

Towards a sustainable integration of Hydrogen in the Economy, namely by reducing costs

along the NECP implementation (PNEC2030)

- Approved (May 21st)
- Public consultation (22 may 6 july)

Portugal strongly recognizes the strategic importance of selected Hydrogen value chains that are most adequate to the Country and is deeply committed in the setting-up of the EU-IPCEI project Flamingo', contributing to accelerate new projects and the integration of variable renewable energy in the National energy system - among other National policy goals, hence contributing to the EU objectives.

900 M€

Key messages:

- HYDROGEN will facilitate and accelerate the energy transition in various sectors with a particular focus on Transport and Industry, at the same time that strengthens the Economy;
- PORTUGAL presents very favorable and unique conditions to develop a Hydrogen Economy, including the existence of a modern natural gas infrastructure, very competitive renewable electricity production prices and a strategic geographical location that facilitates exports;
- GOVERNMENT's strategy involves the promoting of an industrial policy around Hydrogen, based on the definition of a set of public policies that guide, coordinate and mobilize public and private investment in projects of production, storage, transportation and consumption of renewable gases in Portugal.

In: EN-H2 (2020)

The legal framework include:

- The National Strategy for Hydrogen and the legal framework for the National Gas System are considered;
- The regulation addressing renewable gases;
- The regulation on guaranties of origin (GO's) of renewable gases and low-C gases;
- A careful stakeholders' management;
- The promotion of R&I (public; private);
- The promotion of the adoption of tested renewable energy community models;
- The promotion energy storage services as flexibility providers at all parts of the energy system;
- Other flexibility measures to support variable renewable energy integration.

Table 1 - Main goals proposed H2 incorporation (% v/v) in the sectors

	2025	2030	2040	2050
Gas transport in the grid	1% - 5%	10% - 15%	40% - 50%	75% - 80%
Gas distribut in the grid	1% - 5%	10% - 15%	40% - 50%	75% - 80%
Consump in Industry	0,5% - 1%	2% - 5%	10% - 15%	20% - 25%
In road transport	0,1% - 0,5%	1% - 5%	5% - 10%	20% - 25%
In maritime transport	0%	3% - 5%	10% - 15%	20% - 25%
In final energy consumption	1% - 2%	2% - 5%	7% - 10%	15% - 20%
In power plants (therm)	1% - 5%	5% - 15%	40% - 50%	75% - 80%
H2 prod capacity	250 - 500 MW	1,75 - 2 GW	3 GW	5 GW
Low scale H2 prod <5MW	50 MW	100 MW	250 MW	500 MW
HFS	10 - 25	50 - 100	500 - 700	1000 – 1500

In: EN-H2 (2020)

Table 2 - H₂ production-consumption scenarios (DGEG, 2019)

- Cenário "PNEC ME" Cenário "PNEC MA" Cenário "H2 base"
- Cenário "H2 export +" Cenário "H2 export -" Cenário "H2 duplo"

Roteiro para o Hidrogénio em Portugal (DGEG® 2020)																															
			P	NEC M	E			PNEC MA			H2 Base				H2 export +					H2 export -					H2 duplo						
	Unidades	2020	2025	2030	2035	2040	2020	2025	2030	2035	2040	2020	2025	2030	2035	2040	2020	2025	2030	2035	2040	2020	2025	2030	2035	2040	2020	2025	2030	2035	2040
Produção H2 (energia na saída do eletrolizador)																															
via gaseificação	TWh	-	-	-	-	-	-	0,04	0,08	0,20	0,24	-	-	0,48	0,60	0,72	-	-	0,48	0,60	0,72	-	-	0,48	0,60	0,72	i -	-	0,48	0,60	0,72
via electrólise dispersa	TWh	-	-	-	-	-	-	0,10	0,73	1,26	1,26	-	0,04	0,08	0,20	0,31	-	0,04	0,08	0,20	0,31	-	0,04	0,08	0,20	0,31	-	0,04	0,08	0,20	0,31
via electrólise centralizada	TWh	-	-	-	-	-	-	-	-	0,48	0,96	-	2,99	10,02	18,22	30,06	-	2,99	10,02	18,22	30,06	-	2,99	10,02	18,22	30,06	-	5,86	20,04	30,06	40,09
Total de energia produzida	TWh	•	-	-	-	-	-	0,14	0,82	1,94	2,46	-	3,03	10,59	19,02	31,10	-	3,03	10,59	19,02	31,10	-	3,03	10,59	19,02	31,10	-	5,90	20,61	30,86	41,12
Consumos intermédios de H2																															
Pilhas de combustível para apoio ao SEN	TWh	-	-	-	-	-	-	0,04	0,08	0,20	0,31	-	0,04	0,08	0,20	0,31	-	0,04	0,08	0,20	0,31	-	0,04	0,08	0,20	0,31	-	0,04	0,08	0,20	0,31
Metanação de biogás por via biológica	TWh	-	-	-	-	-	-	-	-	-	-	-	0,06	0,22	0,29	0,37	-	0,06	0,22	0,29	0,37	-	0,06	0,22	0,29	0,37	l -	0,06	0,22	0,29	0,37
Metanação catalítica de biomassa gaseificada	TWh	-	-	-	-	-	-	-	-	-	-	-	0,10	0,36	0,45	0,54	-	0,10	0,36	0,45	0,54	-	0,10	0,36	0,45	0,54	-	0,10	0,36	0,45	0,54
Metanação catalítica de CO2 de CCUS	TWh	-	-	-	-	-	-	-	-	-	-	-	-	0,39	1,36	3,89	-	-	0,39	1,36	3,89	-	-	0,39	1,36	3,89	-	-	0,78	1,95	5,84
Total de H2 em consumos intermédios		-	-	-	-	-	-	0,04	0,08	0,20	0,31	-	0,21	1,05	2,30	5,11	-	0,21	1,05	2,30	5,11	-	0,21	1,05	2,30	5,11	-	0,21	1,44	2,89	7,06
Consumos finais de H2																															
Veículos rodoviários de passageiros	TWh	-	-	0,04	0,15	0,32	-	0,05	0,34	0,80	1,31	-	0,06	0,42	1,22	2,18	-	0,06	0,42	1,22	2,18	-	0,06	0,42	1,22	2,18	-	0,06	0,42	1,22	2,18
Veículos rodoviários de mercadorias	TWh	0,00	0,00	0,04	0,13	0,28	-	0,05	0,40	0,89	1,69	-	0,05	0,50	1,33	2,79	-	0,05	0,50	1,33	2,79	-	0,05	0,50	1,33	2,79	l -	0,05	0,50	1,33	2,79
Transportes ferroviários	TWh	-	-	-	-	-	-	-	-	-	-	-	-	0,01	0,03	0,05	-	-	0,01	0,03	0,05	-	-	0,01	0,03	0,05	-	-	0,01	0,03	0,05
Transportes marítimos domésticos	TWh	-	-	-	-	-	-	-	-	-	-	-	-	0,05	0,12	0,19	-	-	0,05	0,12	0,19	-	-	0,05	0,12	0,19	l -	-	0,05	0,12	0,19
Transportes marítimos internacionais	TWh	-	-	-	-	-	-	-	-	-	-	-	-	0,45	1,18	1,95	-	-	0,45	1,18	1,95	-	-	0,45	1,18	1,95	-	-	0,45	1,18	1,95
Injectado na rede de gás	TWh	-	-	-	-	-	-	-	-	1,12	2,42	-	1,05	2,48	3,37	4,48	-	0,57	0,92	0,76	0,64	-	2,11	5,06	7,82	10,14	-	2,51	6,70	7,49	8,45
Consumo na indústria	TWh	-	-	-	-	-	-	-	-	0,25	0,52	-	0,25	0,87	1,13	1,41	-	0,05	0,05	0,05	0,05	-	0,49	2,41	4,18	6,05	-	0,43	1,47	1,66	1,87
Total de H2 em consumos finais		0,00	0,00	0,08	0,28	0,60	-	0,10	0,73	3,06	5,94	-	1,40	4,78	8,39	13,06	-	0,73	2,40	4,70	7,86	-	2,71	8,90	15,89	23,35	-	3,04	9,60	13,03	17,48
Trocas com o exterior de H2																															
Importações	TWh	0,00	0,00	0,08	0,28	0,60	-	-	-	1,32	3,79	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Exportações	TWh	-	-	-	-	-	-	-	-	-	-	-	1,43	4,76	8,35	12,96	-	2,10	7,14	12,04	18,16	-	0,12	0,64	0,84	2,66	-	2,65	9,57	14,96	16,61

Note: Projections are currently being performed till 2050, stressing the role of renewable gases and of other alternatives to eletrification in the decade 2040-2050.



Fig. 1 – Scenarios analysis of renewable H₂ production in the NES (DGEG, 2019)

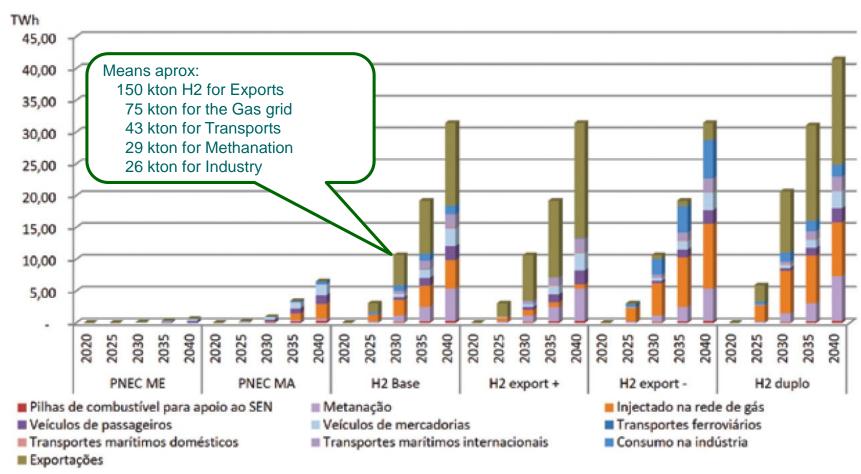


Fig.2 – Scenarios analysis of H₂ consumption in the NES, and in exports (DGEG, 2019)

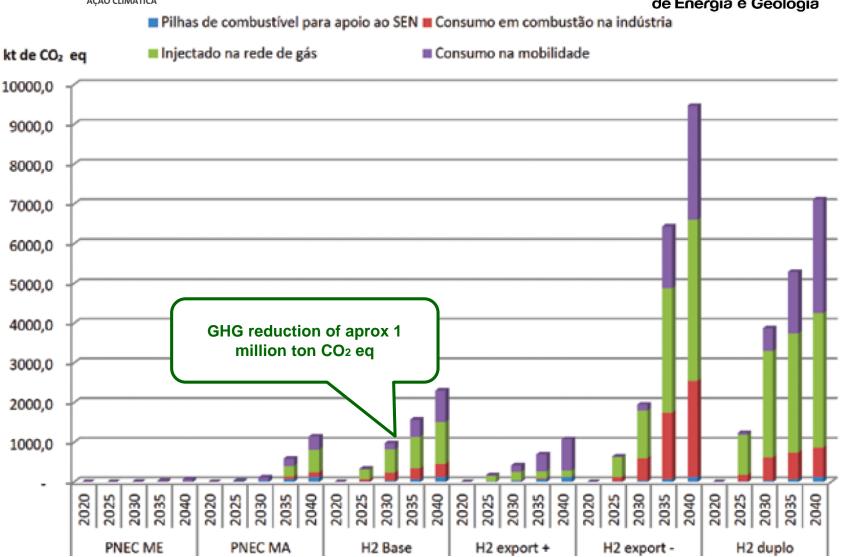


Fig.3 - Expected reduction potential of GHG emissions by H₂ use (DGEG, 2019)

Thank you

REFERENCIES

DGEG (2018). O Hidrogénio no Sistema Energético Português: Desafios de integração;

DGEG (2019a). Integração do Hidrogénio nas cadeias de valor;

DGEG (2019b). Roteiro e Plano de Ação para o Hidrogénio em Portugal;

EN-H2 (2020). "A Estratégia Nacional para o Hidrogénio, em consulta pública, MAAC, Portugal Maio 2020, 97 pgs.

PNEC2030 (2019). Plano Nacional Energia-Clima, MAAC, Portugal

