

EU Refining Competitiveness and impact of planned legislation

EU Refining Forum Robin Nelson Science Director, CONCAWE 27th November 2013

conservation of clean air and water in europe

1. Introduction

- 2. Solomon study on EU refining competitive position vs regional peer groups 2000-2012
- 3. Summary of CONCAWE report 1/13R
- 4. Trends & impact of legislation on future competitiveness

Reproduction permitted with due acknowledgement

Established as a European association for research on health, safety, and environmental (HSE) issues of importance to the European oil refining industry

Objectives:

- Acquire adequate scientific, economic, technical, and legal information on HSE issues
- > Improve the understanding of these issues by the industry, authorities, and consumers

Operating principles:

- Sound science
- Cost-effectiveness of options
- Transparency of results

Our research reports are available at <u>www.concawe.org</u>

Not for profit association, funded by Member Companies

43 members, representing ~100% of European refining capacity

Reproduction permitted with due acknowledgement

- Solomon Associates is a US-based consultant to the global refining industry, specialising in performance benchmarking
- Refiners all over the world participate in the Solomon survey every two years
 - Each refinery completes a questionnaire providing an extensive set of operating data
 - Each participating company is presented with the <u>confidential</u> results showing:
 - Relative position of its own refineries compared to <u>anonymised</u> aggregates of refineries in the region, and in other world regions
 - Many different performance indicators (margins, energy efficiency, personnel costs, maintenance costs, etc.)

concawe Comparative study of EU refining vs peers

- CONCAWE requested Solomon to supply historic data showing the relative position of EU average refineries against other competing world regions
- Performance Indicators:
 - Gross Refining Margin
 - Cash Operating Costs
 - Energy costs
 - Personnel costs
 - Other cash costs
 - Net Cash Margin

Regions:

- ► EU-28
- ► US
- Middle East
- Russia
- Korea/Singapore
- Reproduction permitted with due acknowledgement

India

Gross Margin (GM)

Gross Margin in US \$/bbl for all regions indexed relative to 100 in Year 2000

Growing demand (esp. China) improves GM until Financial Crisis in 2008.

Reproduction permitted with due acknowledgement

Cash OPEX

From 2008, operating costs in the US fall relative to other regions
 EU-28 costs increase by a factor of 3 over the period, while US costs increase by only 1/3

Reproduction permitted with due acknowledgement

OPEX – Energy Cost

US energy costs fall by 26% due to shale gas whilst EU-28 energy costs increase by a factor of 3.8 over the same period
Korea/Singapore energy costs increase over 2010-2012 period, probably due to higher fuel oil prices after the 2011 Japanese tsunami

Cash OPEX Breakdown

EU-28 energy costs grow from 52% of total cash operating costs in 2000 to 63% in 2012

Reproduction permitted with due acknowledgement

Cash OPEX Breakdown

 US Gulf Coast energy costs shrink from 52% of total cash operating costs in 2000 to only 28% in 2012

> 11 11

Reproduction permitted with due acknowledgement

Net Cash Margin

- EU-28 refining is trailing the pack in terms of improvement in Net Cash Margin
- US refining has gained a significant competitive advantage, with Net Cash Margin improving by a factor of 2.22 over the period

concawe Highlights of CONCAWE report no. 1/13R

Reproduction permitted with due acknowledgement

Product demand and quality trends

- Refined product demand loss 2005-2030 is estimated at 166 Mt
 - Equivalent to combined capacity of the 9 biggest (or the 40 smallest) refineries out of the 90 currently active EU mainstream refineries
- Share of light products in the demand basket changes from 75% in 2005 to 83% in 2030, requiring more conversion processes, energy, CO₂ emissions

Announced refining investments and closures 2009-15 concawe

Guide to terms used:

- **CDU** Crude Distillation Unit
- **VDU** Vacuum Distillation Unit
- **REF** Reforming unit
- **DHC** Distillate Hydrocracking
- RHC Residue Hydrocracking
- FCC Fluid Catalytic Cracking
- COK Coking unit
- **VIS** Visbreaking unit
- HDS Distillate Hydrodesulphurisation unit
- H2U Hydrogen production
- ▶ 14 EU refineries closed in 2008-13 resulting in *Capacity Reductions* in crude distillation (CDU, VDU) & units that boost gasoline production (FCC, REF) Publicly announced investments to *increase conversion* capacity in units to:
 - Distillate Hydrocracking capacity increased by 28% Residue hydrocracking & Coking by 37%). Reduced residue and increased diesel & jet fuel production.
 - 49% more hydrogen production capacity, needed for cracking and sulphur removal reactions

- EU refined products demand declined by 100 Mt over 2005-2010 period
- ► €21 billion₂₀₁₁ investments in publicly announced projects for the period 2009-2015:
 - Hydrodesulphurisation & conversion capacity to produce more diesel and meet fuels specifications for EU automotive & IMO 0.1% Emission Control Areas (ECAs)
- Supply/demand imbalances remain due to declining demand for gasoline & high sulphur fuel oil
- Increased operating costs have significantly degraded the competitive position of EU-28 refineries

Reproduction permitted with due acknowledgement

Marine fuel Sulphur reduction

- In Emission Control Areas, S content of marine fuel oil reduced from 1.5% to 1.0% by 2010, then from 1.0% to 0.1 % by 2015.
- Global S cap equivalent to reducing Heavy Fuel Oil S content from 3.5% to 0.5% by 2020 (or 2025)

Reproduction permitted CONCAWE modelling assumes demand fully met by 0.5% S Marine Fuel Oil in 2020.....

Global Sulphur cap reduction to 0.5% would require significant additional investment in EU-28 refineries, estimated at €15 billion₂₀₁₁.

- BUT Uncertainty on how the Global Sulphur Cap will be achieved.
- **1. Installation of flue gas scrubbers on ships?**
- 2. Hydrodesulphurisation (HDS) of High Sulphur Fuel Oil?
- **3. Conversion of ships to LNG or dual fuel LNG / diesel engines? LNG cost competitive with marine low S diesel.**

As Global S cap comes into effect, some combination of the above 3 alternatives will emerge.

Reproduction permitted with due acknowledgement

- Operating costs are not expected to improve through to 2020
- Energy costs are not expected to benefit from the US shale gas boom until US LNG gas exports are allowed and terminals are operational
- **EU legislation will impact EU-28 refineries**
 - Investment costs for new equipment
 - Increased Operating costs process energy, hydrogen, additional treatment chemicals and catalysts

Reproduction permitted with due acknowledgement

- CONCAWE estimates are based on CONCAWE refinery model run results or on anonymized data from refineries in Europe.
- This data is then used as the basis for simple calculations and assumptions to develop the cost impact scenarios. These should not be regarded as forecasts.
- <u>Note:</u> This is an initial release of work in progress
 - First tier: Estimates already released by CONCAWE
 Marine Fuels Directive (MFD)
 IED REF BREF Air and Water emissions compliance
 Second tier: CONCAWE estimates based on simple calculations, reasonable assumptions and relevant backup data, EU ETS
 - ▶ RED
 - ► REACH
 - Third tier: Estimates based on consultant studies (Wood Mckenzie)
 - FQD article 7a (crude differentiation impact)
 - Legislation is not yet finalized
 - Estimates in this tier have a high level of uncertainty

concawe Initial estimates of cost of legislation

Additional costs imposed by EU Legislation in 2020 (expressed in \$2012 per barrel of crude) are estimated to be in the range 2.5-4.5 \$/bbl
 This excludes the possible cost impact of crude shuffling resulting from FQD art.7a, estimated by Wood Mackenzie at 1.5-7 \$/bbl
 This compares with the range of EU refining Net Cash Margin of 1-6 \$/bbl over 2000-2012

For More Information

Our technical reports are available at no cost to all interested parties CONCAWE Website: <u>www.concawe.org</u>

Reproduction permitted with due acknowledgement

Refining Forum, 27 November 2013, Brussels Robin Nelson, Science Director, CONCAWE

22

Backup

- Definitions of
 - Gross Margin,
 - Opex
 - Net Margin

Reproduction permitted with due acknowledgement

Gross Margin – in US \$ per Net Raw Material Input Barrel

(Gross Product Value – Raw Material Cost)

Gross Margin = -

Net Raw Material Input

- Gross Product Value: Sum of net product quantity multiplying product price, plus net value of lube refinery & chemical plant transfers, and refineryproduced fuel, minus third-party product terminalling
- Raw Material Cost: Sum of crude quantity multiplying crude price, plus costs for other net raw materials, plus third-party raw material terminalling
- The actual Gross Margin values calculated in \$/bbl are the intellectual property of Solomon Associates and may not be divulged
- The graphs show the indexed \$/bbl Gross Margin values relative to a fixed value in the year 2000, without any adjustment for inflation

Cash OPEX – in US \$ per Net Raw Material Input Barrel

(Personnel Cost + Energy Cost + Other Cost)

Cash OPEX =

Net Raw Material Input Barrels

- Personnel Cost: Includes salaries, wages, and benefits of company employees, contract maintenance labor, other contract services, 55% of annualized turnaround expenses, and General & Administrative personnel cost (G&A; typically provided by parent company at headquarters location)
- Energy Cost: On a net consumption basis, includes purchased fuel, electricity, and steam, plus refinery-produced fuel at regional average price
- Other Cost: All other volume-related or non-volume-related cash operating expenses excluding personnel and energy costs
- The actual Cash OPEX values calculated in \$/bbl are the intellectual property of Solomon Associates and may not be divulged
- The graphs show the indexed \$/bbl Cash OPEX values relative to a fixed value in the year 2000, without any adjustment for inflation

Net Cash Margin – in US \$ per Net Raw Material Input Barrel

Gross Product Value – Raw Material Cost + Other Revenue – Cash OPEX

Net Cash Margin =

Net Raw Material Input Barrels

Other Revenue: Revenue from other sales or services such as gaseous and liquid CO₂ sales, insurance payments (if premium reported under OPEX), and reimbursement for services provided to third parties (such as laboratory use, maintenance, environmental, and water treating, excluding toll processing fees)

- Cash OPEX: Sum of personnel cost, energy cost, and other cost
- The actual Net Cash Margin values calculated in \$/bbl are the intellectual property of Solomon Associates and may not be divulged
- The graphs show the indexed \$/bbl Net Cash Margin values relative to a fixed value in the year 2000, without any adjustment for inflation