Asturias-Spain:
 Current Situation and Strategic Proposal

COAL REGIONS IN TRANSITION PLATFORM

Working Group Meetings and High-Level Dialogue on Financing and Investments

Mrs. María Belarmina Díaz Aguado General Director of Mining and Energy Regional Minsitry of Economy, Industry and Tourism Principado de Asturias Goverment

WHAT??

EFFICIENCY+ NEW ACTIVITIES + SUSTAINABLE

- Promoting the use of residual energy from industrial processes.
- Recovery of surplus industrial heat flows, with the aim of improving the process performance.
- Dual perspective: recovery of heat in origin (generation from Power Plants) and in final use (industrial processes).

Mine-to-Port Logistics

Development of the basic network for fast recharging points

Universal, public access network

Network of fast charging points

Accessible locations: main roads \square

Cominsson

$\frac{\text { Cominssion }}{\text { Cool Regions }}$

Not only miners... Metal workers

The Location

HIROB ${ }^{\circledR}$ Tower
ArcelorMittal

ArcelorMittal High Tower Solution HIROB ${ }^{\circledR}$ Tower

ArcelorMittal High Tower HIROB ${ }^{\circledR}$ Tower

ArcelorMittal

Increasing presence of renewable energy, particulary solar photovoltaic and wind generates a need for energy storage...

...in California there is a new valley time at 14 p.m.!!!

Pumped hydro is by far the main storage option, but it is nowdays very difficult to displace population or even wildlife from flooded valleys. Unconventional options !!!

These projects with space and hydrostatic head constraints would benefit from using a dense working fluid in several ways, such a more compact equipment and reservoirs higher equivalent head

All we need is topographic head on land or sea depth offshore. In southern Bay of Biscay, some 20 miles from shore in Asturias, northern Spain, depth is 4,700 meters (Aviles Canyon):

UNCONVENTIONAL STORAGE FOR RENEWABLE ENERGY

Singular project in Asturias: Please NOTE!!
-Underground mines close to mining valleys that can provide 2,000 meters of difference of height.

- Industrial companies and working force with a wide experience in mining, manufacturing, pumping, materials,...
-Gijón \& Avilés port facilities.

CIRCULAR ECONOMY

- CoalAst360Economy

In the future scenario, all the mentioned activities will be integrated in a process of Circular Economy for the generation of Clean Energy with the aim of keeping employment and industrial activity in Asturias.

Nevertheless, the region requires a transition period (2019-2021) in which it is essential to continue having only one mining well in production in order to keep on carrying out research in the area of eco-combustion by CO_{2} capture. During this period of transition, it will also be necessary to adapt La Pereda Power Plant for its new uses.

Future Scenario

2022

Coal Regions

Strategic Proposal: WHEN???

La Pereda Power Plant will receive solid waste, sewage sludge, regional production coal, mine waste material and byproducts from the coal washery aiming to produce Clean Energy.

This will be possible by means of the reduction of atmospheric emissions derived from the substitution of up to 50% of coal by other cleaner fuel, together with the $\mathbf{C O}_{\mathbf{2}}$ Capture Plant.

Motivation and objective of the project

Use of alternative fuels in Calcium looping CO_{2} capture systems for back-up power plants

Coal power plants undergo flexible operation with load changes and partial load operation. Even, there are expected to operate as back up in markets with a large share of renewable energy.

Obiective

Development of CO_{2} capture systems able to follow the operation modes of back up power plants

The transition to a more circular economy requires actions on the waste management area and the efficient energy recovery from waste

Objective

Use refuse derived fuels in power plants with reduced environmental impact

La Pereda pilot plant

European projects:
-CaOling: Development of post-combustion CO 2 capture with CaO in a large testing facility operating conditions equivalent to large-scale industrial units and integrated in a commercial plant (2009-2013)
-ReCaL: Novel calcium looping CO2 capture process incorporating sorbent reactivation by recarbonation (2012-2015)
CaO2: Calcium looping CO2 capture technology with extreme oxy-coal combustion conditions in the calciner (2014-2017)
-FlexiCaL: Development of flexible coal power plants with CO2 capture by Calcium Looping (2016-2019)

Example: La Pereda power plant

Assumptions:

Power plant:

-Installed thermal input in La Pereda power plant: $150 \mathrm{MW}_{\text {th }}$
-Capacity factor: 0.15

- CO_{2} specific emissions: $0.9 \mathrm{kgCO}_{2} / \mathrm{MWh}_{\mathrm{e}}\left(0.3 \mathrm{kgCO}_{2} / \mathrm{kWh}_{\mathrm{t}}\right)$
-Annual CO_{2} produced in the power plant $\approx 80000 \mathrm{t} /$ year

Calcium looping system:

$\cdot \mathrm{CO}_{2}$ capture efficiency in the carbonator: 0.9
-Thermal input in the oxy-fired calciner: $20 \mathrm{MW}_{\text {th }}$ (thermal input to the calciner respect to power plant $=0.13$)
-Limestone consumption: $45000 \mathrm{t} /$ year $\left(\mathrm{F}_{\mathrm{o}} / \mathrm{F}_{\mathrm{CO} 2}=0.25\right)$
-Annual CO_{2} produced by fuel combustion in the calciner $\approx 70000 \mathrm{t} /$ year (fuel CO_{2} emissions: $0.4 \mathrm{kgCO}_{2} / \mathrm{kWh}_{\mathrm{t}}$)
-Annual CO_{2} produced in by fresh limestone calcination $\approx 20000 \mathrm{t} /$ year
Total CO_{2} geological storage capacity $\approx 160000 \mathrm{t} \mathrm{CO} 2 /$ year
Capacity of silos $\mathbf{6 0 0 0} \mathbf{t}$ (assuming a sorbent with a capacity of 0.25)

ENERGY TRANSITION of the Central Asturian Mining Area
Mis

Current Geothermal Case Studies:

- Research Building of The University Campus of Mieres
- Alvarez Buylla Hospital in Mieres
- Energy Asturian Foundation

New Proyects (under construction):

- Distric Heating in Mieres.

5

5- Edificio M9 - Mayacina

6- Edificio M10 - Mayacina

HUNOSA also intends to develop Hydraulic Power Plants associated with the mining wells.

Cool Regions in inomstion Platuom

Core network corridors (high density in center of Europe): connecting Asturias to main electrical corridors

ConnectingAsturias with their

 neighboring regionsCreating a Cantabrian corridor that connects with the electrical corridors in Europe
Financiable por Europa
No Financiable por Europa
Public-private collaboration in Asturias for its implementation

CIRVE project: 40 high velocity charge stations

- Project: 25 new high and ultra high velocity charge stations (20 in the North of Spain and 5 north of Portugal, to interconenct with France and Portugal
- 1 M€ in 2 years.
- New models of business, new capacities, formation
- Specific singular projects with new emplyments.

- In the following map it is showed : route to link the Natural and National Parks. The charging points will be sited in their interpretation centres. This route is of 358 Km .

Reception Center of the Muniellos Nature Reserve
 in Transition Platform

Zero carbon tourism

FAEN Proyecto Carbon.

Alojamientos Rurales
Turismo Activo
Agroturismo y Restauración
21 vistas
COMPARTIR
\checkmark Socios ASTURAS

- alojamiento
(8) TURISMO ACTIVO
© AGROTURISMO
O AGENCIA DE VIAJES
: MUSEOS
Q Restauración
- Equipamientos SRT/RECREA

숭 Museo del Jurásico de Asturias
© Centro de Recepción e Interpretación del...
(1) Centro de Arte Rupestre de Tito Bustillo
© Parque de la Prehistoria de Teverga

Charging points network for electric vehicles

THANK YOU FOR YOUR ATTENTION

Mrs. María Belarmina Díaz Aguado
General Director of Mining and Energy
Regional Minsitry of Economy, Industry and Tourism
Principado de Asturias Goverment Email: mariabelarmina.diazaguado@asturias.org

Telephone: +34 985106682

