	Under consideration	Midtorm	Now	200	South East
Crech Republic	Germany	Hradec (C7) - Vernerov ((Mechleprouth (DF)	400 KV		11/74	Under consideration	2016	New	173	Control Fast
Donmark	Gormany		inconcentratin (BE)	N/A			Under consideration	To be determined	N/A	165.0	Contral Wost
Denmark	Cormony Swodo	.		220 kV			Under consideration	2012	Doinforcomont	103,0	Nordal
Denmark	Nothorlands	11		220 K V		400 kV	Under sounderation	2012	New	200	Control West
Denmark	Netherlands					400 KV	Under consideration	2010	New	145.0	Nordal
Dennark	Figland	Direct	A			400 500 10/	Direct study	2014	New	103,0	NUIUEI
Estonia	Finiand	Pussi	Antina			400-500 KV	Planned	2014	New	200	Baltic
Estonia	Latvia	Harku-Sindi	Riga	1000-1200 MVA		600 MW	Under study	2020	New	293	Baltic
Finland	Sweden			N/A			Under study	To be determined	New	131,8	Nordel
France	Belgium	Aubange (BE)	Moulaine (FR)	225 kV			Permitting	2010	N/A	18	Central West
France	Italie	Trinite Victor (FR)	Camporosso (IT)	220 kV			Design & permitting	2011	Upgrade	57	Central South
France	Italie	Albertville (FR)	Rondissone/Piossasco (IT)	400 kV			Under construction	2012	N/A	180	Central South
France	Italy	Grande II e (FR)	Piossasco (IT)		N/A		Planned	To be determined	New	50	Central South
France	Luxembourg	Moulaine (FR)	Beval (LU)	225 kV			Permitting	2010	N/A	20	Central West
France	Spain	Baixas (FR)	Llogaia (ES)		N/A		Design & permitting	2014	New	68	South West
France	Switzerland			N/A			Under consideration	Long term	New or reinforcement	139,4	Central South
Germany	France	Esdorf (DE)	St.Avold (FR)	N/A			Under consideration	To be determined	N/A	460	Central West
Germany	Netherlands	Niederrhein (DE)	Doetinchem (NL)	400 kV			Planned	2013	N/A	50	Central West
Germany	Norway					700-1400 MW	Under consideration	2015	New	800	Central West
Germany	Poland	Vierranden (DE)	Krajnik/Mikulowa (PL)	2*1630 MVA			Planned	2013	Upgrade	330	Central East
Germany	Poland	Eisenhüttenstadt (DE)	Bazcyna/Plewiska (PL)	N/A			Under study	To be determined	New	357	Baltic
Germany	Swizerland			N/A			Under consideration	Long term	New or reinforcement	200	Central South
Greece	Italy					N/A	Under consideration	To be determined	New	300	South East
Hungary	Slovenia	Cirkovce (SI)	Pince (HU), Heviz (HU) ,Zerjavinec (HR)	400 kV			Design & permitting	2013	New	187	South East
Italy	Malta					N/A	Under consideration	Mid term	New	125	Central South
Italy	Slovenia	Ovest (IT)	Okrogolo (SI)	380 k V			Planned	Long term	New	50	Central South
Italy	Switzerland	Morbegno (IT)	Lavorgo (CH)	380 k V			Under consideration	Long term	New or reinforcement	138	Central South
Italy	Tunisia	Sicily (IT)	Cape Bon (TU)			1000 MW	Design & permitting	2016	New	170	Central South
Italy	Montenegro	Villanova (IT)	Tivat (ME)			400 kV	Planned	Mid term	New	375	South East
Latvia	Sweden	Ventspils (LV)	Norrköping (SE)			700 MW	Planned	2018	New	200	Baltic
Lituania	Poland	Alytus (LT)	Elk (PL)	500/1000 MW			Planned	2020	New	158	Central East
Lituania	Sweden	Hemsji-Klaipeda	Nybro			700-1000 MW	Design & permitting	2017	New	200	Baltic
Netherlands	Norway					700 MW	Commissioned	To be determined	New	500	Nordel
Netherlands	United Kingdom	Maasvlakte	Isle of Grain (UK)			1320 MW	Under construction	2012	N/A	250	Central West
Norway	Sweden	Fardal	Orskok	420 kV			Planned	2013	New	251	Nordel
Poland	Slovakia	Byczyna (PL)	Varin (SK)	N/A			Under cosideration	2018	New	285	Central East
Poland	Ukraine	Rzeszow (PL)	KhmeInitskaya (UA)	750 kV			Planned	2010	Resumption	200	Central East
Portugal	Spain	Lagoaça (PT)	Aldeadavila (ES)	400 kV			Under construction	2010	New	143	South West
Portugal	Spain	Tavira (PT)	Guillena (ES) – Puebla de Guzman (ES)	400 kV			Under construction	2011	New	263	South West
Portugal	Spain	Recarei	Cartelle	400 kV			Design & permitting	2014	New	222	South West
Romania	Serb Republic	Sacalaz (RO)	Novi Sad (RS)	400 kV			Under consideration	2018	New	128	South West
Romania	Turkey	Constanza (RO)	Pasakoy (TR)			400 kV	Planned	2018	New	400	South East
Slovakia	Ukraine	Kapusany (SK)	Muchchevo (UA)	2*400 kV			Under consideration	2014	Reinforcement	151	Central East

3 Appendix III¹: TradeWind Study Results

Wind power scenarios per country (MW)

		Actual 2005	Low 2008	Medium 2008	High 2008	Low 2010	Medium 2010	High 2010	
AT	Austria	819	990	1,015	1,045	1,100	1,160	1,250	
BE	Belgium	167	357	571	834	469	750	1,119	
BU	Bulgaria	10	30	40	55	90	183	245	
HR	Croatia	6	150	230	360	250	400	600	
CZ	Czech Republic	29	120	220	350	180	580	1,100	
DK	Denmark	3,130	3,129	3,129	3,286	3,329	3,629	4,229	
FI	Finland	82	150	200	250	250	350	500	
FR	France	702	2,100	2,700	5,100	3,098	4,840	9,680	
DE	Germany	18,428	21,622	22,900	24,063	22,665	25,291	28,466	
GB	Great Britain	1,460	2,822	4,086	6400	5,550	7,512	8,900	
GR	Greece	573	845	1,098	1,350	968	1,479	2,000	
ни	Hungary	17	105	250	325	250	325	330	
IE	Ireland	583	1,246	1,326	1,525	1,478	1,955	2,858	
IT	Italy	1,381	2,075	4,233	5,810	2,490	5,893	8,300	
LU	Luxembourg	35	45	54	53	54	66	66	
NL	Netherlands	1,224	2,058	2,228	2,328	2,528	2,950	3,400	
NO	Norway	274	454	544	595	508	1,057	1,458	
PL	Poland	83	450	550	650	1,000	1,200	1,500	
PT	Portugal	1,014	2,699	2,841	2,963	3,894	4,099	4,304	
RO	Romania	1	50	80	120	160	345	460	
SC	Serbia	0	0	2	5	5	10	30	
SK	Slovakia	5	20	55	90	100	175	410	
SI	Slovenia	0	0	20	40	0	85	130	
ES	Spain	11,482	13,929	15,477	17,025	17,528	19,475	21,423	
SE	Sweden	493	750	1,050	1350	1,100	1,600	2,150	
СН	Switzerland	12	15	18	20	15	40	100	
	Total	42,011	56,212	64,917	76,012	69,047	85,449	105,007	

		Low 2015	Medium 2015	High 2015	Low 2020	Medium 2020	High 2020	Low 2030	Medium 2030	High 2030
AT	Austria	1,400	3,000	3,400	1,700	3,500	4,900	2,300	4,300	7,900
BE	Belgium	986	1,286	1,952	1,218	2,289	3,034	2,262	4,983	6,086
BU	Bulgaria	300	540	650	680	875	1,150	1,495	2,160	3,450
HR	Croatia	370	580	1,150	700	1,400	2,800	1,200	3,000	5,600
CZ	Czech Republic	220	900	1,800	230	1,200	2,500	250	1,500	4,000
DK.	Denmark	3886	4,318	4,750	4,778	5,309	5,840	6,562	7,291	8,020
FI	Finland	500	900	1,600	1,000	1,700	3,000	2,000	3,200	6,000
FR	France	12,313	16,745	23,000	23,000	30,000	37,000	38,000	45,000	49,960
DE	Germany	27,383	36,004	42,612	34,170	48,202	56,640	44,857	54,244	63,587
GB	Great Britain	6,864	10,813	16,979	9,995	16,278	26,087	11,059	18,136	29,183
GR	Greece	1,988	2,744	3,500	2,280	3,640	5,000	3,126	5,628	8,130
HU	Hungary	330	450	500	330	850	900	330	900	1,600
IE	Ireland	1,747	3,257	4,444	2,993	4,537	5,344	3,295	4,998	5,891
IT	Italy	3,403	9,130	12,865	4,150	11,620	15,770	6,640	15,355	19,090
LU	Luxembourg	78	96	98	102	126	132	117	184	206
NL	Netherlands	4,100	5,250	6,700	5,100	6,950	10,100	5,150	7,050	10,200
NO	Norway	940	2,350	4,070	1,380	3,660	6,660	1,990	5,980	11,970
PL.	Poland	3,000	3,500	4,000	5,000	6,000	7,000	10,000	12,000	14,000
PT	Portugal	5,365	5,647	5,930	6,850	7,211	7,572	8,516	8,964	9,412
RO	Romania	600	1,100	1,350	1,600	2,500	3,100	2,300	3,300	4,000
SC	Serbia	20	40	80	40	80	150	100	200	500
SK	Slovakia	160	245	545	177	280	545	205	303	545
SI	Slovenia	102	220	340	205	430	560	310	540	860
ES	Spain	23,028	26,476	30,924	29,029	34,477	39,425	40,031	48,479	53,427
SE	Sweden	2,150	3,600	5,600	4,000	6,500	10,000	6,500	10,000	17,000
CH	Switzerland	50	150	300	100	300	600	300	600	1,100
	Total	101,282	139,342	179,139	140,807	199,915	255,808	198,895	268,295	341,707

¹ Source: TradeWind; Integrating Wind, Developing Europe's power market for the large scale integration of wind power, February 2009.

Annual electricity consumption for power flow and market modelling in TWh;scenario based on Eurprog 2006

COUNTRIES	2005	2008	2010	2015	2020	2030
DE	556	566	572	573	575	572
NL	115	122	129	143	157	191
BE	88	93	97	103	109	109
LU	6	7	6	7	7	7
FR	482	493	508	530	552	618
СН	63	64	65	72	80	98
п	330	352	366	408	450	550
AT	63	65	63	66	70	83
ES	253	288	317	353	390	463
NO	122	128	133	138	143	153
SE	145	148	150	152	154	156
cz	63	66	68	73	77	83
SI	13	15	16	17	18	20
GR	53	60	67	75	84	101
HU	39	43	45	49	53	58
GB	377	417	458	485	512	523
PT	50	55	59	67	76	97
HR	17	18	19	21	23	28
RS	42	45	48	53	58	58
RO	52	56	59	69	78	105
BG	36	36	36	44	51	62
BA	11	12	12	14	15	18
SK	26	29	31	33	35	39
PL	131	136	136	148	160	181
FI	85	93	96	101	107	117
DK	36	37	38	40	41	45
MK	8	8	8	8	8	8
IE	26	30	34	38	43	43
TOTAL	3,288	3,482	3,636	3,880	4,126	4,586

Stage 1 branch reinforcements including planned new connections; Internal zones reinforcements are marked with grey colour²

YEAR	COUNT	RIES	ТҮРЕ	RATE [MW]	COMMENTS
2008	BE	FR-2	AC	400	Planned: Chooz – Jamiolle - Monceau
	GR	МК		1,420	Planned: Bitola – Florina
	CZ	AT-1		1,386	Planned: 2d line Slavetice - Durnrhor
2009	NO	NL	HVDC	700	Planned: NorNed
2010	ES-2	FR-6	AC	3,100	Planned: France - Spain: eastern
					reinforcement
	DK	DE-2		1,660	Planned: Upgrading of Jutland - Germany
	DK	DK-E	HVDC	600	Planned: Great Belt
	GB	IE		500	Planned: East-West interc.
2011	N0-2	SE-3	AC	800	Planned: Nea – Järpstrømmen
	NL	GB	HVDC	1,000	Planned: BritNed
2015	IT-2	SI	AC	3,100	Planned: Udine – Okroglo
	PT	ES-1		1,500	Planned: Valdigem - Douro Internacional
		F O 4		0.400	- Aldeadavilla
	PT	ES-4		3,100	Planned: Algarve - Andaluzia
	PT	ES-1		3,100	Planned: Galiza – Minho
	RO	RS		1,420	Planned: Timisoara – Varsac
0.005	SE	FI	HVDC	800	Planned: Fenno scan 2
2020	11-2	AT-2	AC	3,100	Planned: Thaur – Bressanone (Brenner Basis Tunnel)
	AT-1	HU		1,514	Planned: Wien/Südost - Gÿor
	AT-2	IT-2		530	Planned: Nauders – Curon / Glorenza
	AT-2	IT-2		3,100	Planned: Lienz – Cordignano
	DE-1	DE-1		751	North-East upgrade done in connection with
	DE-1	PL-1		392	Polish grid, see [TEN-E]
	DE-2	DE-2		2,764	Internal North-West Germany
	DE-5	DE-5		5,094	Internal Midwest Germany
	NO	DK	HVDC	600	Planned: Skagerrak 4
	NO	DE		1,400	Planned: NorGer
2030	NL	BE	AC	2,746	Branch between the Netherlands and
	DE-1	DE-1		408	North-East ungrade done in connection with
	0241	001		400	Polish grid see [TEN.F]
	DE-3	DE-3		1.659	Internal Mid.Germany
	DE-4	DE-3		2,091	Internal South-Fast Germany
	DE-5	DE-5		1,698	Internal Midwest Germany
	ES-2	FR-6		330	Branch between Spain and France
	FR-3	CH-2		320	Branch between France and Switzerland
	NL	NO-1	HVDC	700	HVDC between the Netherlands and Norway
	GB	IF		1.000	HVDC between Great Britain and Ireland
	GB	FR-X		2,000	HVDC between Great Britain and France
	GD	THEA.		2,000	The bounder areas britain and france

² The number after the country code (for example AT-2) indicates the grid zone within the country. Details can be found in the TradeWind WP6 report.

4 AppendixIV: TEN-E Projects Eligible for Grants

TRANS-EUROPEAN ENERGY NETWORKS³

Axes for priority projects, including sites of projects of European interest, as defined in Articles 7 and 8

The priority projects, including projects of European interest, to be carried out on each axis for priority projects are listed below.

ELECTRICITY NETWORKS

EL.1. France — Belgium — Netherlands — Germany:

electricity network reinforcement in order to resolve congestion in electricity flow through the Benelux States.

Including the following projects of European interest:

- Avelin (FR) Avelgem (BE) line
- Moulaine (FR) Aubange (BE) line.

EL.2. Borders of Italy with France, Austria, Slovenia and Switzerland:

increasing electricity interconnection capacities.

Including the following projects of European interest:

- Lienz (AT) Cordignano (IT) line
- New interconnection between Italy and Slovenia
- Udine Ovest (IT) Okroglo (SI) line
- S. Fiorano (IT) Nave (IT) Gorlago (IT) line
- Venezia Nord (IT) Cordignano (IT) line
- St. Peter (AT) Tauern (AT) line
- Südburgenland (AT) Kainachtal (AT) line
- Austria Italy (Thaur-Brixen) interconnection through the Brenner rail tunnel.

EL.3. France — Spain — Portugal:

increasing electricity interconnection capacities between these countries and for the Iberian peninsula and grid development in island regions.

Including the following projects of European interest:

- Sentmenat (ES) Bescan• (ES) Baixas (FR) line
- Valdigem (PT) Douro Internacional (PT) Aldeadávila (ES) line and 'Douro Internacional' facilities.

EL.4. Greece — Balkan countries — UCTE System:

³DECISION No 1364/2006/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 6 September 2006 laying down guidelines for trans-European energy networks and repealing Decision 96/391/EC and Decision No 1229/2003/EC.
development of electricity infrastructure to connect Greece to the UCTE System and to enable the development of the south-east European electricity market.

Including the following project of European interest:

• Philippi (EL) — Hamidabad (TR) line.

EL.5. United Kingdom — continental Europe and northern Europe:

establishing/increasing electricity interconnection capacities and possible integration of offshore wind energy.

Including the following project of European interest:

• Undersea cable to link England (UK) and the Netherlands.

EL.6. Ireland — United Kingdom:

increasing electricity interconnection capacities and possible integration of offshore wind energy.

Including the following project of European interest:

• Undersea cable to link Ireland and Wales (UK).

EL.7. Denmark — *Germany* — *Baltic Ring* (*including Norway* — *Sweden* — *Finland* — *Denmark* — *Germany* — *Poland* — *Baltic States* — *Russia*):

increasing electricity interconnection capacities and possible integration of offshore wind energy.

Including the following projects of European interest:

- Kassø (DK) Hamburg/Dollern (DE) line
- Hamburg/Krümmel (DE) Schwerin (DE) line
- Kassø (DK) Revsing (DK) Tjele (DK) line
- Vester Hassing (DK) Trige (DK) line
- Submarine cable Skagerrak 4: between Denmark and Norway
- Poland Lithuania link, including necessary reinforcement of the Polish electricity network and the Poland-
- Germany profile in order to enable participation in the internal energy market
- Submarine cable Finland Estonia (Estlink)
- Fennoscan submarine cable between Finland and Sweden
- Halle/Saale (DE) Schweinfurt (DE).

EL.8. Germany — Poland — Czech Republic — Slovakia — Austria — Hungary — Slovenia:

increasing electricity interconnection capacities.

Including the following projects of European interest:

- Neuenhagen (DE) Vierraden (DE) Krajnik (PL) line
- Dürnrohr (AT) Slav•tice (CZ) line
- New interconnection between Germany and Poland
- Ve•ký Kapušany (SK) Lemešany (SK) Moldava (SK) Sajóivánka (HU) line
- Gab•íkovo (SK) Veľký ur (SK) line
- Stupava (SK) south-east Vienna (AT) line.

EL.9. Mediterranean Member States — Mediterranean Electricity Ring

increasing electricity interconnection capacities between Mediterranean Member States and Morocco — Algeria

— Tunisia — Libya — Egypt — near eastern countries — Turkey.

Including the following project of European interest:

• Electricity connection to link Tunisia and Italy.

5 Appendix V: Literature Review of Electricity Infrastructure Requirements

5.1 Introduction

Overview This appendix presents a review of the literature of future infrastructure requirements in the electricity sector.

It should be noted that this analysis was carried out before the publication of the ENTSO-E Ten Year Network Development Plan (TYNDP) and the data are gathered from alternative sources.

The development of power transmission infrastructures is largely covered by recent studies carried out on behalf of TSO and institutional organizations. The emphasis is usually put on the following issues:

- analysis of current net transfer capacities (NTC) throughout the EU countries, whether they belong to specific organizations
- forecasts of power market evolution in the medium and long term (up to 2030)
- identification of key interconnection projects with specific emphasis on the crossborder capacities
- identification of related investment (in limited cases only)

The compilation and the analysis of available datahighlight several difficulties. Among the most constraining difficulties, we underline the following:

- diverging objectives: technological developments, impact of RES, political issues⁴
- divergence in methodological aspects, especially with regard to calculation processes; some forecasting studies are based on extrapolations, while others are based on the utilization of load flow calculation tools for instance
- divergence in the scope of the analysis: levels of detail, regional aspects, etc

Structure of this So as to address the questions raised by DG Energy, this report covers the following: **chapter** 1. The most recent developments in infrastructure place that are included in the

- 1 The most recent developments in infrastructure plans that are included in the available documentation and, in particular, the most recent reports
- 2 The possibility to reconcile current infrastructure plans with the recent simulations carried out on behalf of the EC with the PRIMES macroeconomic model with a time horizon including 2020 and 2030 respectively
- 3 An estimate of the projected investments related to the expected infrastructure improvements before 2020 and between 2020 and 2030, respectively (see Section 5.8 onwards)

In some cases, missing data have been estimated on the basis of the information that is available (for example the length of additional interconnection lines is estimated as 20% of the distance between the capitals of both countries⁵).

⁴For example, the re-connection of Greece to the UCTE grid.

⁵ Gross figure mostly used for some long term interconnections which includes the side investments required for reinforcing the cross border interconnection on both sides.

AC, underground DC and sub-sea DC cables have been identified separately, due to their large economic impact in terms of investments.

Assumptions and limitations of the analysis

Three possible shortcomings in the analysis must be highlighted:

- 1 The possibility of double counting, which cannot be avoided as various sources have been exploited and, in some cases, projects are not fully specified⁶.
- 2 The lack of links between the proposed extended transmission capacities and the economic development of the EU27 member states⁷.
- 3 The lack of information regarding the impact of the future developments in the field of renewable energy sources utilization.

5.2 Analysis based on available studies

The identification of the new projects is detailed in Table I of Appendix I. It summarizes the available data gathered after the consultation of various sources, includingour main sources UCTE, NORDEL, and BALTSO. The table reports the following items:

- countries between which the reinforcement of NTC is envisaged
- project scope
- project description
- project status:
 - under consideration
 - planned
 - design & permitting
 - etc.
- expected completion date
 - comments:
 - region covered
 - project driver
 - project scope (if available)
 - sources (see above)

For analysis purposes, the table in Appendix I was summarized in the form of a database, in Appendix II (Table II). The emerging results are developed below.

Assessment of new This section and the following section provide a summary of the planned developments that are provided by our list of sources. The dimensions we consider are:

- type of infrastructure (ACOHL, DC underground and subsea)
- geographical location
- completion date
- project type (new or upgrade)
- project driver

⁶ This was initially the case for the two projects between Austria and Germany as mentioned in Appendix I (reason for which the length of the second projects is assimilated to nil). Another example was the line Vierranden-Krajnik (DE-PL). Identified overlaps, including the above mentioned, have been written off from the table.

⁷Most often, references reported by TSOs and various related studies do not refer explicitly to well-defined and comprehensive economic scenarios.

Disaggregation by region Based on the database we have constructed, Table 5.1 indicates that the projects in the field of AC OHL are concentrated mainly in UCTE central East & South regions while DC subsea lines are more likely to be built in other regions.

A majority of projects envisaged during the next 20 years relate to AC lines (5,979 km) but they are almost matched by DC offshore projects (5,353 km).

	ACOHL length (km)	DC underground length (km)	DC subsea length (km)
Baltic	305	-	807
Central East	1,663	-	-
Central South	1,437	133	295
Central West	868	10	1,650
North	633	-	1,226
South East	445	-	1,375
South West	628	68	-
Total	5,979	211	5,353

Disaggregation by completion date Table 5.2 shows that 2,960 km of AC projects will be built before 2020 (including mid-term), against 1,934 km in the longer run and 1,085 km for which the implementation is still to be determined. It is estimated that 75% of the planned or expected projects with specified end dates should be implemented during the first half of decade⁸.

The forecasts are more balanced in the field of DC offshore infrastructures where at least 52% of the backlog should be realized before 2020, mainly from 2015 onwards. The ratio of projects for which the implementation planning is not yet defined is important in both cases: 18% in the case of AC lines and 33% for DC offshore line projects. This is consistent with the length of the planning period.

If we count mid-term projects as ones that will be implemented before 2020, the situation is as follows (see Table 5.3):

- 6,615km (76%) of the total projected length should be realized before 2020 against 2,067km (24%) between 2020 and 2030
- 2,960km (50%) of AC lines should be built by 2020
- 3,577km (67%) of DC offshore lines should be built by 2020

TABLE 5.2: BREAKDOWN OF LENGTHS BY EXPECTED COMPLETION DATE								
	ACOHL length (km)	DC underground length (km)	DC subsea length (km)					
2010	181							
2011	390							
2012	430	10	250					
2013	818							

⁸Excluding medium-term projects.

The Revision of the Trans-European Energy Network Policy (TEN-E): Final Report

				_
2014	222	68	260	
2015	176		800	
2016			520	
2017	110		200	
2018	128		600	
2020	305		147	
Long term	1,934	133		
Mid term	200		800	
To be determined	1,085		1,776	
Total	5,979	211	5,353	
Source(s): UCTE, NORDE	L, BALTSO, various other	s and author's calculations.		

TABLE 5.3: BREAKDOWN OF LENGTHS BY TIME HORIZON									
	ACOHL length (km)	DC underground length (km)	DC subsea length (km)						
2010	181								
2020	2,779	78	3,577						
2030	1,934	133							
To be determined	1,085		1,776						
Total	5,979	211	5,353						
Source(s): UCTE, NORDEL, BALTSO, various others and author's calculations.									

Disaggregation by However, the indicated lengths do not correspond systematically to the construction of *project type* new infrastructure, except perhaps for DC lines. Various projects address in turn:

- the rehabilitation of existing infrastructures
- the upgrading of transfer capacities
- the installation of phase shift transformers, etc.

Table 5.4 summarises the various European cross-border projects by type. Of the total projected length of new infrastructure projects (11,542 km), 83% is described as new or reinforcement projects. Only four upgrade projects are anticipated and the combined length of these is relatively small. For around 10% of all the cross-border projects it is not known whether they are new, reinforcement or upgrade projects.

TABLE 5.4: BREAKDOWN OF LENGTHS BY PROJECT TYPES								
Project Type	Total length (km)						
New or reinforcement	9,578							
Upgrade projects	810							
Type of project unknown	1,154							
Total	11,542							
Source(s): UCTE, NORDEL, BALTSO, various others and author's calculations.								

Transmission Another aspect to consider is the size of transmission equipment. The table in *equipment* Appendix II indicates, whenever possible, references in this respect. Usually, projects address 400kV lines or above. High voltage is usually justified by the goals of the projects under review, especially when long-distance transportation is envisaged and

in the case of offshore connectors, for which important developments are foreseen in the coming decades (see below). However, data are not available for all of them, especially in the case of investments to be realized after 2020, due to uncertainties impacting on long-term planning. Therefore, special attention was required when the investment projects planned in the long runwere converted to investment values.

Disaggregation by Table 5.5 summarizes the breakdown of length of planned projects expected to be *country* completed by 2030 between each country⁹.

If confirmed, these figures indicate that those countries concentrating the crossborders projects are, in terms of interconnection length:

- Austria
- Germany
- Italy

In the table, European countries are listed as row titles. If the project is between two European countries, the first country listed in the original source is used in the row, and the second one is indicated by the column.

Limitations in the As mentioned at the start of this chapter, these preliminary estimates are taken from several different sources. Besides the risk of double counting, the general coherence is not guaranteed because the results reflect more the sum of investments identified at national level, rather than a global, internally consistent project. Some of the mentioned projects also seem rather questionable, such as the interconnection between Germany and Norway, although in this case it is not the objective of the project itself but the recommended option (DC offshore cable) that could tentatively bypass the logic of the NORDEL market.

The power dependency of other countries, such as Italy, could also be reassessed in the long run with regard to the implementation of an alternative energy policy at national level. This could tentatively reduce the input of envisaged investments such as the new DC offshore interconnection between Greece and the SouthernItalian peninsula¹⁰.

⁹ Important neighbor countries are also mentioned to specify the country of origin/destination e.g. Ukraine, Turkey or Norway.

¹⁰ A recent ex-post evaluation carried out on behalf of the EIB indicated that the existing cable was barely reaching half of its NTC and was mainly used for balancing the two markets.

				TAJ	BLE 5.	5: BR'	EAKD	OWN	OF I	ENG	ГНS О	F PLA	NNEI) PR()JEC	TS, K	M (H	IORI Z	ZON 2	2030)					
																									ļ
	Belgium	Finland	France	Germany	Germany-Sweden	Greece	Italy	Latvia	Luxembourg	Malta	Montenegro	Netherlands	Norway	Poland	Serbia	Slovakia	Slovenia	Spain	Sweden	Switzerland	Tunisia	Turkey	Ukraine	United Kingdom	Total
Austria				333			533									11									877
Belgium									10															250	260
Bulgaria						130																			130
Croatia							300																		300
Czech Rep.				173																					173
Denmark				166	250							516													932
Estonia		260						293																	553
Finland																			132						132
France	18						287		20									68		139					532
Germany	154		460										800							200					1,614
Hungary																	187								187
Italy						300				125	375						50			138	170				1,158
Latvia																			200						200
Lithuania														204					200						404
Netherlands				50																				250	300
Norway				560								500							251						1,311
Poland				687												285							200		1,172
Portugal																		628							628
Romania															128							400			528
Slovakia																							151		151
Total EU countries	172 that are	260 not inclu	460 Ided hav	1,969 e no plan	250 Ined inter	430 connect	1,120 tion proje	293 ects.Thi	30 s table i	125 s built o	375 n the bas	1,016 sis of the international technology (800 nforma ^t	204 tion ava	128 iilable c	296 on relate	237 ed inter	696 connec	783 tion pro	477 Jects. T	170 he link	400 Germar	351 ny Swede	500 n-Denma:	11,542 ırk
Source(s): U(CTE, NC)RDEL, !	BALTS	D, variou	s others a	and auth	ior's calc	ulations	s.	di k di lu v	Germany		3 WITHUI	awar ur	Sweue	3111011	the min	tiai proj	Jeci.						

5.3 Project drivers and the impact of RES

Project drivers In various cases, projects identified by TSOs fail to elaborate on the reasons for which new interconnectors are needed. However, where possible we have attempted to identify the main drivers of each project. Many of the future electricity interconnection projects address several targets including namely, but not exclusively, the following factors:

- the mitigation of existing congestion on cross-border lines
- the security of national networks in case of possible collapse of one or several generators
- the interoperability of networks in line with the foreseeable development of the electricity market
- the need for additional transport capacity generated by the construction of new generating facilities, such as wind farms or back-to-back thermal stations

Furthermore, some of the projects reported by TSOs do not address direct increase of transmission capacity but the optimization of flows at international grid level, such as the installation of phase-shift transformers.

Table 5.6 summarises the anticipated projects by the driver(s) behind them. It should be noted that there is a significant degree of double counting in this table as many of the projects have more than one driver.

The most commonly cited drivers of the infrastructure projects are to increase general transfer capacities, resolve congestion or constraint problems or to develop the effectiveness of existing energy networks and/or markets. In comparison, as discussed below, the total length of projects explicitly driven by the aim of integrating renewable energy supplies is relatively small.

TABLE 5 6, RDEAKDOWN OF LENCTHS BY DOOLECT DDIVED

Project Driver	Total length (km)
Security of supply	1,748
Market coupling	2,131
Increased transfer capacities	2,760
Resolving congestion or constraint problems	1,469
Developing the effectiveness of existing energy networks/ markets	2,783
Developing renewable energy networks	1,611
Project driver unknown	2,441
Total (including double counting)	14,943

Links between In the cases of easing congestion and ensuring security of supply, projects do not drivers and project always require the construction of long new lines. Distances can be short and, in scale certain circumstances, the project can be limited to the updating of existing infrastructure. However, when linking different markets or incorporating new RES, the scope of the project can be much larger in terms of distance. In various cases it involves offshore cables.

The average length of projects proposed by TSOs and related studies is 165 km for onshore interconnectors (mostly OHL) while it amounts to 310 km for offshore cables.

- **Integration of RES** According to Appendix I and Table 5.6, only five projects, with a total length of 1,611km, cite integration of renewables as a project driver. However, it should be noted that integration of RES may implicitly be the driver behind many of the other connections, for example a reported increase in transfer capacities could be due to an increase in generation capacity in a country developing large amounts of renewable sources.
 - *The Trade Wind* A recent study carried out under the umbrella of Trade Wind¹¹ provides additional suggestions of future interconnectors in Europe, driven by the requirements of large-scale development and deployment of wind generation technologies. This study is based on forecasts of demand that are comparable to the baseline projections produced by the PRIMES model. It suggests that more than 20 projects will include expansion of international transmission capacities to incorporate more wind power. It is not always possible to consolidate the projects mentioned in the study with those listed in Appendix I but, working on the basis of the report in addition to our mains sources, the number of projects driven by integration of RES increases to 17 and the total length of the projects to 3,038 km.

A summary of outputs from the Trade Wind study is provided in Appendix III.

Other renewable We have not found any documents that explicitly discuss the international *sources* infrastructure requirements for integrating non-wind renewable sources. However, the *Ten year network development plan 2010-2020* published by ENTSO-E¹² provides details of other projects involving the integration of renewables other than wind energy.

For example, a project between Norway and Finland aims to connect both wind and small scale hydro power systems to the energy grid to enhance security of supply. Other projects between Norway and the UK, Norway and the Netherlands, and Denmark and Norway are all expected to create connections between hydro and thermal power stations.

In the longer term, up to 2050, the possibility of connections to north Africa should also be considered, although these projects are at too early a stage to be included in our list of possibilities.

Conclusions Our results show quite a large range for the share of capacity increase that is driven by the development of renewables. Our initial estimate from the main sources used is likely to understate the true extent due to projects having more than one driver, or not explicitly acknowledging the role of RES. On the other hand, the Trade Wind study may provide an overestimate, and it is also not always easy to consolidate the findings from this study with our main sources.

Apart from wind generation, the infrastructure requirements, at least in terms of international connections, is expected to be limited in the short term, with only some connections related to hydro-electric generation quoted in our main sources. In the

¹¹ Source: TradeWind; Integrating Wind, Developing Europe's power market for the large scale integration of wind power, February 2009.

¹² ENTSO-E; Ten-Year Network Development Plan, 2010-20, March 2010.

longer term, however, there is a possibility that imports of electricity generated from solar plants will require large-scale infrastructure developments.

In Table 5.7 we combine the outputs from the Trade Wind study with those from the ENTSO-E report to give a maximum number and length of projects. However, this mainly serves to enforce the view that there is a wide range of estimates available.

TABLE 5.7: CONTRIBUTION OF RENEWABLE INTEGRATORS							
Sources	Number of projects	Total length (km)					
Main sources	5	1,611					
All sources	36	7,571					
Source(s): The main sources are Note(s): In some cases lengths c	UCTE, NORDEL and BALTSO. Other source f projects were estimated.	ces are Trade Wind and ENTSO-E.					

Creation of a super Given the analysis above, it is difficult to envisage that the listed projects above and in Appendix I can be considered to be part of the super-grid concept: this is for two main reasons:

- Distances are usually too short to allow one of the targeted effects of super grids, related to the possibility to transfer the variable output of new RES, namely wind energy in the northern countries, over long distances.
- The technology used is still the synchronous HV lines in the range of 220-400 kV which remains more dissipative than higher-voltage (say 700 KV) asynchronous lines¹³.

The conclusion is that further measures are required at the European level in order to advance the possibility of the development of a European super grid¹⁴.

¹⁴In current usage, "super grid" has two definitions: the first of being a superstructure layer overlaid or super-imposed upon the existing regional transmission grid or grids, and the second of having some set of superior abilities exceeding those of even the most advanced existing grids. The concept of a super grid dates back to the 1960's and was used to describe the emerging unification of the Great Britain grid. While such grids cover great distances, due to congestion and control issues, the capacity to transmit large volumes of electricity remains limited. The SuperSmart Grid (Europe) and the Unified Smart Grid (US) specify major technological upgrades that proponents claim are necessary to assure the practical operation and promised benefits of such transcontinental mega grids (*source: Wikipedia*).

In practice, supergrids in fact deal with very high voltage transmission lines (> 400 kV). The very high voltage aims at limiting transmission losses over long distances, it is also considered with the use of alternative technologies: asynchronous – DC – instead of synchronous – AC – connections. The rationality of these investments is mainly supported by the ongoing development of RES. Using asynchronous lines facilitates the interconnection with HV offshore cables.

¹³ Offshore DC lines are not considered here, as they are very expensive technologies, more dissipative, and restricted to targeted purposes.

However, the approach is still rather speculative as it would imply very high investments to be compared to the potential benefits. It is worth mentioning that the transportation of power over long distance is very expensive and is accompanied by substantial energy losses. These extra costs must be added to the additional costs of the RES. The concept of supergrids also exists in the gas sector where it targets the possible development of hydrogen pipes.

5.4 Link with TEN-E projects

The list of TEN-E projects eligible for EC grants is presented in Appendix IV.

From this input, it turns out that:

- There is a *global convergence* between the interconnection projects to be • developed by the Transmission Operators. This convergence addresses both onshore and offshore interconnectors under consideration. This is the case, for instance, for the following projects:
 - Moulaine (FR) Aubange (BE) line; Udine Ovest (IT) Okroglo (SI) line; Neuenhagen (DE) — Vierraden (DE) — Krajnik (PL) line
 - new interconnection between Germany and Poland; undersea cable to link England (UK) and the Netherlands
 - undersea cable to link Ireland and Wales (UK)
- The scope of *new projects* usually goes beyond the investments identified under umbrella e.g. Halle/Saale (DE) — Schweinfurt (DE); the TEN-E Hamburg/Krümmel (DE) — Schwerin (DE) line; Kassø (DK) — Revsing (DK) — Tiele (DK) line; Vester Hassing (DK) — Trige (DK) line
- Eventually, possible mismatches are likely to occur as priority concerns of EU TSOs address internal links as well as links with close neighbours, while TEN-E encompasses broader projects such as those increasing electricity interconnection capacities between Mediterranean Member States and Morocco - Algeria -Tunisia — Libya — Egypt — and near eastern countries — Turkey.

5.5 **Integration of PRIMES projections**

Methodology

In this section we use the outputs from the PRIMES macroeconomic model and compare these against current supply capacities. The figures used are from the 2010 reference case. One of the outputs from the model addresses the energy balances of each member state which provides our measure of demand. Cross-border flows, where supply meets demand, are then integrated in an input-output matrix.

> The time horizon corresponds to the terms of reference of the present study: 2020 and 2030, respectively. In order to consider the NTC requirements in 2020 and 2030, the available data have been processed including the following:

- 1 Interconnections cover both intra-EU flows and exchanges with foreign countries such as Norway, Switzerland and other non-EU Central European countries. However, for the purpose of the final presentation, external exchanges have been condensed in one item: Total Other.
- 2 The basis of the calculation is 2010: data available for 2008 are inflated¹⁵.
- 3 NTC are driven from UCTE and related statistical sources (NORDEL, BALTSO), annual reports 2008.
- 4 Cross-border flows are based on the ENTSOE statistical yearbook 2008.
- 5 Flow values in 2020 and 2030 are first estimated on the basis of average flows, and then readjusted for taking account in a second sub-step of the variance originated by peak flows.

¹⁵Average rate 1.1% pa.

- 6 Flow data are then extrapolated on the basis of net power import and adjusted for peak flows, driven from PRIMES outputs (2020 and 2030).
- 7 In both 2020 and 2030, the overall grid architecture is provided by the existing infrastructure (2010).

The proposed approach is subject to several limitations among which the most important include, in turn:

- the fact that no reference is done vis-à-vis the load flow which would characterize the utilization of the grid during the peak time
- the utilization of transmission infrastructure is also directly impacted by dispatching centres operating at national level with peak-shaving objectives

Intermediate results corresponding to the various stages of the calculation process are presented in Appendix VI.

Based on the methodology outlined above, the outcome of the computation process is summarized in Tables 9.8 and 9.9. Excess capacity is defined as that which is above current existing capabilities and so requires new infrastructure to be built.

Cross-border Based on the inputs used, the EU27 grid would be characterized by a total increase of excess flows in 4,812 MW corresponding to the peak load in 2020.

2020

Computing the needs for new exchanges on the basis of the projections of energy balances in each country in 2020, the breakdown of excess capacities vis-à-vis the present situation would be as shown in Table 5.8.

Italy appears to be the most constrained country with NTC increases on all of its main borders.

TABLE	5.8: EXCE	SS OF TR	ANSMISS	ION CAP.	ACITIES	TO BE C	OVERED I	BY 2020 (1	MW)
Country	Bulgaria	Greece	Italy	Lux'brg	Portugal	Slovakia	Slovenia	UK	Total
Austria			45						45
Belgium				231					231
Bulgaria		565							565
Czech Rep						390			390
France			230					265	496
Germany				807					807
Poland						31			31
Romania	996								996
Slovenia			22						22
Spain					155				155
Other							779		1,074
Total	996	565	592	1,038	155	421	779	265	4,812
Source(s): E	uropean Comm	nission, author	s calculations	ò.					

2030

Cross-border Table 5.9 represents the same output, additional transfer capacity required compared excess flows in to the current situation, in 2030 in the form of an input-output matrix.

> The basis of the comparisons in Tables 9.8 and 9.9 is not incremental but compared to the current situation (2010). Taking into account the expected growth of energy

balances driven from the PRIMES model, there would need to be an increase of 8,245 MW for the transfer flows by 2030.

Based on the calculation process, the most loaded interconnections broadly follow the same pattern, with a couple of exceptions. An interconnection is required between Denmark and Sweden by 2030, whereas no extra interconnection, in addition to the requirement by 2020, is required between the UK and France.

These forecasts result directly from the energy balances and assume that the power exchanges are directed on the basis of the present exchange pattern¹⁶.

TABLE	5.9: EXCES	SS OF TRA	ANSMISSI(ONS CAF	ACITIES	S TO BE C	OVERED	BY 2030 (J	MW)
Country	Bulgaria	Denmark	Greece	Italy	Lux'brg	Portugal	Slovakia	Slovenia	Total
Austria				10				3	13
Belgium					219				219
Bulgaria			524						524
Czech Rep							1,742		1,742
Germany					764				764
Poland							547		547
Romania	1,415								1,415
Spain						308			308
Sweden		94							94
Other								2,618	2,618
Total	1,415	94	524	10	983	308	2,289	2,621	8,245
Source(s): Er	uropean Comm	hission, author	's calculations.						

In practice, various factors will impact, directly or indirectly, and to a variable extent, on the load flow throughout the EU27 grid. Among those factors, we suggest the following as priorities:

- the grid structure in terms of impedance and impact on the load flows
- the development of new interconnections (especially between 2020 and 2030)
- the impact of national dispatching in the field of peak shaving capacities
- the impact of the RES development, especially on the countries located near seashores
- the impact of energy-saving programmes on power demand, especially in the field of DSM

Following our methodology (see Box 5.1), the reported lengths provide an indication on the investments required on the existing grid "all things the same" to transport excess capacities. But the breakdown between countries is purely indicative as it is not supported by a load flow but only calculated on the basis of energy balances.

These are the figures that are used as the basis for the estimates of the investment requirements that are discussed in Section 5.8.

¹⁶Situation in 2008, which is he latest available year of data.

Box 5.1: How the excess transmission needs are calculated

The excess transmission needs are cross-border flows that are additional to those that that existed in the most recent year of data (2008). We provide estimates for 2020 and for 2030.

The methodology to calculate the excess transmission needs is based on data available from ENTSO-E and the projections from the PRIMES model. We illustrate the calculations with an example.

According to the PRIMES projections, Bulgaria is expected to import 208 ktoe of electricity in 2010 and 653 ktoe in 2020. This is equivalent to 2,419 and 7,594 GWh respectively.

From the ENTSO-E report we know that net transfer capacities into Bulgaria were from Greece (150MW) and from Romania (600MW), but figures are only provided for cross-border flows from Romania (3,095 GWh in 2008).

A figure for 2010 is estimated using an assumed growth rate of 1.1% pa. We get 3,163 GWh of flows from Romania to Bulgaria.

This is converted into an available capacity, using the standard conversion factor of 8.76, so the capacity required for average flows is 368MW. This is revised to get a required capacity for peak flows using the load variance from the ENTSO-E Statistical Yearbook. In the case of Bulgaria, it is relatively high, at 0.76, so the required capacity increases to 646 MW.

The same calculations are carried out for 2020, assuming that between, 2010 and 2020, cross-border flows increase at the same rate as net imports from the PRIMES projections. This gives an estimate of required net transfer capacity of 2,028 MW (to meet peak flows).

The excess transmission needs beyond 2008 capabilities are thus (2,028 – 600) MW, giving 1,428 MW. It should be noted that a small part of this requirement could conceivably be met by the connection to Greece but the assumption is that it remains unused.

It should be noted that the input-output matrix used for this calculation is built on the basis of projected energy balances and patterns in existing flows at the end of 2008. For this reason, proposed results are considered as indicative and may diverge from the results computed from a load-flow model at the EU 27 level.

5.6 Emerging corridors

Background The concept of 'Corridors' is widely used in the oil & gas sector where it has been used for years, based around pipelines. In the electricity sector, however, its reference is rather new. The reason is that until the end of the 1980s at least, electricity markets were national.

The NTC of cross-border interconnectors has been rather limited to cover a small part of the generating capacity. The purpose of these links was mostly focused on the security of the system in case of loss of one or more power stations.

However, the logic of long distance transmission is not obvious either. Various studies have been devoted to the comparison of transportation costs with gas pipelines and electric wire lines¹⁷. They tend to indicate that the electric option is more expensive than the transportation of primary energy over long distances. It could be tentatively the case for gas transportation combined with a gasification process¹⁸.

The recent development of RES, especially wind farms and solar power stations¹⁹, together with the emergence of more competitive technologies in the field of power transmission²⁰ has stimulated a new enthusiasm for long-distance projects, especially when projects involve partially or globally offshore links.

So far, long transmission projects remain expensive. One of the issues is that the additional transportation fees are not usually charged to the generating cost.

Grid A recent study²¹ analyses the existing situation at EU level as regards the NTC compared to the generation capacities available in the member states. Part of this study is based on the Trade Wind results that were discussed previously. The current situation is depicted in Figure 5.1.

¹⁷ E.g. Comparing Pipes & Wires: A capital cost analysis of energy transmission via natural gas pipelines and overhead electric wire lines; A Joint Study by the Bonneville Power Administration and the Northwest Gas Association, date not available.

¹⁸ Transport or transmit? Should we transport primary energy resources or transmit them as electricity?; Alexandre Oudalov, Muhamad Reza ; ABB Review 1/2008.

¹⁹Ex. DESERTEC in the Sahara region.

²⁰HV DC, onshore or offshore.

²¹ T E N - ENERGY Priority: Corridors for Energy Transmission; Ramboll Oil & Gas & MERCADOS - ENERGY MARKETS INTERNATIONAL S.A.; November 2008.

Figure 5.1: Interconnection capacities vs. peak demand

If a minimum of 10% of NTC vis-à-vis the generation capacity is required to secure the functioning of the power system at national level, the majority of the EU countries are in a rather comfortable situation as their NTC exceeds this threshold or is even above 30%.

Figure 5.2: Impact of RES in generation capacities by 2013

The most delicate situations are faced by Italy, Greece and Romania. Spain, the UK, Ireland, and Poland are in an even worse case as the ratio drops below 5%. However, even for the countries benefiting from strong exchange capacities, this does not mean that no congestion can be observed on one or several borders.

Another approach is to assess the share of RES (other than hydro) in national generating capacities. A recent study carried out by UCTE²² indicates the following results in the medium term (January 2013).

Still from the same source²³, Figure 5.2 sums up the evolution of Simultaneous Regional Transmission Capacity in 2009 and its forecasted evolution in the next five years based on identified projects.

Beyond this five-year period, too much uncertainty prevents us from assessing any relevant SITC evolution. Uncertainties characterize both generating cross-border capacity development and consumption patterns.

Figure 5.3: Transmission capacities between blocks

²²UCTE System Adequacy Forecast 2009-2020; Union for the co-ordination of transmission of electricity, UCTE, January 5th 2009 (scenario B).

²³ UCTE, see above.

In terms of power exchange capacity, emerging corridors would be, in turn:

- Centre South Block- North Western Block (7100/3190 MW)
- North Western Block North Eastern Block (4700/3000 MW)
- North Western Block South Western Block (2600/2400 MW)
- North Western Block NORDEL (2000/2400 MW).

This is shown in Figure 5.3. France, Germany, Denmark, Austria and Italy play a major role in this architecture.

Market An alternative approach starts form the architecture of energy markets and related energy exchanges. Figures issues by the EC outline the situation in 2005²⁴; this is shown in Figure 5.4.

Figure 5.4: Power consumption and exchanges between EU regions (2005)

In the described situation, the existing corridors are²⁵:

- France-Italy (41 TWh)
- Czech Republic–Germany (35 TWh)
- Romania-Hungary (18 TWh)
- Spain-Morocco (17 TWh)
- Germany-Denmark (15 TWh)
- France-United Kingdom (12 TWh)

²⁴ EU Energy Networks Policy, Trans-European Networks Energy; Casablanca, 21st March 2008.

²⁵Divergence can be observed between existing studies in this respect. Part of this divergence is explained by the methodology and, especially, by the study objectives. The situation is different in this respect if we consider exercises in projecting energy flows on the one hand (see input-output projections based on the outputs from the PRIMES model developed in this report), and commercial objectives focused on the creation of an integrated market on the other hand. Other specific sources of divergence could be found in the project scope (such as the EWEA Wind Energy targets 2020/2030).

Important interconnections address also the following links:

- Baltic countries-Northen Europe (11 TWh)
- Italy-Central Eastern Europe (9 TWh)
- Iberian market-Central Western Europe (8 TWh).

5.7 Comments

Several remarks can be formulated about the identification of transmission corridors and, more broadly speaking, new interconnectors.

- 1 The electric grid is a system. As long as incremental increases re introduced in the field of either generating or transmission capacities, load flows will be reallocated throughout the entire grid. This can be accompanied with a subsequent reallocation of peak flows on congested borders which implies the need for further investment should be reassessed on a regular basis.
- 2 Some of the identified new transmission routes can tentatively result from the bad functioning of a specific market. For instance, this is the case for the interconnector Algeria Spain. In present circumstances, there is no need to export power from Algeria to Spain but to Morocco. The latter country is covering more than 15 % of its power needs from Spain through the AC line under the Strait of Gibraltar. The answer to the present shortage in Morocco is found in the recent achievement of the 400 kV²⁶ line crossing Maghreb countries.
- 3 With regard to the projected new asynchronous interconnection Greece Italy, the project was evaluated after its completion by the EIB. Based on these findings, it appeared that the initial project was designed to export to the Italian market the energy produced by a CCGT plant to be built in Greece. After the period required for building the interconnector and the preliminary years of the utilization time, it appeared that Greece did not yet have the excess capacity required for corresponding exports²⁷. The cable was basically used for balancing the two markets in a reverse-flow mode. The construction of a new cable could be reassessed on the basis of this situation, if not changed in the meantime.
- 4 Among the observed emerging trends, we can point out the foreseeable development of offshore interconnections. They materialize the philosophy of back-to-back power stations, especially in the case of the introduction of RES on the grid. Attention should be paid in this respect as, if the technology is now largely available, the option remains expensive in the case of long-range power lines, especially when their development is justified by the construction of large wind farms, for which capital expenses already exceed the investment costs related to traditional energy sources.

Items 2 to 3 are only examples and must be considered at EU 27 level. They do not imply that specific questions of this type are only concentrated in specific regions such as the Mediterranean Basin.

²⁶ Since the Winter 2009-2010.

²⁷Even if this technology is a priori not appropriate for the reverse flow utilization mode.

5.8 Investment assessment in the electricity sector

Estimate of unit A survey issued in 2002 provides a comprehensive overview of the unit costs incurred **costs** for the construction of HV lines²⁸.

According to this source, using a double circuit 380kV line as an example, compared to the base case cost of $401,000 \notin$ km, the results suggest that the countries can be classified into five cost groupings, as shown in Table 5.10.

	TABLE 5.10: COST ES	TIMATIONS	OF HV OHL BY COUNTRIES
Group	Country	'000 € km	Specific cost factors
1	Finland	200-300	Flat land (fewer towers)
	Sweden		Less populated
1	Greece	200-300	Low costs (land, labour)
	Portugal		
2	Denmark	300-400	Close to base case
	Norway		
	Spain		
3	Belgium	400-500	Close to base case
	Netherlands		Heavily populated
	Italy		
4	France	500-600	Heavily populated
	Germany		High labour costs
5	UK (England & Wales)	600-800	'n-2' standard applied & more towers/km
			High right-of-way costs
			Heavily populated
5	Austria	600-800	High environmental issues
	Switzerland		Topography, high wind pressure limits
			High labour costs
Source(s)	: ICF Consulting Ltd.		

These costs exclude the cost of transformers and of other substation equipment. The most significant items are transformers and busbar bays.

Based on the information provided by TSOs, 400kV transformers cost between €2-4m and 400kV bays between €1.5-2.5m.²⁹

For 220kV, our base assumes that the construction cost is 67% of the cost of a corresponding 380kV line. Costs of 220kV relative to 380kV vary from 40% in Italy to 83% in Switzerland, depending on the number and size of conductors. 400kV DC cables cost between five and eight times the cost of a single 380 kV line³⁰.

²⁸Unit Costs of constructing new transmission assets at 380 kV within the European Union, Norway and Switzerland; Prepared for the DG TREN/European Commission; Study Contract NoTREN/CC/03-2002; ICF Consulting Ltd, Final Report - October 2002.

²⁹Excluding compensation payments to local authorities and landowners.

³⁰ The cost excludes converter stations.

In a more recent study³¹, the analysis is carried out on the basis of unit costs reported in the latter survey³² to compute the required investments in new interconnections. Investment costs are in the following range:

- for new AC OH lines: between 220 and 746 €/km/MVA, averaging 465 €/km/MVA
- for DC submarine interconnectors: between 965 and 6,770 €/km/MVA), averaging 2,880 €/km/MVA

These figures remain subject to two opposing factors:

- inflation, on the one hand, which tends to increase the unit costs at least if the prices of raw materials follows recent trends (copperand aluminium)³³
- learning effects reflecting the impact of both experience and economies of scale

The last studyprovides the following investment costs of DC technology:

- sea/land cable (supply + laying down + protection): €0.77m/km
- MV sea metallic return cable: €0.15m/km³⁴
- DC overhead line: €0.35m/km
- converter stations (both ends): €0.16m/MW
- bay cost: €1.5m/bay

However, these figures seem to underestimate the real cost, especially for DC offshore lines. The same technology and interconnection scheme is assumed for DC interconnectors: LCC³⁵ with MV³⁶sea cable return for submarine links. AC OHL is given different values for each country, depending on voltage level, line rating and territory morphology. These unit costs were used in particular for the assessment of the following projects: EstLink2, SwedLit and Ambergate.

Our assumptions Clearly there is a wide range of uncertainty over the actual costs of building the new transmission capabilities, but we are required to make a best estimate in order to calculate total costs. Based on the set of inputs listed above, we will assume the following unit costs for the purpose of the investment appraisal:

- HV AC OHL (reference 380 kV): €0.6m/km
- HV DC onshore (reference 400 kV): €2.0m/km

³¹ Energy Infrastructure Costs and Investments between 1996 and 2013 (medium-term) and further to 2023 (long-term) on the Trans-European Energy Network and its Connection to Neighboring Regions with emphasis on investments on renewable energy sources and their integration into the Trans-European energy networks, including an inventory of the Technical Status of the European Energy-Network for the Year 2003, Contract

n. TREN/04/ADM/S07.38533/ETU/B2-CESI, Issue Date: October 2005, Prepared by: CESI spa (Centro Elettrotecnico Sperimentale Italiano) – Italy, IIT (Instituto de Investigación Tecnológica), – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark.

³² References: "Unit costs of constructing new transmission assets at 380kV within the European Union, Norway and Switzerland", prepared for the E.C.-DG TREN - Contract NoTREN/CC/03-2002. IFC Consulting Ltd.

³³Copper prices inflated by 160% in \$ terms from Dec 30th 2008 and Jan 12th 2010. During the same period aluminium prices increased by 30% (Source: The Economist, 16/01/10).

³⁴ In the Multiregional study, when estimating the investment costs different values for the MV return cable have been adopted, in the range between €0.1m/km and €0.2m/km. The value adopted for the estimations presented is the average between the two extremes.

³⁵ LCC: Line Commutated Converters, technology based on thyristors.

³⁶ MV: Medium Voltage.

• HV DC offshore (reference 400 kV)³⁷: €4.8m/km

Cost estimates for In Table 5.3 we outlined the total lengths of the planned projects in km. These lengths **the proposed** are multiplied by the assumed unit costs to give a preliminary estimate of total costs developments (see Table 5.11).

> It should be noted that these figures do not include substations and converters, and do not include indirect costs related to the construction of interconnectors for which no visibility is provided in the available documentation.

TABLE 5.11: PRELIMINARY ESTIMATION OF INVESTMENT COSTS									
	ACOHL (€m)	DC onshore (€m)	DC offshore (€m)	Total (€m)					
2010	109			109					
2020	1,667	156	17,167	18,990					
2030	1,160	266		1,426					
To be determined	651		8,525	9,176					
Total	3,587	422	25,692	29,701					
Source(s): See Table 3.3, ICF Consulting Ltd, EstLink2, SwedLit, Ambergate, author's calculations.									

Attention must be paid to the fact that:

- 1 Unit costs on which the evaluation process is based remain highly speculative; this is especially the case for offshore interconnectors which represent the largest part of the investment.
- 2 In the case of AC OHL, the situation is also complicated by the fact that only part of the envisaged project covers the construction of new lines; even if this is mostly the case, possible savings can be generated in the case of upgrading of existing lines.

Taking all these issues into consideration, we suggest that a target of €30-40 bn could be tentatively envisaged taking into consideration contingencies and spin-off investments. A total of 85% of the budget is absorbed by new DC lines, especially offshore projects.

Cost estimates to In earlier sections of this appendix, we identified a range of proposed developments cover integration that are, or may be, driven by the requirement to integrate renewable sources of generation into electricity grids. Using the same assumptions as above we can estimate of renewables the costs associated with these projects. We get a range of:

Minimum: €5,877m (5 projects, 1,611 km)

Maximum: €19,096m (36 projects, 7,571 km)

As is discussed in earlier sections, the range of outcomes is due to the fact that the different sources used often in conflict as to which projects are explicitly driven by integration of renewables.

Cost estimates to We now consider the investments required to meet the 'excess' (greater than current) cover excess capacity required by 2030. Our starting point is the European connections outlined in **capacity** Table 5.9 and we use the same assumptions that are used in that table.

³⁷Offshore interconnectors represent the bulk of considered projects. This can be regarded as a minimum.

The first step is to convert the capacities in Table 5.9 to lengths. We do this in Table 5.12, making the following three assumptions:

- 1 The basis for our analysis is the excess flows which are estimated from the projections from the PRIMES model and existing interconnections.
- 2 The average distance for each line is 20% of the distance between the capitals of the countries.
- 3 The maximum power capacity per line is 500 MW³⁸.

Given these inputs, we suggest that around2,158 km of new lines will need to be built by 2030. This is lower than the planned length of ACOHL suggested earlier.

³⁸ This is a conservative assumption.

TABL	E 5.12: LI	ENGTHS	OF INTE	RCON	NECTIC	ONS REQU	UIRED B	Y 2030, I	km
Country	Bulgaria	Denmark	Greece	Italy	Lux'brg	Portugal	Slovaki	Slove	Total
							а	nia	
Austria				277				69	346
Belgium					46				46
Bulgaria			317						317
Czech Rep							331		331
Germany					311				311
Poland							254		254
Romania	296								296
Spain						126			126
Sweden		131							131
Other								-	-
Total	296	131	317	277	357	126	585	69	2,158
Source(s): S	ee Table 3.9,	author's calc	ulations.						

Based on these lengths, projected investments would be limited to $\in 1.3$ bn, including both the price of OHL and externalities. This figure is far below the total investment costs estimated for planned developments but this is due to the fact that it does not include offshore interconnectors which absorb the greatest part of the budget.

In any case, these results remain subject to the various limitations detailed above, especially as regards the breakdown of interconnections. We stress that the total investment for cross-border lines is much lower than the replacement and the upgrading of national grids that will be implemented during the next two decades.³⁹

Investments by Table 5.13 presents our suggestions of the regional disaggregation for the investments. We provide results based on planned projects, and the requirements to meet excess demands in 2030.

Our mid-central values make the assumption that half of the investment for each interconnector is made in each country. We are aware that there are cases where this is not realistic (for example it is likely that most of the connection between Germany and Luxembourg will lie in Germany), so we also provide maximum values based on the entire cost of the development being borne by a single country (so is double the central value). Our final estimate takes the central value and adds on a fixed factor to take into account the additional costs for substations and converters and related investments.

³⁹ In 20 years between one third and half of the existing HV lines will be replaced.

	Pla	nned Project	5	To mee	et excess demands		
	Mid	Max	Final	Mid	Max	Final	
Austria	321	642	395	68	136	84	
Belgium	662	1,323	814	14	28	17	
Bulgaria	39	78	48	159	318	196	
Cyprus	0	0	0	0	0	0	
Czech Rep.	52	104	64	683	1,366	840	
Denmark	1,338	2,726	1,646	131	262	161	
Estonia	1,020	2,039	1,254	0	0	0	
Finland	664	1,327	816	0	0	0	
France	380	760	468	363	726	446	
Germany	3,981	8,012	4,897	587	1,174	722	
Greece	759	1,518	934	48	96	59	
Hungary	56	112	69	0	0	0	
Ireland	0	0	0	0	0	0	
Italy	3,444	6,887	4,236	287	574	353	
Latvia	876	1,751	1,077	0	0	0	
Lithuania	541	1,082	666	0	0	0	
Luxembour				154			
g	16	32	20		308	189	
Malta	300	600	369	0	0	0	
Netherland				0			
5	3,053	6,107	3,756		0	0	
Poland	413	826	508	420	840	517	
Portugal	188	377	232	0	0	0	
Romania	998	1,997	1,228	111	222	137	
Slovakia	134	268	165	976	1,952	1,2	
Slovenia	71	142	87	46	92	57	
Spain	256	513	315	0	0	0	
Sweden	1,125	2,300	1,384	0	0	0	
UK	1,200	2,400	1,476	0	0	0	
Non-EU	7,814	-	9,611	-	-	-	
Total	29,701	-	36,532	4,047	-	4,9	

TABLE 5.13: INVESTMENT COSTS BY COUNTRY, €m

5.9 **Impact on transmission fees**

Assumptions used The achievement of a fully open market means that two activities are subject to competition: production and commercial activities. In the case of transmission, especially at HV level, the activities are still regulated.

> The economic logic is to charge a transmission fee for the transport capacity of the grid which must be designed, built and maintained to absorb the maximum power flow at peak load⁴⁰. In the case of additional transmission capacities, the impact on tariffs

⁴⁰"Maximum coinciding power".

will depend on the increase of depreciation costs, financial costs and O&M costs. All these items are fixed costs.

Losses amount to an average of 5% on HV grid. This amount should be added to the fixed costs. However, in normal circumstances, it is much lower than other fixed costs and remains limited as long as interconnectors, even sub-sea links, cover a very small proportion of the total grid length which is not normally used at full load.

The basic assumptions are described below:

- depreciation scheme: 40 years⁴¹
- cost of capital: 7% (pa; nominal)
- O&M: 4,- % (pa)
- power generation capacity in 2020: 900 GW (EU27)
- power generation capacity in 2030: 950 GW (EU27)
- power generation (2030): 4.400 TWh

Impacts on fees Using these assumptions and the two sets of investment costs derived earlier in this chapter, our estimates of the impacts on transmission fees are outlined in Table 5.14. We have used rough estimates for the investment costs (€35 bn and €5 bn) to reflect the accuracy of the assumptions.

Costs breakdown	Unit	Proposed	To meet excess
		Developments (on &	demands in 2030
		offshore	
Incremental investment	€m	35,000	5,000
Power generation 2030	MW	950,000	950,000
Power production	MWh	4,400	4,400
Depreciation	€m/y	875	125
Cost of capital	€m/y	2,450	350
O&M costs	€m/y	1,400	200
Total	€m/y	4,725	675
Impact on fixed tariffs	€/MW/y	4,974	710
	€/kWh	1.07	0.15

The impact on price inflation will vary depending on the global evolution of prices but also on the pace of the investment process. This would require a detailed analysis based on the investment cash flows (Table 5.14 considers the period up to 2030).

Beyond the scope of the utilization of national grids, cross-border flows can be subject to an auctioning process in case of limited transfer capacity. The marginal costs incurred by the market operators for the utilization of these transfer capacities depend on the supply and demand. These extra costs can be high in the case of severe NTC limitations. Additional interconnections would reduce these costs, and possibly counterbalance the negative cost impact calculated above.

⁴¹This value exceeds the fiscal amortization but remains well below the reference reported by some sources: 50 years.

The underlying hypothesis is that the implementation of the anticipated investments will gradually decrease the possible impact of these extra costs which can be considered as realistic in 2030.

Another aspect is the relative size of the projects planned up to 2030. We must keep in mind in this respect that the total UCTE grid amounts to 110,000 km of HV lines. Limited to the sole UCTE, the total investment would average 10% of the network length. It will be lower in practice for the EU27.

This figure is likely to be increased on monetary terms as the extensions under review comprise a rather high amount of offshore lines, which are much more expensive. In addition, offshore investments are likely to impact more significantly on maritime countries than the inter-land countries. Compensation mechanisms could therefore be required.

5.10 Conclusions

Results from the Various aspects related to the identification of new development projects of crossborder HV lines have been covered by recent studies. However, the approach is fragmented. The studies usually cover part of the EU27 and its Member States while their scope varies in terms of time horizon or modeling emphasis.

Furthermore, these studies are not as recent as the most recent PRIMES projections, which are able to take into account the most recent developments, for example regarding thefinancial and economic crisis.

The review combines two complementary approaches:

- on the one hand, the review of the main output of the most recent developments in the field of grid expansion in the medium and long terms
- on the other hand, an alternative approach based on the assessment of the length of new interconnection facilities that could tentatively be envisaged by 2030

The latter is based on the existing grid architecture and the output of therecent projections based on the PRIMES model⁴².

Although the approach was limited by various data inconsistencies, the analysis highlights the following findings:

- There is a certain convergence between the interconnection projects to be developed by the Transmission Operators.
- The scope of new projects usually goes beyond the investments identified under the TEN-E umbrella.
- Eventually, possible mismatches are likely to occur as priority concerns of EU TSOs address internal links as well as links with close neighbors, while TEN-E encompasses broader projects.

The baseline projections from the PRIMES model suggest a total increase of 8,245 MW of transfer flow capacity in the EU27 by 2030.

⁴²Energy and Transport; Trends to 2030, European Commission, Directorate General for Energy and Transport.

6 Appendix VI: Data & Calculations for Appendix V

This is included as a separate spreadsheet file.

7 Appendix VII: Background Data to Chapter 4

7.1 Long Term DemandForecasts

Figure 7.1.1: ENTSOG Peak Day Demand Scenario⁴³

⁴³ European Ten Year Network Development Plan; 2010 – 2019, December 2009 (Ref. 09ENTSOG).

Figure 7.1.3: Long term natural gas demand projection for the EU^{45,46}

⁴⁶ EU-27 natural gas demand in 2006 accounted for 545 bcm. There is a high uncertainty about future demand development. Figure 1 compares different forecasts based on varying scenarios, including the updated "European Energy and Transport Trends to 2030" baseline scenario published by the European Commission in 2007. In the mid-term, until 2020, these forecasts remain relatively similar expecting a demand level between 550 and 670 bcm. However, things change in the longer-term. For the period up to 2030, the highest scenario (IEA reference case) and the lowest scenario (WETO carbon constraint case) differ by 200 bcm.

Country	All fuels	Solid fuels	Oil	Gas	Electricity	Heat	Renewables & wastes	Bio fuels
EU27	1157.7	53.8	484.6	268.8	244.5	41.6	63.1	7.
EU25	1123.9	51.4	474.0	260.6	238.6	39.0	59.2	7.
Belgium	34.9	1.9	14.5	10.1	7.1	0.4	0.8	0.
Bulgaria	9.8	1.0	3.7	1.2	2.3	0.8	0.7	0.
Czech republic	25.8	3.4	7.2	6.4	4.9	2.1	1.6	0.
Denmark	15.7	0.3	7.4	1.7	2.9	2.3	1.2	0.
Germany	210.3	9.6	78.4	59.4	45.6	6.3	10.9	4.
Estonia	3.0	0.1	1.0	0.2	0.6	0.5	0.5	0.
Ireland	13.2	0.6	8.6	1.6	2.2		0.2	0.
Greece	22.0	0.5	14.7	0.7	4.7	0.0	1.3	0.
Spain	98.7	1.8	54.1	16.2	22.4	0.0	4.2	0.
France	154.0	5.0	70.0	31.1	36.6		11.3	1.
Italy	132.1	3.7	57.1	39.4	26.6	3.1	2.2	0.
Cyprus	1.9	0.0	1.4	0.0	0.4		0.1	0.
Latvia	4.4	0.1	1.6	0.5	0.6	0.6	1.0	0.
Lithuania	5.0	0.2	1.9	0.6	0.8	0.9	0.6	0.
Luxembourg	4.4	0.1	2.9	0.7	0.6	0.1	0.1	0.
Hungary	16.9	0.6	5.2	6.3	2.9	1.2	0.8	0.
Malta	0.4	0.0	0.3	0.0	0.2		0.0	0.
Netherlands	51.3	1.5	18.6	19.0	9.2	2.4	0.8	0.
Austria	26.5	1.4	10.9	4.4	4.9	1.4	3.1	0.
Poland	61.2	11.9	19.3	8.8	9.8	6.9	4.1	0.
Portugal	18.8	0.2	9.9	1.4	4.2	0.3	2.7	0.
Romania	24.0	1.5	6.9	7.0	3.5	1.8	3.3	0.
Slovenia	4.9	0.1	2.4	0.6	1.1	0.2	0.4	0.
Slovakia	10.5	1.5	2.2	3.5	2.1	0.7	0.5	0.
Finland	26.6	0.9	8.1	1.3	7.4	4.3	4.5	0.
Sweden	33.5	1.3	10.5	0.8	11.4	4.1	5.3	0.
UK	147.9	4.6	65.7	46.0	29.4	1.1	1.0	0.
Croatia	6.5	0.2	3.2	1.2	1.3	0.2	0.3	0.
Turkey	72.8	14.5	23.5	14.4	13.1	1.0	6.3	0.
Norway	18.8	0.7	7.0	0.3	9.5	0.2	1.1	0.
Switzerland	21.1	0.2	11.5	2.5	4.9	0.4	1.4	0.

Figure 7.1.4: Final Energy Consumption by Fuel 2006 (in Mtoe)⁴⁷

⁴⁷ Eurostat, December 2008

. **S**

7.2 Long Term Supply Forecasts

Table 7.2.1: Gas imports into the EU-27 countries (in TJ, terajoules)⁴⁸

Gas Imports into the EU-27 (in TJ, terajoules)

ORIGIN	2000	2001	2002	2003	2004	2005	2006	SHAR 2006 (
Russia	4 539 709	4421 515	4 554 744	4 895 2 52	4 951 044	4 952 879	4927552	42.0
Norway	1 985 231	2 136 379	2 601 569	2 699 473	2801723	2 671 779	2 844 269	24.2
Algeria	2 203 075	1957 181	2 132 477	2 158 803	2 042 137	2 256 826	2 134 886	18.2
Nigeria	172 020	216120	2 17 882	335 929	410 260	436 319	560 986	4.8
Libya	33 442	33 216	25 536	30 390	47 809	209 499	321 562	2.7
Egypt						202 419	317 420	2.7
Qatar	12 443	27 463	87 952	80 414	160 170	195713	245 158	2.1
Trinidad and Tobago	36 334	24 498	19 120	1 365		29 673	154 244	1.3
Other Origin	112 810	199 256	125 425	100 023	313 245	409 387	223 232	1.9
Total Imports	9 095 064	9015628	9764705	10 301 649	10726388	11 364 494	11729309	100
in Mio Cubic meters	240 610	238509	258 326	272 530	283 767	300 648	310 299	

Notes: Gross calorific value of 1 million cubic meter of Natural Gas can vary between 37.5 and 42.5 terajoule.

⁴⁸ Eurostat, December 2008

⁴⁹Natural gas Demand & Supply; Long term Outlook to 2030, Eurogas.

7.3 Pipeline utilization rates

Total			391.2	391.2			283.6		72.48%
83	Norway	United Kingdom(Easington)	24.0						
58	Norway	(vesterled)	12.4	36.4		16.4			
	in an intery	United Kingdom(St.Fergus	2010		16.4		1	45%	1
31	Norway	Erance(Dunkerque)	18.6	18.6	15.1	15.1	1	74%	1
16	Norway	Germany(Dornum/NETRA)	15.0	43.89	1		1	1	1
15F	Norway	Germany(Emden EPT1)		42.00	1		00.1	1	73.00%
15E	Norway	Germany(Emden EPT)			1		96.1	1	75 90%
15B	Norway	Germany(Emden NPT1)	28.91		1	30.7	1	1	1
154	Norway	Germany(Emden NPT)			23.74	1	1	1	1
15D	Norway	Netherlands(Emden EPT1)			1		1	73%	1
15C	Norway	Netherlands(Emden NPT)			7		1	61%	1
1A	Norway	Belgium(Zeebrugge)	14.6	14.6	9.5	9.5	216	65%	22.2270
50	Libva	Italy(Gela)	10.0	10.0	9.2	9.2	9.2	92%	92.13%
47	Algeria	Italy(Via Tunisia)	31.7	31.7	22.1	22.1	32.7	69%	76.41%
38	Algeria	Spain(via Morocco)	11.1	11.1	8.8	8.8		79%	
80	Ukrain	Romania(Mediesu Aurit))	4.0	224.9	1	3.5	1	na	1
78	Ukrain	Romania(Isaccea)	37.5	224.0	3.5			na	
64	Ukrain	Poland(Via belards)	5.7		2.3			na	
66	Russia	Poland(Wysokoje)	31.3			8.5	1	na	1
/5 65	Russia	Latvia(Korneti)	1.5		6.2	1.0	155.58	na	69.19%
76	Russia	Finiand(Imatra)	1.0			1.5		na	1
67	Russia	Hungary(via Ukrain)	14.3			7.9	4	113	
71	Russia	Lithuania(Via Belarus)	10.5			3.4	4	na	1
55A	Russia	Slovakia(Via Ukrain)	108.0			5.8		na	
Pipeline No.	Export country	То	Max. yearly flow rate bcm	Max. yearly flow rate bcm	from source country	Import in bcm (2007 figures)	imports from source country	destination country	rate source country
				Total	Pipeline	Pipeline	Total	Utilisation	Utilisation

Table 7.3: Pipeline Utilization rates⁵⁰

⁵⁰T E N - ENERGY Priority Corridors for Energy Transmission; Part One: Legislation, Natural Gas and Monitoring; prepared by Ramboll A/S and Mercados SA; November 2008
7.4 LNG regazification capacities

Receiving Country	Location	Max. hourly flow rate in mio Nm3/h	Max. hourly flow rate in mio Nm3/d	Max. yearly flow rate bcm	Total Max. yearly flow rate bcm	LNG Import in 2004 bem	Load factor
Belgium	Zeebrugge LNG	0.95	22.80	8.3	8.3	2.9	
France	Fos-sur-Mer	0.65	15.60	5.7	15.0	7.6	
	Montoir de Bretagne	1.15	27.60	10.1	f 15.8	7.0	
Spain	Barcelona	1.20	28.80	10.5)		
-	Cartagena	0.92	22.19	8.1	226	17.5	
	Huelva	0.91	21.92	8.0	55.0	17.5	
	Bilbao	0.80	19.20	7.0	J		
Italy	Panigaglia	0.51	12.32	4.5	4.5	5.9	
Greece	Revithoussa	0.22	5.28	1.9	1.9	0.6	
Portugal	Sines	0.60	14.40	5.3	5.3	1.3	
Turkey		0.74	17.81	6.5	6.5	4.3	
Total		8.7	208	75.9	75.9	40.0	0.5

Table 7.4.1: LNG regasification capacities and gas imports in 2004⁵¹

⁵¹ Energy Infrastructure Costs and Investments between 1996 and 2013 (medium-term) and further to 2023 (long-term) on the Trans-European Energy Network and its Connection to Neighboring Regions with emphasis on investments on renewable energy sources and their integration into the Trans-European energy networks, including an Inventory of the Technical Status of the European Energy-Network for the; Year 2003; Contract n. TREN/04/ADM/S07.38533/ETU/B2-CESI; Issue Date: October 2005; Prepared by: CESI spa (Centro Elettrotecnico Sperimentale Italiano) – Italy ,IIT (Instituto de Investigación

Tecnológica) – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark; October 2005.

Terminal	2007 Full Year 000 mt	Approx. Ioad factor	Oct. 07 Cargoes received	000 metric tons LNG	Nov. 07 Cargoes received	000metric tons LNG	Terminal	Dec. 07 Cargoes received	000 metric tons LNG	Jan. 08 Cargo es received (1)	000 metric tons LNG	Shippers
												All Qatar P./ 1 Suez
Zeebrugge	2.022	30% (2)	3	186	3	183	Zeebrugge	4	244	3	186	LNG
Grain	1.133	34%	2	128	3	180	Grain	3	177	4	230	BP & Sonatrach
												All GdF/1Satoil-
Montoir			9	540	10	580	Montoir	10	605	5	252	EdF/1 BG
Fos sur Mer			8	277	10	308	Fos sur Mer	13	363	7	193	All Gaz de France
Total France	9.866	78%					Total France					
Sines	2.114	51%	4	245	3	191	Sines	3	189	1	63	All Transgas/Galp
Mugardos			2	117	1	54	Mugardos	1	63	2	120	Gas Natural, Repsol
BBG			5	289	4	244	BBG	5	276	6	362	Unión Fenosa, NLNG
Huelva			8	320	8	271	Huelva	9	357	10	425	Iberdrola, Qatargas
Cartagena			2	125	6	261	Cartagena	9	320	6	311	Gaz de France, BG
Sagunto			10	345	9	403	Sagunto	8	393	9	439	Sonatrach, BP, Suez:
Barcelona			9	447	13	501	Barcelona	11	497	14	603	not specific terminals
Total Spain	18.897	49%										
Panigaglia	2.133	85%	9	222	9	225	Panigaglia	9	225	3	74	All Snam/1 Gaz de France
Revithoussa	702	45%	3	39	4	160	Revithoussa	2	50	1	33	All DEPA/2 Gaz de France

1st half of January. Full month only Spain and UK
Zeebrugge average load factor is higher because capacity were increased along 2007

1 million metric tons = 1,346 bom Source: Waterborne Energy

Table 7.4.2: Utilization of LNG terminals in EU⁵²

7.5 Storage capacities

Figure 7.5.1: Storage volumes in EU-27⁵³

⁵² Study on Interoperability of LNG Facilities and Interchangeability of Gas and Advice on the Opportunity to Setup an Action Plan for the Promotion of LNG Chain Investments, FINAL REPORT, May 2008, DG TREN Framework Contract: TREN/CC/05-2005, lot 3, Technical Assistance in the Fields of Energy and Transport, Contract Awarded to MVV Consulting under the Contract number S07.78755; Contract duration from 02/01/2008 to 30/04/2008.

Figure 7.5.2: Map of depleted field distribution in Europe: future potential⁵⁴

 ⁵³The role of natural gas storage in the changing gas market landscape in the changing gas market landscape; Jean-Marc Leroy, GSE President, CEO of Storengy, 24th World Gas Conference, Argentina, 5-9 October 2009.
⁵⁴GSE Storage maps. In DG TREN C1; Study on natural gas storage in the EU, Draft Final Report, October 2008.

	Depleted fields	Saline Cavity	Aquifer	LNG Peak- Shaving	Total	Max withdraw al rate mcm/day	Max injection rate mcm/day
North							
UK	3.279	325	0	259	3.863	76	30
DK	0	441	560	0	1.001	16	7
NL	5.000	0	0	78	5.078	177	40
BE	0	0	580	55	635	23	6
DE	9.877	7.082	1.415	14	18.388	444	198 ¹⁶
PL	1.205	370	0	0	1.575	34	19
LV	2.300	0	0	0	2.300	24	0
Total	19.361	8.218	2.555	406	32.840	770	298
South- West							
PT	0	150	0	0	150	7	3
FR	0	860	11.870	0	12.730	213	117
ES	2.726	0	0	1.103	3.829	153	10
Total	2.726	1.010	11.870	1.103	16.709	373	129
South- East							
CZ	2.030	70	150	0	2.250	36	26
SK	2.600	0	0	0	2.600	34	29
IT	13.014	0	0	0	13.014	254	133
BG	350	0	0	0	350	3	3
RO	2.694	0	0	0	2.694	22	3
GR	0	0	0	0	0	0	0
AT	4.120	0	0	0	4.120	44	40
HU	3.720	0	0	0	3.720	51	26
Total	28.528	70	150	0	28.748	445	260
EU Total	50.615	9.298	14.575	1.509	78.297	1.588	688

Table 7.5.3. Storage c	apacities by	/ country	in mcm ⁵⁵
1 abic 7.3.3. Storage C	apacities by	y country,	

⁵⁵ GSE, ERDGAS KOHLE 122, Jg. 2006, Heft 11.

Figure 7.5.4: Shares of existing types of storages based on volume capacity⁵⁶

7.6 Network extension forecasts

Figure 7.6.1: ENTSOG Peak day Potential Supply vs ENTSOG Peak day Demand⁵⁷

⁵⁶Source ; GSE.

⁵⁷European Ten Year Network Development Plan; 2010 – 2019, December 2009 (Ref. 09ENTSOG).

2005	Increase in demand (cold winter)	Demand (normal)	Cold year	Increase in demand (cold winter)	Increase in %	Demand (normal)	Cold year	Increase in demand (cold winter)	Increase in %	Demand (normal)	Cold year	Increase in demand (cold winter)	Increase in %
North	2.7	31.1	37.6	2.9	8.3	37.6	40.7	3.1	8.2	43.8	47.4	3.6	8.1
South- west	1.2	15.1	17.9	1.3	8.0	17.0	18.4	1.4	8.0	17.4	18.8	1.4	8.0
South- east	2.3	28.4	36.7	2.7	8.0	36.0	38.9	2.9	8.0	38.9	42.0	3.1	8.0
Total	6.2	74.6	92.2	6.9	8.1	90.6	98.0	7.3	8.1	100.1	108.2	8.1	8.1

Table 7.6.3: Cold Winter storage Demand, baseline 2007, bcm⁵⁸

Figure 7.6.4: ENTSOG Annual Potential Supply Scenario split by Potential Supplies fromExisting and FID Infrastructure and Potential Supplies from Mature Projects⁵⁹

⁵⁸ In DG TREN C1; Study on natural gas storage in the EU, Draft Final Report, October 2008.

⁵⁹European Ten Year Network Development Plan; 2010 – 2019, December 2009 (Ref. 09ENTSOG).

Figure 7.6.5: Indicative measure for the Development of Interconnection capacities⁶²

 ⁶⁰European Ten Year Network Development Plan; 2010 – 2019, December 2009 (Ref. 09ENTSOG).
⁶¹European Ten Year Network Development Plan; 2010 – 2019, December 2009 (Ref. 09ENTSOG).

⁶²European Ten Year Network Development Plan; 2010 – 2019, December 2009 (Ref. 09ENTSOG).

Figure 7.6.6: Increase in import demand and current transmission capacity⁶³

Figure 7.6.7.a: Gasification terminals in EU: existing plans & projects⁶⁴

Country	Status	Location	Operators	Start-up	Send-out	Storage	# Tanks
BE	Existing	Zeebrugge	Fluxys LNG	1987	9,0	380000	4
DE	Proposed	Wilhelmshafen	dftg (e.on)	N/A	10,8	N/A	N/A
DE	Proposed	Wilhelmshafen 2	Excelerate, RWE	2010	N/A	N/A	N/A
DE	Proposed	Rostock	Vopak, Gasunie, VNG	N/A	N/A	N/A	N/A
ES	Existing	Barcelona	Enagas	1968	14,5	540000	5
ES	Existing after extension	Barcelona (ext.)	Enagas	2009	17,0	680000	6
ES	Existing	Huelva	Enagas	1988	11,8	460000	4
ES	Existing after extension	Huelva (ext.)	Enagas	2015	11,8	760000	6
ES	Existing	Cartagena	Enagas	1989	10,5	437000	4
ES	Existing after extension	Cartagena (ext.)	Enagas	2014	14,5	590000	5
ES	Existing	Bilbao	Bahia de Bizkaia (BBG)	2003	7,0	300000	2
ES	Existing after extension	Bilbao (ext.)	Bahia de Bizkaia (BBG)	2011	12,3	600000	4
ES	Existing	Sagunto	Saggas	2006	7,0	300000	2
ES	Existing after extension	Sagunto (ext.)	Saggas	2014	14,0	750000	5
ES	Existing	El Ferrol	Reganosa	2007	3,6	300000	2
ES	After extension	El Ferrol (ext.)	Reganosa	2013	7,3	300000	2
ES	Under construction	Gijón (Musel)	Enagas	2011	10,5	600000	4
ES	Under construction	Gran Canaria (Arinaga)	Gascan	2012	2,0	3000000	2
ES	Under construction	Tenerife (Arico-Granadilla)	Gascan	2011	2,0	3000000	2
FR	Existing	Montoir de Bretagne	Elengy	1980	10,0	360000	3
FR	Existing after extension	Montoir de Bretagne (ext.)	Elengy	N/A	16,5	360000	3
FR	Existing	Fos Tonkin	Elengy	1972	7,0	150000	3
FR	Under construction	Fos Cavaou	STFMC	2009	8,3	330000	3
FR	Proposed	Dunkerque	Dunkerque LNG	2014	10-13 bcm/y	N/A	N/A
FR	Proposed	Fos Faster	Shell	2015	8,0	N/A	N/A
FR	Proposed	Le Havre - Antifer	Gaz de Normandie	2014	9,0	N/A	N/A

Figure 7.6.7.b:	Gasification	terminals in	FU:	existing	plans &	projects ⁶⁵
1 1901 0 7 1017 101	Guonnoution	tor rinnaro n		0/11011119		

⁶⁵ GLE, LNG Map, <u>www.gie.eu</u>.

FR	Proposed	Le Verdon (Pegaz)	4GAS	2013	9,0	N/A	N/A
FR	Proposed	Le Verdon	La Snet	N/A	N/A	N/A	N/A
GR	Existing	Revithoussa	DESFA	2000	5,3	130000	2
GR	Proposed	Korakia	DESFA, PPC (Public Power	2012	N/A	N/A	N/A
_			Corporation)				
п	Existing	Panigaglia	(ENI) GNL Italia	1971	3,4	100000	2
п	Existing after extension	Panigaglia (ext.)	(ENI) GNL Italia	2014	8,0	240000	2
п	Under construction	Adriatic LNG	Adriatic LNG	2009	7,6	250000	2
п	Under construction	Brindisi	Brindisi LNG	2010	16,0	640000	4
п	Under construction	Toscana Offshore	OLT / Endesa / E.ON. / Iride	2011	3,8	137000	N/A
п	Under construction	Rotterdam; GATE Terminal	Gasunie / Vopak	2011	16,0	720000	4
		(Maasvlakte)					
π	Proposed	Alpi Adriático / Montefalcone /	Endesa / E.ON	2012	8,0	N/A	N/A
		Trieste Offshore					
_IT	Proposed	Taranto	gasNatural	2010	9,0	300000	2
IT	Proposed	Porto Empedocie	Nuove Energie	2010	N/A	N/A	N/A
п	Proposed	Priolo	ERG / Shell	2010	N/A	N/A	N/A
П	Proposed	Senigaglia / Ancona	GDFSuez / Hoegh LNG	2012	5,0	N/A	N/A
IT	Proposed	Civitavecchia	Gavio	N/A	N/A	N/A	N/A
п	Proposed	Atlas LNG (Ravenna / offshore)	Bellelli	N/A	N/A	N/A	N/A
LT	Proposed	N/A	N/A	2013	N/A	N/A	N/A
NL	Under construction	Rotterdam; GATE Terminal	Gasunie / Vopak	2011	12,0	540000	3
		(Maasvlakte)					
NL	Proposed	Eemshaven	Gasunie / Essent / Vopak	2014	13,0	376000	2
NL	Proposed	Rotterdam	4GAS	2011	10,0	N/A	N/A
NL	Proposed	Rotterdam	TAQA	2011	9,0	N/A	N/A
PL	Proposed	Swinoujscie	Gaz-system / PLNG	2014	N/A	N/A	N/A
PL	Proposed	Croatia, Adria LNG; Omisalj (Dina) - Krk	Total / Geoplin / RWE / EON /	2012	1,2	N/A	N/A
		island	OMV				
РТ	Existing	Sines	REN Atlantico	2004	5,5	240000	2
РТ	Existing after extension	Sines (ext.)	REN Atlantico	2011	5,5	390000	3

The Revision of the Trans-European Energy Network Policy (TEN-E): Final Report

RO	Proposed	Constanta	Romgaz	N/A	N/A	N/A	N/A
SE	Proposed	Oxelösund	E.on	N/A	N/A	N/A	N/A
SE	Proposed	Brunnsviksholmen (Nynäshamn)	AGA	2011	N/A	N/A	N/A
UK	Existing	Isle of Grain (Grain LNG)	GrainLNG	2005	13,4	8000000	7
UK	Existing after extension	Isle of Grain (Grain LNG) (ext.)	GrainLNG	2010	20,8	1000000	8
UK	Existing	Teesside	Elengy	1980	10,0	360000	3
UK	Under construction	Milford Haven	BG / Petronas / 4Gas	2009	9,0	5400000	3
UK	Under construction	Milford Haven	South Hook	2009	7,8	775000	5
UK	Proposed	Canvey LNG	Calor Gas	2014	5,4	N/A	N/A
UK	Proposed	Anglesey (Amlwch)	Canatxx	N/A	N/A	N/A	N/A
UK	Proposed	PortMeridian (Barrow-in-Furness)	Hoegh LNG	2011	N/A	N/A	N/A
UK	Proposed	Teesside	Norsea Pipeline Ltd	N/A	N/A	N/A	N/A
UK	Proposed	Shannon	Shannon LNG (subsidiary of	2011	N/A	N/A	N/A
			HESS)				

Country	Company	Name of facility	Type of facility	Investment	Status	Capacity Delivered	Expected Capacity	Expected Date / Date of project	Last Update	Source of Info
							(Mcm WG)	completion	Date	
AUSTRIA	OMV Gas	Schonkirchen Tief	Reservoir	New facility	Planned		750	by 2013 (Phasel)	February 2009	GSE Member
AUSTRIA	OMV Gas	Schonkirchen Tief	Reservoir	New facility	Planned		1250	by 2018 (Phase II)	February 2009	GSE Member
AUSTRIA	RAG/Wingas/Gazprom Export	Haidach	Reservoir	New facility	Live	1200		June 2007		GSE Member
AUSTRIA	RAG/Wingas/Gazprom Export	Haidach	Reservoir	New facility	Under construction		1200	by 2011	February 2009	GSE Member
BELGIUM	Fluxys	Loenhout	Aquifer	Expansion	Under construction		100	by 2010	5 July 2007	GSE Member
BULGARIA	Bulgartransgaz	Chiren	Reservoir	Expansion	Planned		450	by 2010	November 2007	GSE Member
CZECH REPUBLIC	RWE Gas Storage	Not specified		Expansion (various projects)	Planned/Committed		795	by 2013	February 2009	GSE Member
DENMARK	DONG Storage	Stenlille	Aquifer	Expansion	Live	90		October 2007		GSE Member
DENMARK	DONG Storage	Stenlille	Aquifer	Expansion	Committed		30	by May 2009	June 2008	GSE Member
FRANCE	Storengy	Céré La Ronde/Soings	Aquifer	Expansion	Under construction		60	by 2012	February 2009	GSE Member
FRANCE	Storengy	Céré La Ronde/Soings	Aquifer	Expansion	Live	40		April 2008	June 2008	GSE Member
FRANCE	Storengy	Etrez/Manosque	Salt cavity	Expansion	Under Construction		200	by 2015	February 2009	GSE Member

Table 7.6.8: Storage projects under consideration or development⁶⁶

⁶⁶GSE STORAGE INVESTMENT DATABASE; February2009.

FRANCE	Storengy	Etrez/Manosque	Salt cavity	Expansion	Live	100		April 2008	June 2008	GSE Member
FRANCE	Storengy	Hauterives	Salt cavity	New facility	Committed		100	by 2013	February 2009	GSE Member
FRANCE	Storengy	lle-de- Franc e Nord/ Gourn ay	Aquifer	Expansion	Under construction		200	by 2013	February 2009	GSE Member
FRANCE	Storengy	lle-de- Franc e Nord/ Gourn ay	Aquifer	Expansion	Live	40		April 2008	June 2008	GSE Member
FRANCE	Storengy	Alsace Sud	Salt Cavity	New facility	Planned		160	by 2017	February 2009	GSE Member
FRANCE	Storengy	Trois Fontaines	Reservoir	New facility	Under Construction		80	by 2013	February 2009	GSE Member
FRANCE	TIGF	Izaute/Lussagnet	Aquifer	Expansion	Planned		240	by 2015	February 2009	GSE Member
FRANCE	TIGF	Pécorade	Reservoir	New facility	Planned		750	by 2015	February 2009	GSE Member
GERMANY	E.ON Gas Storage	Etzel EGS	Salt cavity	New facility	Planned/Committed		2500	by 2016	February 2009	GSE Member
GERMANY	E.ON Gas Storage	Etzel EGL (share EGS)	Salt cavity	Expansion	under construction		250	by 2011	February 2009	GSE Member
GERMANY	E.ON Gas Storage	Epe EGS H-Gas	Salt cavity	Expansion	under construction		273	by 2011	February 2009	GSE Member

GERMANY	E.ON Gas Storage	Krummhörn	Salt cavity	Reparation	under construction		229	by 2011	February 2009	GSE Member
GERMANY	E.ON Gas Storage	Bierwang	depleted field	Expansion	under construction		359	by 2015	February 2009	GSE Member
GERMANY	EDF Trading/ EnBW	Etzel	Salt cavity	New facility	Planned		360	by 2011	June 2008	GSE member
GERMANY	Storengy Deutschland GmbH	Behringen	Reservoir	New facility	Planned		1000	by 2013	June 2008	other
GERMANY	Storengy Deutschland GmbH	Peckensen Phase 2	Salt cavity	New facility	Committed/under construction		160	by 2010	June 2008	other
GERMANY	Storengy Deutschland GmbH	Peckensen Phase	Salt cavity	New facility	Committed		180	by 2014	June 2008	other
GERMANY	E-ON Hanse	Kiel-Rönne	Salt cavity	New facility	Planned		50	by 2015	5 July 2007	GSE Member
GERMANY	Essent Energie Gasspeicher GmbH	Epe	Salt cavity	New facility	Under development		200	by 2011	June 2008	GSE Member
GERMANY	Essent Energie Gasspeicher GmbH	Epe 2A	Salt cavity	Expansion	Under construction		110	by November 2008	June 2008	GSE Member
GERMANY	Essent Energie Gasspeicher GmbH	Epe 2A (part)	Salt cavity	Expansion	Live	57,9		January 2008		GSE Member
GERMANY	EWE	Huntorf	Salt cavity	New facility	Planned		150	by 2015	5 July 2007	other
GERMANY	EWE	Nuentermoor	Salt cavity	New facility	Planned		180	by 2015	5 July 2007	other
GERMANY	EWE	Ruedersdorf	Salt cavity	New facility	Planned		300	by 2015	5 July 2007	other
GERMANY	Gas Union	Reckrod	Salt cavity	New facility	Planned		30	by 2015	5 July 2007	other
GERMANY	GHG	Empelde	Salt cavity	New facility	Planned		110	by 2015	5 July 2007	other

GERMANY	RWE Energy	Ере	Salt cavity	Expansion	Live	63		October 2007		GSE Member
GERMANY	RWE Energy	Xanten	Salt cavity	Expansion	Planned		125	by 2015	June 2008	GSE Member
GERMANY	RWE Dea	Wolfersberg	Reservoir	Expansion	Planned	4	5	by 2010	June 2008	GSE Member
GERMANY	Saar Ferngas	Frankenhal	Aquifer	Expansion	Planned		130	by 2015	5 July 2007	other
GERMANY	SPC Rheinische Epe Gasspeicher GmbH&Co KG / Essent Energy Productie B.V.	Epe	Salt cavity	New facility	Planned		365	by 2010	30 June 2008	GSE Member
GERMANY	VNG	Bernburg	Salt cavity	New facility	Planned		300	by 2015	5 July 2007	GSE Member
GERMANY	Wingas	Jemgum	Salt cavity	New facility	Planned		1200	by 2011/2012	February 2009	GSE Member
GERMANY	Wintershall	Reckrod-Walf	Salt cavity	New facility	Planned		120	by 2015	5 July 2007	other
HUNGARY	MMBF Zrt.	Szoereg-1	Reservoir	New facility	Under construction		1900	by 2010	Janaury 2009	GSE Member
HUNGARY	E.ON. Foedlgaz Storage	Zsana	Reservoir	Expansion	Under construction		400		February 2009	GSE Member
ITALY	Edison Stoccaggio	Cellino & Collato	Reservoir	Expansion	Under construction		552	by 2010	November 2007	GSE Member
ITALY	Edison Stoccaggio	Cotignola & San Potito	Reservoir	New facility	Committed		915	by 2013	November 2007	GSE Member

ITALY	Edison Stoccaggio	Not specified	Reservoir	New facility / expansion	Planned		1400	by 2015	November 2007	GSE Member
	ERG Rivara Storage srl	Rivara	Aquifer	New facility	Planned		3000	by 2013	November 2008	other
ITALY	Geogas	Cugno Le Macine	Reservoir	New facility	Planned		740	by 2015	5 July 2007	other
ITALY	Ital Gas Storage	Cornegliano	Reservoir	New facility	Planned		600	by 2015	5 July 2007	other
ITALY	Stogit	Bordolano	Reservoir	New facility	Under construction		1500	by 2013	February 2009	GSE Member
ITALY	Stogit	Caleppio-Merlino	Reservoir	New facility	Under construction		450	by 2013	February 2009	GSE Member
ITALY	Stogit	Cignone	Reservoir	New facility	Committed		200	by 2013	February 2009	GSE Member
ITALY	Stogit	Cortemaggiore Pool C	Reservoir	Expansion	Live	180		June 2008		GSE Member
ITALY	Stogit	Fiume Treste BCC1	Reservoir	New facility	Under construction		350	by 2010	February 2009	GSE Member
ITALY	Stogit	Fiume Treste C2	Reservoir	Expansion	Under construction		200	by 2010	February 2009	GSE Member
ITALY	Stogit	Fiume Treste DEE0	Reservoir	New facility	Under construction		600	by 2010	February 2009	GSE Member
ITALY	Stogit	Ripalta	Reservoir	Expansion	Under construction		300	by 2010	February 2009	GSE Member
ITALY	Stogit	Sergnano	Reservoir	Expansion	Under construction		200	by 2010	February 2009	GSE Member
ITALY	Stogit	Sergnano (part)	Reservoir	Expansion	Live	150		Sepetmber 2008		GSE Member
LATVIA	Latvijas Gaze	Incukalns	Reservoir	Expansion	Planned		1000	by 2015	5 July 2007	other
LITHUANIA	Dujotekana	Not specified	Reservoir	New facility	Planned		500	by 2015	5 July 2007	other

NETHERLANDS	Таqа	Bergermeer	Reservoir	New facility	Planned	4100	by 2013	February 2009	GSE Member
NETHERLANDS	Zuidwending VOF	Zuidwending	Salt cavity	New facility	Under construction	180	by 2011	June 2008	GSE Member
NETHERLANDS	Zuidwending VOF	Zuidwending	Salt cavity	Expansion	Planned	180	by 2014	June 2008	GSE Member
POLAND	PGNIG	Bonikowo	Reservoir	New facility	Committed	200	by 2010	June 2008	GSE Member
POLAND	PGNIG	Daszewo	Reservoir	New facility	Under construction	30	by 2010	June 2008	GSE Member
POLAND	PGNIG	Kosakowo	Salt cavity	New facility	Committed	250	by 2020	June 2008	GSE Member
POLAND	PGNIG	Mogilno	Salt cavity	Expansion	Under construction	420	by 2018	June 2008	GSE Member
POLAND	PGNIG	Strachocina	Reservoir	Expansion	Committed	180	by 2012	June 2008	GSE Member
POLAND	PGNIG	Wierzchowice	Reservoir	Expansion	Committed	625	by 2011	June 2008	GSE Member
PORTUGAL	REN Armazenagem	Carrico	Salt cavity	Expansion		30		November 2007	GSE Member
ROMANIA	AMGAZ	Nades-Prod- Seleus	Reservoir	Expansion	Planned	250	by 2011	June 2008	GSE Member
ROMANIA	Romgaz	Roman-Margineni	Reservoir	New facility	Planned	1600	by 2015	5 July 2007	other
ROMANIA	Depomures	Tirgu-Mures	Reservoir	Expansion	Planned	300	by 2013	November	GSE Member
								2007	
SERBIA	Srbijagas	Banatski Dvor	Reservoir	New facility		800		November 2007	GSE Member
SPAIN	Engas	Barcelona	LNG Peak Shaving	Expansion	Committed	84	by 2011	June 2008	GSE Member
SPAIN	Engas	Huelva	LNG Peak Shaving	Expansion	Committed	175	by 2011 or 2015	June 2008	GSE Member

SPAIN	Engas	Cartagena	LNG Peak Shaving	Expansion	Committed		175	by 2010	June 2008	GSE Member
SPAIN	BBG	Bilbao	LNG Peak Shaving	Expansion	Committed		88	by 2012	June 2008	GSE Member
SPAIN	Saggas	Sagunto	LNG Peak Shaving	Expansion	Committed		260	2012	June 2008	GSE Member
SPAIN	Enagas	Musel (Gijon)	LNG Peak Shaving	New facility	Committed		350	by 2015	June 2008	GSE Member
SPAIN	Reganosa	Ferrol	LNG Peak Shaving	New facility	Live	175		May 2007		GSE Member
SPAIN	Gascan	Gran Canaria	LNG Peak Shaving	New facility	Committed		88	by 2012	June 2008	GSE Member
SPAIN	Gascan	Tenerife	LNG Peak Shaving	New facility	Committed		88	by 2011	June 2008	GSE Member
SPAIN	Escal UGS (ACS, Enagas, CLP)	Castor	Reservoir	New facility	Committed		1500	by 2010	June 2008	GSE Member
SPAIN	Enagas/Repsol YPF	Gaviota	Reservoir	Expansion	Committed		580	by 2010	June 2008	GSE Member
SPAIN		Marismas	Reservoir	New facility	Committed		660	by 2010	June 2008	GSE Member
SPAIN		Poseidon	Reservoir	New facility	Committed		300		June 2008	GSE Member
SPAIN	Enagas	Yela	Aquifer	New facility	Committed		1350	by 2010	June 2008	GSE Member
SPAIN		Las Barreras	Reservoir	New facility	Committed		88	by 2011	June 2008	GSE Member
SPAIN		El Ruedo	Reser	New facility	Committed		120	by 2011	June 2008	GSE Member

UK	Centrica/Perenco	Baird	Offshore Reservoir	New facility	Planned	1670	by 2013	February 2009	GSE Member
UK 	Canatxx	Fleetwood	Salt cavity	New facility	Planned	1200	by 2012	June 2008	other
UK	Centrica/GdF/First Oil	Bains	Offshore Reservoir	New facility	Planned	570	by 2011	June 2008	GSE Member
UK 	British Salt	British Salt	Salt Cavity	New facility	Planned	1000	after 2010	June 2008	other
UK 	ENI/Perenco	Hewett	Offshore Reservoir	New facility	Planned	5000	by 2015	June 2008	other
UK	EDF Trading	Hole House phase 2	Salt cavity	Expansion	Under construction	55	by 2010	June 2008	other
UK	Portland Gas	Isle of Portland	Salt Cavity	New facility	Planned	1000	by 2015	June 2008	other
UK	E.ON. Gas Storage UK	Holform (formerly Byley)	Salt cavity	New facility	Under construction	165	by 2010	June 2008	other
UK	E.ON. Gas Storage UK	Whitehill Farm	Salt cavity	New facility	Planned	420	by 2012/2013	June 2008	GSE Member
UK	Storengy UK Ltd	Stublach	Salt cavity	New facility	Under construction	400	from 2013 to 2018	December 2008	other
ик	Petronas	Albury Phase 1	Reservoir	New facility	Planned	170	by 2012	June 2008	GSE Member
UK	Petronas	Albury Phase 2	Reservoir	Expansion	Planned	730	by 2012	June 2008	GSE Member
UK	Petronas	Welton / Scampton North	Reservoir	New facility	Planned	450	by 2012	June 2008	GSE Member
UK	Petronas	Bletchingley	Salt cavity	New facility	Planned	850	by 2010	June 2008	other
UK	Petronas / EnCore	Esmond / Gordon	Offshore reservoir	New facility	Planned	4100	by 2015	June 2008	GSE Member
ик	SSE/Statoil	Aldbrough phase	Salt	New facility	Under construction	420	by 2009	June 2008	other

The Revision of the Trans-European Energy Network Policy (TEN-E): Final Report

		1	cavity						
UK	SSE/Statoil	Aldbrough phase 2	Salt cavity	Expansion	Planned	420	by 2012	June 2008	other
 UК	Stag Energy	Gateway	Salt cavity	New facility	Planned	1140	by 2012	June 2008	other
 UK	Centrica plc	Caythorpe	Reservoir	New facility	Planned	210	by 2010	June 2008	other
UK	Wingas	Saltfleetby	Reservoir	New facility	Planned	715	by 2011	February	GSE Member
								2009	

	Project	Goal	Capacity created in reverse flow	Capital expenditure s	Countries involved	Project maturity	Funds breakdown	Commenceme nt of operations
Czech Republic	2. Interconnector Czech Republic –Poland	Create interconnection between Poland and Czech Republic on high pressure leve; Increased safety of supply in Poland, region North Silesia; Development of North- South connection.	500 mcm/a CZ <-> PL	7 M€	Czech, Poland	Construction in 2010	Pipeline: 6 mio€; Engineering: 1 mio€	2010
Austria	OMV Gas : 1 – Upgrading the Baumgarten metering and compressor station for bi-directional use	Availability of gas transport from Austrian storages to the CEE countries	1,0 mcm/hat 50 bar	4,0 M€	Slovakia, CEE countries	Basic design	2009-2011	first half of 2011 Upgrading
Austria	OMV Gas : 2 – Upgrading the WAG metering and compressor station in Baumgarten for bi- directional use on behalf of BOG GmbH	Availability of gas transport from Austrian storages and from Western European sources to the CEE countries	1 800 000Nm³/hat 71 bara	3,767 M€	CEE countries	Basic design	16 months	déc-10

Table 7.6.9 : Reverse flow projects under consideration or implementation⁶⁷

⁶⁷GTE; Reverse Flow Study, Technical solutions, 21 July 2009.

Austria	OMV Gas : 3 – Increasing the interconnection capacity from OMV Gas system into the TAG system for gas not coming from Slovakia	Availability of more intake from Austrian storages and from Western European sources into the Baumgarten gas turntable, toward eustream, TAG and SOL system and toward CEE countries	1,0 mcm/h at 50 bar	1,6 M€	Austria, CEEcountries	Basic designed	15 months	2010
Poland	2 –Poland-Czech Republic Connection – Phase II	Integration of gas systems in order to diversify and ensure stable gas supplies to end customers; Increasing safety of systems markets	2-3 bcm/a	106 M€	Poland, Czech Republic	Study phase	Pipeline: 71 M€Compresso r St: 33 M€Transfer station: 2 M€	Dependent on market demand
Poland	3 –Poland-Germany Connection	Integration of gas systems in order to ensure stable gas supplies to end customers; Increasing safety of systems operations	ca 0,5 + 0,5 bcm/a	60 + 16 M€	Poland, Germany	Engineering ongoing	N/A	Phase I: 2011Phase II: 2015
Austria	TAG : Option1	Reverse flow to the Slovakian border without internal off-takes	From 9 Mio Sm³/d to Mio Sm³/d	From 9,7 M€ to 20,6M€	Austria –Italy- Slovakia	Pre-feasibility study currently ongoing	FID (final investment decision) + 19 months	FID (final investment decision) + 20 months
Austria	TAG : Option2	Reverse flow to the Slovakian border with internal off-takes	From 32 Mio Sm³/d in Arnoldstein to 18 Mio Sm³/d in Baumgarte n	20,6 M€	Austria – Italy – Slovakia – Slovenia	Pre-feasibility study currently ongoing	FID (final investment decision) + 19 months	FID (final investment decision) + 20 months

Austria	TAG : Option3	Reverse flow to the Slovakian border with internal off-takes	From 40 Mio Sm³/d in Arnoldstein to 25.5 Mio Sm³/d in Baumgarte n	29,5 M€	Austria – Italy – Slovakia – Slovenia	Pre-feasibility study currently ongoing	FID (final investment decision) + 19 months	FID (final investment decision) + 20 months
France	2 – Taisnières H - Gas treatment	Treatment of natural gas in order to remove THT (odorant used in France)	300 000 (n) m3/h (60 bar)	167 €/m3/hof capacity	France, Belgium	Pre-feasibility studies	12/11/2010	Not decided(Q4 2012 atthebest)
Poland	1 –Poland- DenmarkConnection	Integration of gas systems in order to diversify and ensure stable gas supplies to end customers; Increasing safety of systems and markets	DK • PL : 9 mcm/d; PL • DK : 3-7,5 mcm/d	450 M€	Poland, Denmark	EIA ongoing	N/A	Dependent on market demand –not earlier than 2013
Romania	1 –Interconnection between the Romanian and Bulgarian Gas Transmission Systems	Construction of a new interconnection pipeline between the Bulgarian and Romanian Gas Transmission Systems	1,5 bcm/a	Depending on results of study	Romania, Bulgaria	Feasability study	2010-2011	Depending on results of study
Belgium	1 –Zelzatemetering	Reverse metering station at Zelzate to allow flows from NL to BE	1.2 mcm/h (59 bar)	3,9 M€	BE, NL	Phase 1 under construction	Phase 1 : 2009-2010 Phase 2 : 2011	Phase 1 : end 2010 Phase 2 : 2011Bi-
Czech Republic	3 b) Flexibility increase of gas storage to transit system	(UGS Dolni Dunajovice –CS Breclav)	16 mcm/d	36 M€	CzechRepubli c, Germany, Slovakia	Running	2009-2011	Q4/2011

Germany	E.ON Gastransport: North-South de- bottlenecking	Numerous capacity expansion projects, including major north- south de-bottlenecking. This improves transport capacity via Austria to South-East Europe.	Austria : 4.742 MW (Exit: approx. 18.000 MW; Entry: approx. 11000 MW)	approx. 400 M€	Germany, Austria	Investment decision taken	2009-2012	part 2011, part 2012
Romania	2 –Interconnection pipeline between the Romanian	Construction of a new interconnection pipeline between the Hungarian and Romanian gas transmission systems	max. 4,4 bcm/a	12 M€	Romania, Hungary	Under development	2009	2010
Slovakia	3–Capacity increase of Labstorage connection	Increase of the daily capacity in a connection between underground storage Laband eustream transmission system	4 mcm/day	0,4 M€	Slovak republic	In implementatio n	2009	2010
United Kingdom	1 – KingsLynntoWisbech	GoalIncrease West-East transport capacity from sources such as the new LNG terminals in Wales towards Bacton Interconnectors	81 GWh/d	79,2 M€ (assuming £1 = €1.1)	UK, Netherlands, Belgium	Feasibility study and conceptual design stages completed	09/10 – €27,72m; 10/11 - €43,56m; 11/12 -€7,92m	2011
United Kingdom	2 – WisbechtoPeterboroug h	Increase West-East transport capacity from sources such as the new LNG terminals in Wales towards Bacton Interconnectors	76 GWh/d	108,2 M€ (assuming £1 = €1.1)	UK, Netherlands, Belgium	Feasibility study completed	09/10 – €,41m; 10/11 -€32,46m; 11/12 - €9.51m; 12/13 - €10,82m	2012

France	1 –TaisnièresH - Existingfacilities	Existing reverse flows capacities	Up to 1.106 (n) m3/h of odorised gas(about 55 bar)	N/A	France,Belgiu m	Implemented	N/A	In operation
France	3 –Obergailbach- Existing facilities	Existing reverse flows capacities	300 000 (n) m3/h of odorised gas (65 bar)	N/A	France, Germany	implemented	N/A	In operation
Slovakia	1 –Bi-directional flow in transmission system	Enabling reverse flow in Slovak gas transmission system	60,0 mcm/day at 56 barg	3,5M€	Slovak republic	In preparation	2009	2010
Slovakia	2–Connection Slovakia –Hungary (Slovak part)	Construction of a pipeline connecting Slovak gas transmission system with Hungarian gas transmission system	30 mcm/day	Slovakia 20M€	Slovak republic, Hungary	Planning	2009	2012
Slovakia	4 –New connection to storage Gajary-Baden	Construction of a connection between the new underground storage Gajary-Baden and eustreamtransmission system	22 mcm/day	9M€	Slovakrepubli c	In preparation	2009	2011
Spain	1 –Larrau reverse flow	Increase of main flows and development of reverse flow between France and Spain through the Larrau interconnection point	ES • FR : 110 GWh/day (summer), 100 (winter); FR • ES : 100 GWh/day	N/A	France, Spain	Coordinated Open Suscription Period done (Enagás • TIGF)	2009	Increase of main flow capacity: 1st April 2009; Reverse flow capacity (ES • FR): 1st November 2010; Increase of reverse flow

								capacity (4Q 2012)
Bulgaria	1 – ReverseflowfromTurke yat Malkochlar	Allow reverse flow from Turkey to Bulgaria at Malkochlar interconnection point	N/A	0,25 M€	Turkey, Bulgaria	N/A	N/A	N/A
Bulgaria	2 – Increasereverseflowfro mTurkeytoBulgaria	Increase capacity of transit system and enhance reverse flow from Turkey to Bulgaria	2.4 mcm/day	25 M€	Bulgaria	N/A	N/A	N/A
Bulgaria	3 – ReverseflowfromGreec eat Kula/ Sidirokastron	Improving SoS of Bulgaria by allowing reverse flow from Greece	2.4 mcm/day	N/A	Bulgaria	N/A	N/A	N/A
Austria	OMV Gas : 4 – Upgrading the Überackernexport facility	Availability of reverse flow of Penta West system	0,3 mcm/h at 65 bar	1,7 M€	Austria, CEE countries	Planned	2009	2011
Czech Republic	1 a) Adaptations at BTS HoraSv. Kateriny	Cross-border SoS, increase of reverse flow capacity from existing 16 mcm/dup to 24 mcm/dfrom Germany (Sayda) to Czech Rep.	8 mcm/d	0.6 M€	CzechRepubli c, Germany, Slovakia	Planned	2010-2011	Q4/2011

Germany	WingasTransport : Upgrading the import grid point "Überackern"forbi- directional use	0.3 mcm/h at 70 bar	N/A	N/A	Germany, Austria	Planned	N/A	Q1/2011
Italy	1 –Additionalcapacityat Tarvisioexit point	Increase existing export capacity from Italy to Austria at Tarvisioexit point	40 mil Sm³/d	15 M€	Italy	Planned	18 months	Q1/2011
Romania	3 –Technical solution for supplying Bulgaria from the Romanian transmission system	Create a technical possibility to supply Bulgaria with natural gas from the Romanian transmission system in crisis situations	2,6 mcm/d	approx. 2 M€	Romania, Bulgaria	Planned	2010-2011	Yet unknown
Czech Republic	1 b) Adaptation of piping at JPHospozin	The project will increase reverse flow capacity and higher flexibility of the transmission system	up to 15 mcm/d	0,7 M€	CzechRepubli c, Germany, Slovakia	Ready for implementatio n	2009-2010	Q4/2010
Czech Republic	1 c) Adaptation of piping at CS Kralice nad Oslavou	Cross-border SoS, increase of existing reverse flow gas compression at CS B•eclavfrom 25 mcm/dup to 39,5 mcm/din the direction from H. Sv. Kate•iny(north) to Czech (Moravian UGSs) and further to Waidhaus(Germany) or Lanžhot(Slovakia)	up to 14,5 mcm/d*)	2,9 M€	CzechRepubli c, Germany, Slovakia	Ready for implementatio n	2009-2010	Q4/2010
Czech Republic	1 d) Adaptation of piping at JP Malesovice	Cross-border SoS, increase of existing reverse flow capacityfrom25 mcm/d upto 35 mcm/d in the direction fromH. Sv. Kate•iny(north) via Malešovice to Waidhaus (Germany)or Lanžhot (Slovakia).	10 mcm/d *)	1,3 M€	CzechRepubli c, Germany, Slovakia	Ready for implementatio n	2009-2010	Q4/2010

Czech Republic	1 e) Adaptationof thepipingsystém of hallI. of CS Breclavenablinggastran smissionfromtheCzech Republicto theSlovakRepublic	Cross-border SoS, reverse flow gas compression at CS B•eclav (from Czechto Slovakia).	15mcm/d	0,5 M€	CzechRepubli c, Germany, Slovakia	Ready for implementatio n	2009-2010	Q4/2010
Czech Republic	1 f)Adaptationof BTS Lanzhotforwest-to- easttransmission	CrossborderSoS, reverse flow gas compression at BTS Lanžhot (fromCzechto Slovakia).	28 mcm/d	1,35 M€	CzechRepubli c, Germany, Slovakia	Ready for implementatio n	2009-2010	Q4/2010
Czech Republic	3 a) Flexibility increase of gas storage to transit system (UGS Tvrdonice –CS Breclav)	CrossborderSoS, UGS connection to transit system.	10 mcm/d	4.6 M€	Czech Republic, Germany, Slovakia	Ready for implementatio n	2009-2010	Q4/2010
Poland	2 –Poland-Czech Rep. Connection –Phase I	Integration of gas systems in order to diversify and ensure stable gas supplies to end customers; Increasing safety of systems operations	PL • CZ : up to 1,6 mcm/d	21 M€	Poland, Czech Republic	Construction in 2010	Pipeline: 18 M€ Tran sfer stati on: 3M€	2010
Hungary	1–Városföld node modification	Help to cover the demand for capacity in the domestic transmission and transport of gas towards Serbia, Bosnia Herzegovina, Romania and later towards Croatia	1.0 mcm/h at 63 bar	5,5 M€	Hungary	Under decision	2010	2011

Hungary	2–Pilisvörösvár node modification	New flow control system at Pilisvörösvár node	8-9 mcm/d at 50 bar	3,5 M€	Hungary	Under decision	2010	2011
Hungary	3–Adony nodemodification	Reverse flow connections and flow control systems at Adonynode	14 mcm/dat 50 barg	2,5 M€	Hungary	Under decision	Underdecision	2011
Hungary	4–Algy•nodeflow control system	New flow control system at Algy•node	3 mcm/d at 50 bar	2,1 M€	Hungary	Under decision	2010	2011
Hungary	5–Vecsésnode flow control system	New flow control system at Vecsésnode	3,6 mcm/d at 50 bar	1.5 M€	Hungary	Under decision	2010	2010
Hungary	Slovak-Hungary Interconnection pipeline	New interconnection pipeline between Hungary and Slovakia allowing a diversification of gas supplies for Hungary and neighbouring countries and more stable gas supplies to end- customers	14,4 mcm/d at 40 bar	120-130.0 M€ (preliminary)	Slovakia, Hungary	Under decision	N/A	2012-2013
Spain	2 –Biriatou, Larrau: 2013 Capacities*	Increase of reverse and main flows between Spain and TIGF and vice versa	Larrau : 55 GWh/day (total : 165); Biriatou : 55 GWh/day (total : 60)	N/A	France, Spain	OS under development	2009-2010	2013
Spain	3 –MidCat: 2015 Capacities*	New interconnection point between Spain and France and vice versa	ES • FR : 230 GWh/day; FR • ES : 180 GWh/day	N/A	France, Spain	OS under development	2010	2015

7.7 Investments

Fig. 7.7.1: EU 30 historic investments in EU gas transmission⁶⁸

⁶⁸ Energy Infrastructure Costs and Investments between 1996 and 2013 (medium-term) and further to 2023 (long-term) on the Trans-European Energy Network and its Connection to Neighbouring Regions with emphasis on investments on renewable energy sources and their integration into the Trans-European energy networks, including an Inventory of the Technical Status of the European Energy-Network for the; Year 2003; Contract n. TREN/04/ADM/S07.38533/ETU/B2-CESI; Issue Date: October 2005; Prepared by: CESI spa (Centro Elettrotecnico Sperimentale Italiano) – Italy ,IIT (Instituto de Investigación

Tecnológica) – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark; October 2005; (data were missing, and therefore estimated according to the length of the transmission system, for Luxemburg, Czech Republic, Austria, Bulgaria, Slovakia, three TSOs from Germany and partly for Spain). The data has been adjusted.

⁶⁹ Energy Infrastructure Costs and Investments between 1996 and 2013 (medium-term) and further to 2023 (long-term) on the Trans-European Energy Network and its Connection to Neighbouring Regions with emphasis on investments on renewable energy sources and their integration into the Trans-European energy networks, including an Inventory of the Technical Status of the European Energy-Network for the; Year 2003; Contract n.

TREN/04/ADM/S07.38533/ETU/B2-CESI; Issue Date: October 2005; Prepared by: CESI spa (Centro Elettrotecnico Sperimentale Italiano) – Italy, IIT (Instituto de Investigación Tecnológica) – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark; October 2005.

Figure 7.7.3 : Network investments to 2020⁷⁰

Tab. 7.7.4 : Gas pipeline supply routes⁷¹

Pipeline Route	EU list Type of Work		Capacity	Estimated cost	
-			ine offshore in Baltic Sea 35 47		
Russia-Germany	NG1	New pipeline offshore in Baltic Sea	35	4700	
Yamal Europe II	NG1	Second line across Poland	32	1520	
Yamal Europe, doubling capacity	NG1	Third line across Poland	32	1520	
Across the strait of Gibraltar	NG2	New pipeline	9	150	
Algeria-Spain (Medgaz)	NG2	New deep water offshore pipeline	18	1437	
Algeria-France/Italy	NG2	New pipeline	20	5000	
Turkey-Grece-Italy	NG3	New pipeline	8	1612	
Turkey-Austria	NG3	Nabucco pipeline	30	4400	
Total			184	20340	

⁷⁰ Energy center of the Netherlands, <u>www.ecn.nl</u>: http://www.ecn.nl/fileadmin/ecn/units/bs/INDES/indes-pc2_paper.pdf (21/02/10).

⁷¹ Energy Infrastructure Costs and Investments between 1996 and 2013 (medium-term) and further to 2023 (long-term) on the Trans-European Energy Network and its Connection to Neighbouring Regions with emphasis on investments on renewable energy sources and their integration into the Trans-European energy networks, including an Inventory of the Technical Status of the European Energy-Network for the; Year 2003; Contract n.

TREN/04/ADM/S07.38533/ETU/B2-CESI; Issue Date: October 2005; Prepared by: CESI spa (Centro Elettrotecnico Sperimentale Italiano) – Italy ,IIT (Instituto de Investigación Tecnológica) – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark; October 2005.

		11.2	2			
Location/Entry	Exit point	Capacity	Total length	Estimated	Starting	Starting operation
point in EU	(EU)	(bcm/yr)	(km)	budget (M€)	project date	(estimated)
Lithuania	Poland	5				2014
			300	300		
Denmark	Germany	3				2006
			200	225		
Norway	Poland	3			2001	2011
			260	350		
Finland	Estonia	2				2011
			80	100		
Algeria	Italy	8	000	1 200		2010
	Creation	0	900	1.200		2012
Turkey	Greece	0	600	450		2012
Norway	United	22	000	430		2007
i toi way	Kingdom		1.200	1.200		2007
Algeria	Spain	8	1.200	11200	2001	2009
e • • •			210	1.437		
Romania	Austria	31			2002	2014
			3.300	7.900		
Russia	Germany	55				2010
			1.220	6.000		
Greece	Italy	8			2004	2012
_			210	500		
Georgia	Romania	32				2016
			1.238	2.500		

Table7.7.5 : Gas pipeline supply routes: Analysis⁷²

⁷² Energy Infrastructure Costs and Investments between 1996 and 2013 (medium-term) and further to 2023 (long-term) on the Trans-European Energy Network and its Connection to Neighbouring Regions with emphasis on investments on renewable energy sources and their integration into the Trans-European energy networks, including an Inventory of the Technical Status of the European Energy-Network for the; Year 2003; Contract n. TREN/04/ADM/S07.38533/ETU/B2-CESI; Issue Date: October 2005; Prepared by: CESI spa

⁽Centro Elettrotecnico Sperimentale Italiano) – Italy, IIT (Instituto de Investigación Tecnológica) – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark;

October 2005.; Various sources including projects presentations and web sites <u>www.nabucco-</u>

pipeline.com, www.nord-stream.com, www.igi-poseidon.com; own calculation.

Estimated co

M EUR

100 365

320

600

1200

520

3105

2

б

8

Q

43

300 000

320000

500000

LNG Receiving terminal	Type of Work	Storage m ³	Capacity bcm/year
Zeebrugge (Belgium)	Extending the LNG receiving capacit	210 000	10
Fos-sur-Mer (France)	Extending the LNG receiving capacity		8

New terminal

New terminal

New terminal

New terminal

Table7.7.6: Investments in new import capacity⁷³

Mugardos (Galicia) (Spain)

North Adriatic coast (Italy)

New LNG terminal France

Tuscany region (Italy)

Total

Energy Infrastructure Costs and Investments between 1996 and 2013(medium-term) and further to 2023 (long-term) on the Trans-EuropeanEnergy Network and its Connection to Neighboring Regions withemphasis on investments on renewable energy sources and their integration into the Trans-European energy networks, including anInventory of the Technical Status of the European Energy-Network for the; Year 2003; Contract n. TREN/04/ADM/S07.38533/ETU/B2-CESI; Issue Date: October 2005; Prepared by: CESI spa (Centro Elettrotecnico Sperimentale Italiano) – Italy

,IIT (Instituto de Investigación Tecnológica) – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark; October 2005.

⁷³ Energy Infrastructure Costs and Investments between 1996 and 2013 (medium-term) and further to 2023 (long-term) on the Trans-European Energy Network and its Connection to Neighbouring Regions with emphasis on investments on renewable energy sources and their integration into the Trans-European energy networks, including an Inventory of the Technical Status of the European Energy-Network for the; Year 2003; Contract n.

TREN/04/ADM/S07.38533/ETU/B2-CESI; Issue Date: October 2005; Prepared by: CESI spa (Centro Elettrotecnico Sperimentale Italiano) – Italy ,IIT (Instituto de Investigación Tecnológica) – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark; October 2005.

Table 7 7 7. Total	investments	till 2013	and till	202374
1 abic 7.7.7. 10tal	mvestments	un 2015	and thi	2025

EU 30: Expected investments B EUR	TSO internal		Intercon-	Ongoing	Import	Tota
2005-2013: New import capacity	Investment	Storage	nectors etc.	Projects	Pipelines & LNG	Investm
Baseline Scenario	24	10	3	1	10	48
12% renewables in 2010	23	7	3	1	9	43
Energy efficiency	21	5	3	1	7	37
Efficiency case with high renewables	20	4	3	1	6	34
Soaring oil and gas price scenario	18	4	3	1	0	26
EU 30: Expected investments B EUR	TSO internal		Intercon-	Ongoing	Import	Total
2014-2023: New import capacity	Investment	Storage	nectors etc.	Projects	Pipelines & LNG	Investm
Baseline Scenario	24	12	3	0	13	52
12% renewables in 2010	23	10	3	0	12	48
Energy efficiency	21	6	3	0	8	38
Efficiency case with high renewables	20	5	3	0	8	36
Soaring oil and gas price scenario	18	1	3	0	3	25
EU 30: Expected investments B EUR	TSO internal		Intercon-	Ongoing	Import	Total
TOTAL: New import capacity	Investment	Storage	nectors etc.	Projects	Pipelines & LNG	Investm
Baseline Scenario	48	22	6	1	23	100
12% renewables in 2010	46	17	6	1	21	91
Energy efficiency	42	11	6	1	15	75
Efficiency case with high renewables	40	9	6	1	14	70
Soaring oil and gas price scenario	36	5	6	1	3	51

⁷⁴ Energy Infrastructure Costs and Investments between 1996 and 2013 (medium-term) and further to 2023 (long-term) on the Trans-European Energy Network and its Connection to Neighbouring Regions with emphasis on investments on renewable energy sources and their integration into the Trans-European energy networks, including an Inventory of the Technical Status of the European Energy-Network for the; Year 2003; Contract n.

TREN/04/ADM/S07.38533/ETU/B2-CESI; Issue Date: October 2005; Prepared by: CESI spa (Centro Elettrotecnico Sperimentale Italiano) – Italy

[,]IIT (Instituto de Investigación Tecnológica) – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark; October 2005.

Fig. 7.7.8: The development of investment needs in new import routes only⁷⁵

⁷⁵ Energy Infrastructure Costs and Investments between 1996 and 2013 (medium-term) and further to 2023 (long-term) on the Trans-European Energy Network and its Connection to Neighboring Regions with emphasis on investments on renewable energy sources and their integration into the Trans-European energy networks, including an Inventory of the Technical Status of the European Energy-Network for the; Year 2003; Contract n. TREN/04/ADM/S07.38533/ETU/B2-CESI; Issue Date: October 2005; Prepared by: CESI spa (Centro Elettrotecnico Sperimentale Italiano) – Italy ,IIT (Instituto de Investigación

Tecnológica) – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark; October 2005.

Fig. 7.7.9: EU 30 current gas transmission system showing age, pipelinemissing for several TSOs) 76

⁷⁶ Energy Infrastructure Costs and Investments between 1996 and 2013 (medium-term) and further to 2023 (long-term) on the Trans-European Energy Network and its Connection to Neighbouring Regions with emphasis on investments on renewable energy sources and their integration into the Trans-European energy networks, including an Inventory of the Technical Status of the European Energy-Network for the; Year 2003; Contract n. TREN/04/ADM/S07.38533/ETU/B2-CESI; Issue Date: October 2005; Prepared by: CESI spa

⁽Centro Elettrotecnico Sperimentale Italiano) – Italy,IIT (Instituto de Investigación Tecnológica) – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark; October 2005.

Figure 7.7.10: Cost of underground gas storage as function of working gas capacity⁷⁷

Figure 7.7.11: Investment cost EUR/m³ for different volume storages⁷⁸

⁷⁷ In DG TREN C1; Study on natural gas storage in the EU, Draft Final Report, October 2008.

⁷⁸ DG TREN C1; Study on natural gas storage in the EU, Draft Final Report, October 2008.

New Ten Code Annex III	Axis	Country A	Country B	Priority project (guidelines)	Estimated cost (M€)
6.3	NG4	ES	ES	LNG terminal in Las Palmas de Gran Canaria (ES)	152
6.8		GR	GR	Extension of the gas network to Corinth	32
7.12	NG3	GR	IT	Interconnector Greece Italy	966
7.13		GR	GR	Compression station on the main pipeline in Greece	34
7.16	NG3	AT	TR	Corridor Austria-Turkey renamed Nabucco pipeline	4.600
7.21	NG1	DE	SE	Baltic gas interconnector between Denmark, Germany and Sweden	300
8.11	NG4	IT	IT	LNG terminal near Trieste	580
8.14	NG4	IT	IT	LNG Terminal near Tarento	496
8.15	NG4	IT	IT	LNG terminal near Genoa Turo	365
8.16	NG4	IT	IT	LNG terminal at Livorno (offshore)	250
8.16	NG4	IT	IT	LNG terminal at Rosignano	270
8.27	NG5	ES	ES	Underground gas storage Rous (COSA)	180
8.34		AT	AT	Underground storage Haidach (new site), including pipeline to EU grid	250
9.1	NG1	DK	SE, NO	Scandinavian gas ring	500
9.14	NG1	DK	LT	UE Amber - 2nd version Niechorse-Gdansk-Suwallei- Jaumunsi	
9.14		SK	SK	Transport pipeline upgrading: increase of the transport capacity and link to underground storage	40
9.21	NG3	BG	SB	Dupnica (BG) - Nis (Serbia) gas pipeline	100
9.27	BalticPipe EIA				
9.31	NG2	DZ	IT	TRANSMED from Sicilia to Italy - NTN's neuw compression units	539

Table 7.7.12:	Projects in	Authorization	phase	situation	in 2006) ⁷⁹
10010 7.7.12.	1 Tojecto III	1 unior 12 union	phase	Situation	m 2000)

⁷⁹ COMMISSION STAFF WORKING DOCUMENT; Annex to the REPORT FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS ON THE IMPLEMENTATION OF THE GUIDELINES FOR TRANS-EUROPEAN ENERGY NETWORKS IN THE PERIOD 2002 –2004; Pursuant to Article 11 of Decision 1229/2003/EC; {COM(2006) 443 final}; 7.8.2006.

7.8 Link with Primes

Country	Item	2010	2020	2030
Austria	Net Imports	7.070	9.573	9.232
Austria	Gross Inland Consumption	8 517	9 973	9 232
Belgium	Net Imports	14 491	16.833	17.861
Belgium	Gross Inland Consumption	14.401	16.833	17.861
Bulgaria	Net Imports	2 540	2 710	3 602
Bulgaria	Gross Inland Consumption	2.54)	2.710	3.072
Cyprius	Net Imports	105	602	905
Cyprius	Gross Inland Consumption	105	602	805
Czech Republic	Net Imports	7 788	8 260	8 786
Czech Republic	Gross Inland Consumption	7 947	8 438	8 965
 Denmark	Net Imports	-4.298	-2.568	-2.171
Denmark	Gross Inland Consumption	4 702	2 809	2 829
Estonia	Net Imports	973	798	867
Estonia	Gross Inland Consumption	973	798	867
Finland	Net Imports	4 163	4 675	4 188
Finland	Gross Inland Consumption	4 163	4 675	4 188
France	Net Imports	42 901	43 488	44 465
France	Gross Inland Consumption	42.901	43 488	44 465
Germany	Net Imports	68 153	75 578	81 499
Germany	Gross Inland Consumption	81 653	86 578	89 999
Greece	Net Imports	4.320	5.750	6.485

Table: 7.8.1: PRIMES forecasts till 20020 and 2030 (in ktoe)⁸⁰

⁸⁰EUROPEAN ENERGY AND TRANSPORT TRENDS TO 2030 — UPDATE 2007; EU-27 ENERGY BASELINE SCENARIO TO 2030; European Commission: Directorate-General for Energy and Transport; April 2008.

~				
Greece	Gross Inland Consumption	4.354	5.750	6.485
Hungary	Net Imports	10.280	12 651	12 541
Hungary	Gross Inland Consumption	10.389	12.031	15.341
		12.589	14.551	15.241
Ireland	Net Imports	3.250	3.756	4.106
Ireland	Gross Inland Consumption	2 749	4 221	4 606
Italy	Net Imports	5.746	4.331	4.000
		67.755	80.874	88.024
Italy	Gross Inland Consumption	78 770	00 071	06.024
7		18.119	88.8/4	96.024
Latvia	Net Imports	1.594	2.109	2.387
Latvia	Gross Inland Consumption	1 504	2 100	2 387
Lithuonio	Not Imports	1.374	2.109	2.307
	Net imports	3.663	3.628	4.231
Lithuania	Gross Inland Consumption	3.663	3.628	4.231
Luxembourg	Net Imports			
		1.161	1.405	1.428
Luxembourg	Gross Inland Consumption	1.161	1.405	1.428
Malta	Net Imports	50	106	220
		59	106	220
Malta	Gross Inland Consumption	59	106	220
Netherlands	Net Imports	-16.148	-10.552	5.019
Netherlands	Gross Inland Consumption			,
	-	37.152	38.628	37.689
Poland	Net Imports	10.911	16.093	20.606
Poland	Gross Inland Consumption			
Dertugel	Net Increase	14.111	19.093	23.306
rortugai	Net imports	4.423	4.750	5.750
Portugal	Gross Inland Consumption			
Demonia	Net Investo	4.423	4.750	5.750
Komama	net imports	4.524	5.845	9.530
Romania	Gross Inland Consumption			
		14.874	16.853	19.352
Slovak Republic	Net Imports			
		6.010	7.199	8.350
Slovak Republic	Gross Inland Consumption	6.141	7.355	8.532

Slovenia	Net Imports			
		1.156	1.367	1.588
Slovenia	Gross Inland Consumption			
		1.161	1.367	1.588
Spain	Net Imports			
		35.008	38.360	33.285
Spain	Gross Inland Consumption			
		35.138	38.360	33.285
Sweden	Net Imports			
		1.382	2.767	2.853
Sweden	Gross Inland Consumption			
		1.382	2.767	2.853
United Kingdom	Net Imports			
		10.783	53.897	54.820
United Kingdom	Gross Inland Consumption			
		73.783	77.897	69.820

Figure 7.8.2: Break-even of LNG and pipeline transportation⁸¹

Note: Numbers in brackets show gas delivery capability in BCM

⁸¹Jensen (2004); in: Advice on the Opportunity to Set up an Action Plan for the Promotion of LNG Chain Investments-Economic, Market, and Financial Point of View -FINAL REPORT, Chair of Energy Economics and Public Sector Management, Dresden University of Technology; Prof. Dr. Christian von Hirschhausen, Dr. Anne Neumann, Dipl.-Wi.-Ing. Sophia Ruester, Danny Auerswald, Study for the European Commission, DG-TREN, Contracting party: MVV Consulting; Dresden, May 2008.

8 Appendix VIII: Chapter 4 Tables Expressed in Mtoe

TABLE 8.1 (4.1): ESTIMATIONS OF FUTURE GAS IMPORT POTENTIAL										
Origin (in Mtoe/yr)	2010	2020	2030							
Russia/ Central Asia	143	169	178							
Norway	81	82	86							
Algeria	70	95	99							
Libya	10	22	33							
Egypt	24	24	24							
Trinidad & Tobago/ Venezuela	5	5	5							
West Africa	18	33	39							
Iraq	17									
Qatar/UAE/Oman/Yemen	3	59	76							
Iran		30	30							
Azerbaijan/Turkmenistan		11	11							
Azerbaijan/Turkmenistan Source(s): OME.		11	11							

	TABLE 8.2 (4.2): CAPACITIES OF MAIN EU SUPPLY ROUTES																	
Max flow in Mtoe/ vr	Туре	BE	DE/NL	ES	FI	FR	GR	HU	IT	LT	LV	PL	РТ	RO	SK	UK	Total	%
Russia	Pipelines				6.0			12.3		9.1	1.1	31.6			93.1		153.2	36.2%
Ukraine	Pipelines											4.9		35.8			40.7	9.6%
Algeria	Pipelines			9.6					27.3								36.9	8.79
Norway	Pipelines	12.6	37.8			16.0											66.5	15.79
Libya	Pipelines								8.6							31.4	40.0	9.5%
Subtotal	Pipelines	12.6	37.8	9.6	6.0	16.0		12.3	35.9	9.1	1.1	36.5		35.8	93.1	31.4	337.2	79.7%
Other imports	LNG terminal	7.3		46.9		15.8	1.8		4.1				5.2			4.7	85.7	20.3%
Grand total		19.8	37.8	56.5	6.0	31.8	1.8	12.3	40.0	9.1	1.1	36.5	5.2	35.8	93.1	36.1	422.9	100.0%
%		4.7%	8.9%	13.4%	1.4%	7.5%	0.4%	2.9%	9.5%	2.1%	0.3%	8.6%	1.2%	8.5%	22.0%	8.5%	100.0%	
Source(s): T E N -	Source(s): T E N - ENERGY Priority Corridors for Energy Transmission; Part One: Legislation, Natural Gas and Monitoring; prepared by Ramboll A/S and Mercados SA; November 2008.																	

TABLE 8.3 (4.5): CAPACITY FORECASTS OF SUPPLY ROUTES UNDERDEVELOPMENT									
Capacity (Mtoe/yr)	2010	2011	2012	2014	2016	Total			
Pipeline mix	7					7			
Pipeline offshore	47	4	7		28	86			
Pipeline onshore			7	31		38			
Total	54	4	14	31	28	131			
Source(s): Energy Infrastructu (long-term) on tl emphasis on inv energy networks the; Year 2003; Prepared by: CE	are Costs and In- the Trans-Europe estments on rend , including an In- Contract n. TRE SI spa (Centro F	vestments between Energy Network Strengthere Strengthe	een 1996 and 20 work and its Co ources and thei Technical Statu 7.38533/ETU/E perimentale Ital	013 (medium-to nnection to Nei r integration in s of the Europe 32-CESI; Issue liano) – Italy, II	erm) and furth ighbouring Re to the Trans-E can Energy-Ne Date: October IT (Instituto de	er to 2023 gions with uropean twork for 2005;			

Investigación Tecnológica) – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark; October 2005.; Various sources including projects presentations and web sites <u>www.nabucco-</u> pipeline.com, www.nord-stream.com, www.igi-poseidon.com; own calculation.

TABLE 8.4 (4.6): BREAKDOWN OF NEW LNG PROJECTS STATUS

Send out capacity	After extension	Existing after	Proposed	Under construction	Total
(Mtoe/yr)		extension			
2010		17.9	7.8	13.8	39.5
2011		15.3	16.4	38.2	69.9
2012			12.2	1.7	14.0
2013	6.3		7.8		14.1
2014		31.5	23.6		55.1
2015		10.2	6.9		17.1
N/A		14.2	9.3		23.5
Total	6.3	89.1	84.0	53.7	233.0

TABLE 8.5 (4.7): BREAKDOWN OF SEND-OUT CAPACITIES FOR NEW LNGPROJECTS										
Send out capacity (Mtoe/yr)	2010	2011	2012	2013	2014	2015	N/A	Total		
DE							9.3	9.3		
ES		21.4	1.7	6.3	24.6	10.2		64.1		
FR				7.8	7.8	6.9	14.2	36.6		
GR										
IT	21.6	17.1	11.2		6.9			56.7		
LT										
NL		26.7			11.2			37.9		
PL			1.0					1.0		
РТ		4.7						4.7		
RO										
SE										
UK	17.9				4.7			22.6		
Total	39.5	69.9	14.0	14.1	55.1	17.1	23.5	233.0		
Source(s): GI E man &										

TABLE 8.6 (5.15): GAS PIPELINE PROJECTS PLANNED BEFORE 2020

Project name	Gas	Location/	Entry point in	Capacity (Mtoe/yr)	Load factor	Work canacity	Cumulated	Starting	Estimated
	origin	in EU	EU	(with c/yr)	lactor	(Mtoe/yr)	(Mtoe/yr)	(estimated)	buuget (all)
Galsi	Algeria	Italy	Italy	7	0.8	5	5	2010	1,200
Nord Stream	Russia	Germany	Germany	47	0.8	38	43	2010	6,000
Baltic Pipe	Norway	Poland	Poland	3	0.8	2	46	2011	350
Baltic Connector	Russia	Finland	Estonia	2	0.8	2	47	2011	100
ITGI	Caspian	Greece	Italy	7	0.8	5	53	2012	950
Nabucco	Caspian	Bulgaria	Austria	27	0.8	22	74	2014	7,900
White stream	Caspian	Romania	Romania	28	0.8	22	96	2016	2,500

Source(s): Energy Infrastructure Costs and Investments between 1996 and 2013(medium-term) and further to 2023 (long-term) on the Trans-EuropeanEnergy Network and its Connection to Neighbouring Regions withemphasis on investments on renewable energy sources and their integration into the Trans-European energy networks, including anInventory of the Technical Status of the European Energy-Network for the; Year 2003; Contract n. TREN/04/ADM/S07.38533/ETU/B2-CESI; Issue Date: October 2005; Prepared by: CESI spa (Centro Elettrotecnico Sperimentale Italiano) – Italy, IIT (Instituto de Investigación Tecnológica) – Spain, ME (Mercados Energeticos) – Spain, RAMBØLL A/S – Denmark; October 2005; Various sources including projects presentations and web sites <u>www.nabucco-pipeline.com</u>, <u>www.nord-stream.com, www.igi-poseidon.com</u>; own calculation.

9 Appendix IX: E3ME and KEMA Model Descriptions

9.1 Introduction to E3ME

E3ME is a computer-based model of Europe's economic and energy systems and the environment. It was originally developed through the European Commission's research framework programmes and is now widely used in Europe for policy assessment, for forecasting and for research purposes.

E3ME's structure The structure of E3ME is based on the system of national accounts, as defined by ESA95 (European Commission, 1996), with further linkages to energy demand and environmental emissions. The labour market is also covered in detail, with estimated sets of equations for labour demand, supply, wages and working hours. In total there are 33 sets of econometrically estimated equations, also including the components of GDP (consumption, investment, international trade), prices, energy demand and materials demand. Each equation set is disaggregated by country and by sector.

E3ME's historical database covers the period 1970-2008 and the model projects forward annually to 2050⁸². The main data sources are Eurostat, DG Ecfin's AMECO database and the IEA, supplemented by the OECD's STAN database and other sources where appropriate. Gaps in the data are estimated using customised software algorithms.

The main The other main dimensions of the model are:

dimensions of the model

- 29 countries (the EU27 member states plus Norway and Switzerland)
- 42 economic sectors, including disaggregation of the energy sectors and 16 service sectors
- 43 categories of household expenditure
- 19 different users of 12 different fuel types
- 14 types of air-borne emission (where data are available) including the six greenhouse gases monitored under the Kyoto protocol.
- 13 types of household, including income quintiles and socio-economic groups such as the unemployed, inactive and retired, plus an urban/rural split

Typical outputs from the model include GDP and sectoral output, household expenditure, investment, international trade, inflation, employment and unemployment, energy demand and CO2 emissions. Each of these is available at national and EU level, and most are also defined by economic sector.

The econometric specification of E3ME gives the model a strong empirical grounding and means it is not reliant on the assumptions common to Computable General Equilibrium (CGE) models, such as perfect competition or rational expectations. E3ME uses a system of error correction, allowing short-term dynamic (or transition) outcomes, moving towards a long-term trend. The dynamic specification is important when considering short and medium-term analysis (eg up to 2020) and rebound effects⁸³, which are included as standard in the model's results.

⁸² See Chewpreecha and Pollitt (2009).

⁸³ Where an initial increase in efficiency reduces demand, but this is negated in the long run as greater efficiency lowers the relative cost and increases consumption. See Barker et al (2009).

E3ME's key In summary the key strengths of E3ME lie in three different areas:

- strengths
- the close integration of the economy, energy systems and the environment, with two-way linkages between each component
- the detailed sectoral disaggregation in the model's classifications, allowing for the analysis of similarly detailed scenarios
- the econometric specification of the model, making it suitable for short and medium-term assessment, as well as longer-term trends

A longer description of E3ME is provided in the next chapter. For further details, the reader is referred to the model manual available online from www.e3me.com.

9.2 A brief history of E3ME

Quantifying the E3ME was originally intended to meet an expressed need of researchers and policy short and long- makers for a framework for analysing the long-term implications of Energyterm effects of E3 Environment-Economy (E3) policies, especially those concerning R&D and policies environmental taxation and regulation. The model is also capable of addressing the short-term and medium-term economic effects as well as, more broadly, the long-term effects of such policies, such as those from the supply side of the labour market.

The European The first version of the E3ME model wasbuilt by an international European team contribution under a succession of contracts in the JOULE/THERMIE and EC research programmes. The projects 'Completion and Extension of E3ME'⁸⁴ and 'Applications of E3ME^{'85}, were completed in 1999. The 2001 contract, 'Sectoral Economic Analysis and Forecasts^{'86} generated an update of the E3ME industry output, product and investment classifications to bring the model into compliance with the European System of Accounts, ESA 95. This led to a significant disaggregation of the service sector. The 2003 contract, Tipmac⁸⁷, led to a full development of the E3ME transport module to include detailed country models for several modes of passenger and freight transport and Seamate (2003/2004)⁸⁸ resulted in the improvement of the E3ME technology indices. The COMETR⁸⁹ (2005-07), Matisse⁹⁰ (2005-08) and CEDEFOP⁹¹ (2007-2010) projects allowed the expansion of E3ME to cover 29 European countries, including the twelve accession countries. More recently the model has been used to contribute to European Impact Assessments, including reviews of the EU ETS, Energy Taxation Directive and TEN-E infrastructure policy. E3ME is now applied at the national, as well as European, level.

> A full list of recent projects involving E3ME, and references from related publications, is available from the model website.

> E3ME is the latest in a succession of models developed for energy-economy and, later, E3 (energy-environment-economy) interactions in Europe, starting with

⁸⁴European Commission contract no. JOS3-CT95-0011

⁸⁵European Commission contract no. JOS3-CT97-0019

⁸⁶European Commission contract no. B2000/A7050/001

⁸⁷European Commission contractno. GRD1/2000/25347-SI2.316061

⁸⁸European Commission contractno. IST-2000-31104

⁸⁹ European Commission contract no. 501993 (SCS8)

⁹⁰ European Commission contract no. 004059 (GOCE)

⁹¹European Commission project no. 2007-0089/AO/AZU/Skillsnet-Supply/010/07 and European Commission project no. 2006/S 125-132790

EXPLOR, built in the 1970s, then HERMES in the 1980s. Each model has required substantial resources from international teams and has learned from earlier problems and developed new techniques. E3ME is now firmly established as a tool for policy analysis in Europe. The current version is closely linked to the global E3MG⁹² model, which is similar in structure and dimensions.

9.3 The theoretical background to E3ME

Economic activity undertaken by persons, households, firms and other groups in society has effects on other groups after a time lag, and the effects persist into future generations, although many of the effects soon become so small as to be negligible. But there are many actors, and the effects, both beneficial and damaging, accumulate in economic and physical stocks. The effects are transmitted through the environment (with externalities such as greenhouse gas emissions contributing to global warming), through the economy and the price and money system (via the markets for labour and commodities), and through the global transport and information networks. The markets transmit effects in three main ways: through the level of activity creating demand for inputs of materials, fuels and labour; through wages and prices affecting incomes; and through incomes leading in turn to further demands for goods and These interdependencies suggest that an E3 model should be services. comprehensive, and include many linkages between different parts of the economic and energy systems.

These economic and energy systems have the following characteristics: economies and diseconomies of scale in both production and consumption; markets with different degrees of competition; the prevalence of institutional behaviour whose aim may be maximisation, but may also be the satisfaction of more restricted objectives; and rapid and uneven changes in technology and consumer preferences, certainly within the time scale of greenhouse gas mitigation policy. Labour markets in particular may be characterised by long-term unemployment. An E3 model capable of representing these features must therefore be flexible, capable of embodying a variety of behaviours and of simulating a dynamic system. This approach can be contrasted with that adopted by general equilibrium models: they typically assume constant returns to scale; perfect competition in all markets; maximisation of social welfare measured by total discounted private consumption; no involuntary unemployment; and exogenous technical progress following a constant time trend (see Barker, 1998, for a more detailed discussion).

9.4 E3ME as an E3 model

The E3ME model comprises:

- the accounting balances for commodities from input-output tables, for energy carriers from energy balances and for institutional incomes and expenditures from the national accounts
- environmental emission flows
- 33 sets of time-series econometric equations (aggregate energy demands, fuel substitution equations for coal, heavy oil, gas and electricity; intra-EU and extra-EU commodity exports and imports; total consumers' expenditure; disaggregated

⁹² See <u>www.e3mgmodel.com</u>

consumers' expenditure; industrial fixed investment; industrial employment; industrial hours worked; labour participation; industrial prices; export and import prices; industrial wage rates; residual incomes; investment in dwellings; normal output equations and physical demand for seven types of materials)

Energy supplies and population stocks and flows are treated as exogenous.

The E3 Figure 9.1 shows how the three components (modules) of the model - energy, environment and economy - fit together. Each component is shown in its own box with its own units of account and sources of data. Each data set has been constructed by statistical offices to conform with accounting conventions. Exogenous factors coming from outside the modelling framework are shown on the outside edge of the chart as inputs into each component. For the EU economy, these factors are economic activity and prices in non-EU world areas and economic policy (including tax rates, growth in government expenditures, interest rates and exchange rates). For the energy system, the outside factors are the world oil prices and energy policy (including regulation of energy industries). For the environment component, exogenous factors include policies such as reduction in SO2 emissions by means of end-of-pipe filters from large combustion plants. The linkages between the components of the model are shown explicitly by the arrows that indicate which values are transmitted between components.

Figure 9.1

The economy module provides measures of economic activity and general price levels to the energy module; the energy module provides measures of emissions of the main air pollutants to the environment module, which in turn gives measures of damage to health and buildings (estimated using the most recent ExternE⁹³ coefficients). The

⁹³ http://www.externe.info/tools.html

energy module provides detailed price levels for energy carriers distinguished in the economy module and the overall price of energy as well as energy use in the economy.

9.5 The E3ME regional econometric input-output model

Figure 9.2 shows how the economic module is solved as an integrated EU regional model. Most of the economic variables shown in the chart are at a 42-industry level. The whole system is solved simultaneously for all industries and all 29 countries, although single-country solutions are also possible. The chart shows interactions at three spatial levels: the outermost area is the rest of the world; the next level is the European Union outside the country in question; and finally, the inside level contains the relationships within the country.

Figure 9.2

The chart shows three loops or circuits of economic interdependence, which are described in some detail below. These are the export loop, the output-investment loop and the income loop.

The export loop The export loop runs from the EU transport and distribution network to the region's exports, then to total demand. The region's imports feed into other EU regions' exports and output and finally to these other regions' demand from the EU pool and back to the exports of the region in question.

Treatment of An important part of the modelling concerns international trade. The basic *international trade* assumption is that, for most commodities, there is a European 'pool' into which each region supplies part of its production and from which each region satisfies part of its demand. *This might be compared to national electricity supplies and demands: each power plant supplies to the national grid and each user draws power from the grid and it is not possible or necessary to link a particular supply to a particular demand.*

The demand for a region's exports of a commodity is related to three factors:

- domestic demand for the commodity in all the other EU regions, weighted by their economic distance from the region in question
- activity in the main external EU export markets, as measured by GDP or industrial production
- relative prices, including the effects of exchange rate changes.

Economic distance Economic distance is measured by a special distance variable. For a given region, this variable is normalised tobe 1 for the home region and values less than one for external regions. The economic distance to other regions is inversely proportional to trade between the regions. In E3ME regional imports are determined for the demand and relative prices by commodity and region. In addition, measures of innovation (including spending on R&D) have been introduced into the trade equations to pick up an important long-term dynamic effect on economic development.

The outputinvestment loop investment loop investment loop The output-investment loop includes industrial demand for goods and services and runs from total demand to output and then to investment and back to total demand. For each region, total demand for the gross output of goods and services is formed from industrial demand, consumers' expenditure, government consumption, investment (fixed domestic capital formation and stockbuilding) and exports. These totals are divided between imports and output depending on relative prices, levels of activity and utilisation of capacity. Industrial demand represents the inputs of goods and services from other industries required for current production, and is calculated using input-output coefficients. The coefficients are calculated as inputs of commodities from whatever source, including imports, per unit of gross industrial output.

Determination of Forecast changes in output are important determinants of investment in the model. **Investment demand** Investment in new equipment and new buildings is one of the ways in which companies adjust to the new challenges introduced by energy and environmental policies. Consequently, the quality of the data and the way data are modelled are of great importance to the performance of the whole model. Regional investment by the investing industry is determined in the model as intertemporal choices depending on capacity output and investment prices. When investment by user industry is determined, it is converted, using coefficients derived from input-output tables, into demands on the industries producing the investment goods and services, mainly engineering and construction. These demands then constitute one of the components of total demand.

> In this project the investments are in specific equipment (mainly transmission lines and pipelines) so a larger share of investment costs are absorbed by the construction industry than would be the case, for example, in building new plant where more design is required.

Accumulation of Gross fixed investment, enhanced by R&D expenditure in constant prices, is accumulated to provide a measure of the technological capital stock. This avoids problems with the usual definition of the capital stock and lack of data on economic scrapping. The accumulation measure is designed to get round the worst of these problems. Investment is central to the determination of long-term growth and the model embodies endogenous technical change and a theory of endogenous growth which underlies the long-term behaviour of the trade and employment equations.

The income loop In the income loop, industrial output generates employment and incomes, which leads to further consumers' expenditure, adding to total demand. Changes in output are

used to determine changes in employment, along with changes in real wage costs, interest rates and energy costs. With wage rates explained by price levels and conditions in the labour market, the wage and salary payments by industry can be calculated from the industrial employment levels. These are some of the largest payments to the personal sector, but not the only ones. There are also payments of interest and dividends, transfers from government in the form of state pensions, unemployment benefits and other social security benefits. Payments made by the personal sector include mortgage interest payments and personal income taxes. Personal disposable income is calculated from these accounts, and deflated by the consumer price index to give real personal disposable income.

Determination of
consumers'Totals of consumer spending by region are derived from consumption functions
estimated from time-series data (this is a similar treatment to that adopted in the
HERMES model). These equations relate consumption to regional personal
disposable income, a measure of wealth for the personal sector, inflation and interest
rates. Sets of equations have been estimated from time-series data for each of the 43
consumption categories reported by Eurostat in each country.

9.6 Energy-Environment links

Top-down and
bottom-upE3ME is intended to be an integrated top-down, bottom-up model of E3 interaction.
In particular, the model includes a detailed engineering-based treatment of the
electricity supply industry (ESI). Demand for energy by the other fuel-user groups is
top-down, but it is important to be aware of the comparative strengths and weaknesses
of the two approaches. Top-down economic analyses and bottom-up engineering
analyses of changes in the pattern of energy consumption possess distinct intellectual
origins and distinct strengths and weaknesses (see Barker, Ekins and Johnstone, 1995).

A top-down The energy submodel in E3ME is constructed, estimated and solved for 19 fuel users, submodel of 12 energy carriers (termed fuels for convenience below) and 29 countries. Figure 9.3 shows the inputs from the economy and the environment into the components of the submodel and Figure 9.4 shows the feedback from the submodel to the rest of the economy.

Determination of Aggregate energy demand, shown at the top of Figure 9.3, is determined by a set of *fuel demand* co-integrating equations⁹⁴, whose the main explanatory variables are:

- economic activity in each of the 19 fuel users
- average energy prices by the fuel users relative to the overall price levels
- technological variables, represented by investment and R&D expenditure, and spillovers in key industries producing energy-using equipment and vehicles

⁹⁴ Cointegration is an econometric technique that defines a long-run relationship between two variables resulting in a form of 'equilibrium'. For instance, if income and consumption are cointegrated, then any shock (expected or unexpected) affecting temporary these two variables is gradually absorbed since in the long-run they return to their 'equilibrium' levels. Note that a cointegration relationship is much stronger relationship than a simple correlation: two variables can show similar patterns simply because they are driven by some common factors but without necessarily being involved in a long-run relationship.

- *Fuel substitution* Fuel use equations are estimated for four fuels coal, heavy oils, gas and electricity and the four sets of equations are estimated for the fuel users in each region. These equations are intended to allow substitution between these energy carriers by users on the basis of relative prices, although overall fuel use and the technological variables are allowed to affect the choice. Since the substitution equations cover only four of the twelve fuels, the remaining fuels are determined as fixed ratios to similar fuels or to aggregate energy use. The final set of fuels used must then be scaled to ensure that it adds up to the aggregate energy demand (for each fuel user and each region).
 - **Emissions** The emissions submodel calculates air pollution generated from end-use of different **submodel** fuels and from primary use of fuels in the energy industries themselves, particularly electricity generation. Provision is made for emissions to the atmosphere of carbon dioxide (CO2), sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), methane (CH4), black smoke (PM10), volatile organic compounds (VOC), nuclear emissions to air, lead emissions to air, chlorofluorocarbons (CFCs) and the other four greenhouse gases: nitrous oxide (N2O), hydrofluorocarbons (HFC), perfluorocarbons (PFC), sulphur hexafluoride (SF6). These four gases together with CO2 and CH4 constitute the six greenhouse gases (GHGs) monitored under the Kyoto protocol. Using estimated (ExternE) damage coefficients, E3ME may also estimate ancillary benefits relating to reduction in associated emissions eg PM10, SO2, NOx.
 - *CO2 emissions* Emissions data for CO2 are available for fuel users of solid fuels, oil products and gas separately. The energy submodel estimates of fuel by fuel user are aggregated into these groups (solid, oil and gas) and emission coefficients (tonnes of carbon in CO2 emitted per toe) are calculated and stored. The coefficients are calculated for each year when data are available, then used at their last historical values to project future

emissions. Other emissions data are available at various levels of disaggregation from a number of sources and have been constructed carefully to ensure consistency.

Feedback to the rest of the economy Figure 9.4 shows the main feedbacks from the energy submodel to the rest of the economy **changes in consumers' expenditures on fuels and petrol are formed from changes in fuel use estimated in the energy submodel, although the levels are** calibrated on historical time-series data. The model software provides an option for choosing either the consumers' expenditure equation solution, or the energy equation solution. Whichever option is chosen, total consumer demand in constant values matches the results of the aggregate consumption function, with any residual held in the unallocated category of consumers' expenditure. The other feedbacks all affect industrial, including electricity, demand via changes in the input-output coefficients.

9.7 Parameter estimation

The econometric modelhas a complete specification of the long-term solution in the form of an estimated equation that has long-term restrictions imposed on its parameters. Economic theory, for example the recent theories of endogenous growth, informs the specification of the long-term equations and hence properties of the model; dynamic equations that embody these long-term properties are estimated by econometric methods to allow the model to provide forecasts. The method utilises developments in time-series econometrics, in which dynamic relationships are specified in terms of error correction models (ECM) that allow dynamic convergence to a long-term outcome. The specific functional form of the equations is based on the econometric techniques of cointegration and error-correction, particularly as promoted by Engle and Granger (1987) and Hendry et al (1984).

9.8 Introduction to the KEMA/ICL model

The KEMA/ICL modelling framework contains a number of modules that together provide a coherent methodology for estimating the additional generation and network investment requirements and the power system operation costs of alternative generation mix scenarios. It is a computer-based multi-node model of regional electricity system. The modelling framework consists of two main elements:

- an applied power systems analysis framework⁹⁵ (APS model) to evaluate costoptimal regional interconnection and generation capacity requirements for system security purposes, and the annual operating costs of the system
- a cost estimation tool for the calculation of the cost of integration of offshore wind

It was originally developed for the European Climate Foundation Roadmap 2050 project and the version being used here is a development of that model providing greater granularity. It also has an enhanced ability to implement pre-defined generation capacity factors (e.g. those obtained from PRIMES model's output for PRIMES specific scenarios) of various generation plants in the system.

Overview of the APS model The APS model minimizes the total system costs composed of additional generating capacity cost and additional inter-regional transmission network capacity cost, together with annual electricity production cost from a real-time simulation of hourly dispatch while maintaining the required level of system reliability and respecting multiple operating constraints. This cost minimization process considers the tradeoffs between the cost of additional generating capacity (additional generation backup), additional transmission infrastructure, and renewable energy curtailment and the transmission constraint cost associated with network congestion management. The model is not a market model, and assumes that the electricity system would be optimised as a whole, within the limits of the available and economic new build resources.

The APS model follows two main steps:

- First, the required additional generation and interconnection transmission capacity is determined by minimizing the infrastructure investment costs and hourly system operation costs across the time horizon of a year, while delivering specified(historical) levels of security of supply. The model takes into account the trade-off between the generation capacity and interconnection investments and the potential benefits of storage in reducing the need for additional generating capacity and inter-regional transmission. The impact of extreme conditions of low output of renewable generation and extreme peak demands on both generation and network capacity requirements are also examined.
- Second, the operation of the system is optimized throughout the year. Using a stochastic framework that captures multiple possible realizations of renewable generation outputs, the daily production costs are minimized while allocating adequate resources needed for the management of uncertainties in demand, conventional generation and intermittent renewablesoutput. The model incorporates a range of dynamic technical constraints and cost characteristics of various generating technologies in the system (such as stable generation levels, ramp rates, minimum up/down times, start up and no load costs, etc) together with

⁹⁵Developed by Imperial College London

characteristics of energy storage (reservoir capacities and efficiency losses). While maintaining the required levels of short and long term reserves, based on the existing ENTSO-E's rules, the model takes into account the benefits of diversity in renewable generation production, diversity in demand and resource sharing across different regions enabled by the regional transmission network.

A simplified representation of the APS model is depicted in Figure 9.5 below.

Adjustment in the APS model for PRIMES studies

In order to evaluate the interconnector and additional generating capacity infrastructure requirements for PRIMES model based studies, the energy production from generation technologies in respective countries were harmonized with those obtained from the PRIMES model. This was accomplished by an alteration in the model formulation that would match the generation capacity factor of various plants inline with PRIMES outputs as the first priority, before minimizing the overall system costs.

The main The main dimensions of the model are:

dimensions of the APS model

- 29 countries (the EU27 member states plus Norway and Switzerland)
- 203 thermal generator groups across 6 fuel types (nuclear, coal, gas, oil, biomass, and geothermal)
- 4 types of hydro generation (hydro reservoir, run of river, a combination of hydro reservoir and pumped storage, pure pumped storage) for each country
- 2 types of wind generation (offshore and onshore) for individual countries where available
- 2 types of solar generation (Photovoltaic (PV) and Concentrated Solar Power (CSP)) for individual countries where available
- 54 interconnection possibilities among 29 modelled countries
- simulation of hourly system operation across one year period

Key modelling inputs Key inputs to the APS model include a time series of hourly electricity demand profiles and regional hourly profiles for the available renewable energy sources (wind and solar), seasonal availability of hydro energy for both 'run of river' and hydro with

reservoir. Initial levels of installed capacity (generation and transmission), dynamic characteristics and operating costs of various generation technologies, investment cost of additional generating capacity in each region, network topology and network reinforcement cost.

Furthermore, the required system reliability constraint is also defined in the form of Loss of Load Expectation $(LOLE)^{96}$.

Typical outputs of the model

Typical outputs of Typical outputs from the APS model include:

- additional generation capacity requirements (to satisfy a predefined level of security and system balancing requirement) and associated costs
- · additional transmission investment and associated costs
- annual operating costs
- hourly allocation of operating reserves
- renewable energy curtailment
- transmission flows
- Annual utilisation of
 - generating plants and storage in the system
 - each interconnector in the system

KEMA/ICL key strengths The modelling framework provides an *integrated assessment of the electricity generation and transmission capacity investment requirements* that is both; cost (investment and operating) optimal and secure under defined system security standards.

The system operation simulation is modelled in a stochastic framework. In order to take into account of the uncertainties associated with the availability (and output variation) of the intermittent renewables a number of renewable output realizations are considered for each hour looking forward upto 36 hours. The supply resources as well as responsive demand in each region are simultaneously scheduled in order to cover multiple renewable generation outputs while maintaining the network constraints.

Both the system investments and operating requirements, and associated costs are based on *concurrent operation of the electricity system in each country*taking into account the optimal transmission flows through the interconnections.

Offshore and solar CSP integration The second element of the modeling framework estimates the investment requirements for energy transport and integration of offshore wind parks and solar CSP parks. These generation sources are assumed to connect at the fringes of the transmission networks and therefore investments are required to integrate them into the main network, creating new within Member State transmission investment. The approach assumes that the full installed capacity of the wind or solar park has to be carried to the notional centre of gravity of the country. This approach results in significant transmission investments and serve as a proxy for a range of reinforcements within the Member State transmission system to relieve local congestion. Exhibit X illustrates these various elements.

⁹⁶ LOLE represents the expected number of hours per year when demand may exceed available generation.

9.9 Modelling approach

A conservative approach has been followed throughout the grid integration modeling. This is manifested through a range of prudent modeling assumptions adopted, such as higher levels of short term forecasting errors of renewable generation (based on persistence forecasting techniques); the fact that load curtailments are not considered as an option for the provision of backup; exclusion of frequency responsive loads (e.g. refrigeration) in the provision of frequency regulation services and incorporating extremely low outside temperatures in winter peak demands.

Additionally the effects of low availability of intermittent (wind) generation during peak demand periods that is coincident with a dry hydro year is also considered.

Assessment and In order to deal with the uncertainties associated with conventional generation allocation of availability, demand fluctuations and variability of output of (variable) renewable generation two types of operating reserve are modelled:

- short-term reserve (for seconds to few minutes time periods) for automatic frequency regulation requirements
- long-term reserve (from few minutes to few hours time periods) to mitigate unforeseen imbalances between demand and supply over longer time horizons in each region

The determination of the amount of reserve requirements is based on ENTSO-E's rules. As mentioned above, the contribution of any frequency sensitive loads towards frequency regulation (for example smart refrigerators) is not modelled. A key modelling assumption is that short term reserves will be managed within each Member State while long-term reserve can be shared across regions taking into account the limitations of the transmission network.

The stochastic modelling of intermittent renewable generation results in an optimal allocation of long-term operating reserve between standing reserve and synchronised spinning reserve plant to maintain supply/demand balance. Longer term reserve allocation between these two categories is optimised dynamically, taking into account the system situation in each instance, in order to enhance the ability of the system to absorb renewable output. Any inadequacy in terms of the ability of the system to meet the demand given the need for reserve is managed by appropriate augmentation of generation capacity.

Generation and The scheduling of reserves imposes further constraints on system operation for the reserve scheduling following reasons. Reserve scheduling causes generation output deviations from the optimal generation schedule in order to provide sufficient flexibility for generation output to either be increased or decreased in response to variations in demand and/or supply. The operating characteristics of reserve generation introduce additional constraints including reducing the generation capacity available to supply demand and imposing limits on the lowest output to be delivered from flexible generation. The first effect can lead to requirements for greater generation capacity within the system either within each region or via interconnecting transmission. The second effect can lead to increased curtailment of variable renewable generation as the system must maintain adequate reserves, which will require flexible plant to be readily dispatchable. Where reserve generation is constrained by minimum stable operating limits, this can displace renewable generation unless sufficient transmission capacity

is available to facilitate exports outside the region or sufficient storage is available within the region.

The detailed production and reserve optimisation model, is set up within a stochastic optimisation framework. The dynamic scheduling process is modelled looking ahead over a 36 hour period at the demand profile to be met and associated reserve requirements. The model then schedules generation, storage and demand response for each 24 hour time horizon to meet these requirements. The actual day-ahead is varied by the stochastic modelling of the energy output from the renewable generation sources. The stochastic framework allows a number of renewable output realizations to be evaluated for each hour looking forward 36 hours. The generation and responsive demand resources in each region are simultaneously scheduled in order to consider multiple renewable generation output conditions for a prescribed set of network constraints. The model takes account of losses and costs incurred through the use of demand response and storage resources. The system operation model for scheduling generation and operating reserves in each region exploits the diversity of demand and renewable outputs across Europe to minimize operating costs while significantly enhancing the ability of the system to accommodate the output of variable renewable generation sources.

conditions

Impact of low Following the earlier mentioned conservative approach, the results are evaluated availability of considering the low availability of wind generation during peak demand periods in **renewables and** Northern Europe that my coincide with a dry hydro year across Europe. The modelled **dry hydro** input assumptions in this regard include:

- extreme weather conditions, 5 days with 50% lower wind for Northern Europe compared to forecast
- dry hydrological year, with 20% less than average available energy from European hydro resources
- higher peak demand driven by an assumed fuel switch to meet higher electrical heating load (5% in 2020 and 10% in 2030)

Inter-regional The transmission investment model divides the EU-27 countries plus Norway and transmission Switzerland into twenty nine regions. Today's congestion within the member state regions associated with the existing networks is not considered and is assumed to be addressed in the ENTSO-E TYNDP.

Each member state region has a "centre of gravity", which functions as the point from and to which transmission capacity will be required. The scope of the transmission system analysis is focused on incremental capacity requirements between the regions for each of the scenario pathway relative to the current 2010 baseline, but respecting the 2020 capacity expectations within the ENTSO-E TYNDP, i.e. all investments in the ENTSO-E TYNDP are assumed to happen in all scenarios.

The model does not assess the investment requirements for growing demand connections or investment in the distribution network.

Off-shore The overlap of offshore wind farm and solar CSP transmission integration costs and transmission the way in which expansion factors and unit costs for interconnection transmission expansion have been set drive an investment cost that seeks to on average provide sufficient investment to provide secure capacity and include within-member state region internal reinforcement requirements. Further explanation of the assumptions regarding transmission expansion factors can be found in section 9.10 below.

More detailed transmission studies will be needed in the future to support more granular decision-making. These studies would ideally be undertaken with ENTSO-E coordination as part of the SET Plan's European Electricity Grid Initiative.

Figure 9.6

Transmission investment has four elements

9.10 Transmission cost assumptions

The modelling approach adopted relies on a cost estimation methodology. It seeks to provide a reasonable indication of the capital costs associated with expanding the transmission capacity between regions to maintain a power system with security characteristics similar to those experienced today. The costs are estimated based on an assumption that they will be able to deliver a secure network (N-1), i.e. providing sufficient network redundancy such that a single circuit fault would not cause the transfer capacity to be reduced.

The transmission costs estimations include several elements. The costs of sub sea cables for the offshore wind farms (A in Figure 9.6) are estimated based on a typical distance from the shore and a single unit cost of $\mathfrak{S}4$ million per GWkm.

The connection of increased demand (Part D) is excluded from the transmission modelling. This is because the increased demand to be met in all of the scenarios is the same and therefore it is assumed that the costs to meet these demand increases will appear in each case.

The transmission network investment cost modelling undertaken addresses elements B and C in Figure 9.6, however, the methodology adopted to estimate the capacity and costs is different for each element.

Part B transmission capacity is calculated by evenly distributing the total assumed offshore wind farm capacity along the available coastline of the region. This requires the total offshore wind capacity to be divided into wind parks. These are limited to a maximum of 1.5GW capacity, which reflects a conservative assumption for a typical circuit capacity. From each of the landing points distributed evenly along the regional shoreline, it is assumed that transmission capacity is required to move the power to the centre of gravity, before it can be transmitted more widely. Transmission capacity costs have been estimated based on the Standard cost assumption. This methodology has also been adopted to reflect the likely concentration of solar CSP in southern Spain. It has been assumed that 75% of the solar CSP parks are connected to the south of the centre of gravity.

The detailed modelling work focuses on the Part C investments, in Figure 9.6. The costs of the Part C investments are integrated within the wider APS framework which is described in details in sections 9.8 and 9.9 above. The modelling frameworkuses the composite cost assumptions shown in Figure 9.6 to undertake a cost optimisation.

The model trades off the various investment elements and optimises based upon input cost assumptions. For the transmission investment three composite costs were created to represent the costs of expansion between Member States. These costs were biased to recognise that different interconnections that are likely to have varying compositions of technologies. It is not intended to provide specific costs for a particular routing of a line to form the indicated transmission capacity.

Figure 9.7

Transmission cost assumptions

	Standard cost 0.7	Subsea High cost 1.9	Tough terrain High cost 1.2	
Transmission mix elements	Share in technology mix	Share in technology mix	Share in technology mix	
AC OHL long distance average terrain	63%	36%	38%	
AC OHL tough terrain (short distance)	0%	6%	25%	
AC underground (short distance) urban	10%	16%	10%	
AC subsea (medium distance)	0%	5%	0%	
TOTAL AC	73%	63%	73%	
DC subsea (long distance)	0%	20%	5%	
DC long distance underground cable	4%	9%	4%	
DC long distance OHL	23%	8%	18%	
TOTAL DC	27%	37%	27%	
TOTAL DC	27%	37%	:	

КЕМА⋞

WORKING DRAFT

The composite cost assumed a balanced approach to technology selection based on experience of network developments. Each international interconnector is allocated one of the three composite costs, (standard, subsea or tough terrain) based on a general analysis of the terrain the would be encountered between the centres of gravity.