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Introductory comments on ‘Dose’ (and radiation quality)
Absorbed Dose

• Physical quantity, precisely defined, no changeable parameters
• Absorbed dose is the quotient of de by dm, where de is the mean

energy imparted to matter of mass dm.
• Absorbed dose = Deposited Energy ÷ Mass
• Units:  joule per kilogram = gray (Gy)

• Independent of type (quality) of ionizing radiation
• Approximately proportional to the average density of ionizations

in the mass (volume) of interest

BUT biological effectiveness of a given absorbed dose depends
on many additional factors, including:

• Type of radiation (i.e. radiation quality)
• Dose rate, dose fractionation
• Particular biological system, effect and level of interest

D = de/dm
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• of tritium (3H)and other low-energy beta emitters,
that is, with low energy electrons;

• and comparison with reference radiations,
that is, mixed high- and low-energy electrons from
gamma-rays or orthovoltage X-rays;

This symposium is particularly concerned with radiation quality

Also some additional special features of these beta emitters.

Radiation quality

Determined by the track structure of the radiation

• Microscopic features of the individual tracks
• Relationship between separate tracks, in time and space. 
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Low-LET reference radiation:

Sparsely ionizing on average,
but ~ 1/4 of energy deposited  via 
denser clusters of ionizations
from low-energy secondary 
electrons (on scale of nanometres)

Very low dose from a single track
(ave ~ 0.001 Gy to cell nucleus)

(1)

(2)

High-LET radiation:

Densely ionizing on average
(especially for low-velocity ions, 
natural alpha-particles, etc)

High dose from a single track
( ~ 0.2 - 0.5 Gy from single a-track)

LET = Linear Energy Transfer
Cell nucleus

(Magnified in diagram)

© DTG 22.10.07



DNA

electron(1)

(2)

Alpha-
particle

Clustered ionizations from
low-energy electron

Delta-ray electron

All radiation tracks are highly structured on the scale of DNA

Single ionization

Opposing trends: Alpha-particle has
-- low probability of hitting DNA 

(few tracks per Gy)
-- high probability of damage when

it does hit. 
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hprt mutation-induction by alpha-particles compared to X-rays

Alpha-particles
(3 MeV; 130 keV/µm)

250 kV
X-rays

Relative Biological 
Effectiveness (RBE)
of alpha-particles in 
this system is

Here:

[ 100 rad = 1 Gy ]
Thacker et al,
Radiat Res 92,
343-352 (1982)

in V79 cells

B

A

Dose B
Dose A

~ 8

In general, biological 
effectiveness depends on:

--- radiation quality
--- dose
--- dose-rate
--- biological system

© DTG
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Relative Biological Effectiveness for Cell Inactivation by Ionizing Radiations

Goodhead, IJRB
65, 7-17 (1994)
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Mod from Goodhead, Adv 
Radiat Biol 16, 7 (1992) 

RBEm
wR

DDREF

Schematic dose responses for radiation risks

Low-LET

LET = Linear Energy Transfer
RBEm = Relative Biological Effectiveness (maximum)
wR = Radiation weighting factor
DDREF = Dose and Dose-Rate effectiveness Factor

e.g.
Tumours

High-LET
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ICRP system developed for radiation protection

Dosimetry/risk system based on 

• Absorbed dose (DT) to each tissue or organ
(ie physical dose)

• but with ‘subjective’ prescribed weighting factors for 
approximate dependence of human risks:

(1) weighting for radiation quality:
Equivalent dose to a tissue, 

HT = SR (wR.DT,R)

(2) weighting also for tissue sensitivity:
Effective dose to whole body, 

E = ST (wT.HT)
= ST,R (wT.wR.DT,R)

Units: sievert (Sv) = J/kg

Units: sievert (Sv) = J/kg

Units: gray (Gy) = J/kg
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Risk per Gy from
epidemiological data
(mostly external, low LET;
A-bomb, medical)

÷ wR (= 1 low LET;
= 20 alphas)

Nominal risk probability
coefficients for cancer
(and hereditary disease)
for tissues and  whole
body (Sv-1)

= wT
(as 4 groups)

1. Primary ICRP risk estimates:

2.  Hence, Estimated Risk for external radiation exposures:

Absorbed dose to
tissues (Gy/Bq)

x wR Equivalent
dose to 
tissues (Sv)

Effective 
dose to
body (Sv)

S x wT

Nom. risk prob.
coefft for tissue (Sv-1)

Risk to 
Tissue

Nom. risk prob.
coefft for body (Sv-1)

Risk to
Whole Body

Comment: Complex, yet crude, system to achieve additivity of risk from all exposures;
Convenient for rough planning purposes in radiological protection.

x

x

© DTG 10.11.07
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For radiation protection, limits are set in terms of effective dose (or equivalent dose) as
surrogates for whole-body risk (or tissue risk).



Epi data
(mostly external, low LET;
A-bomb, medical)

x wR (=1 low LET;
= 20 alphas)

Nominal risk probability
coefficients for cancer
(and hereditary)  (Sv-1)

= wT
(as 4 groups)

1. Primary ICRP risk estimates:

2. ICRP Dose Coefficients for internal radionuclides:
Biokinetic models

(intake ? tissues)
+
Dosimetric models

(decays ? absorbed
dose)

Absorbed dose to
tissues (Gy/Bq)

x wR
Equivalent
dose to 
tissues (Sv/Bq)

Effective 
dose to
body (Sv/Bq)

S x wT

3. Hence, Estimated Risk from internal radionuclide exposure:

Estimated intake (Bq)
(ingestion, inhalation,
absorption)

Tissue dose
coefft (Sv/Bq)

Nom. risk prob.
coefft for tissue (Sv-1)

Risk to 
Tissue

Body dose
coefft (Sv/Bq)

Nom. risk prob.
coefft for body (Sv-1)

Risk to
Whole Body

Comment: Complex, yet crude, system to achieve additivity of risk from all exposures;
Convenient for rough planning purposes in radiological protection.

x x

x x

© DTG10.11.07

For radiation protection, limits are set in terms of effective dose (or equivalent dose) as
surrogates for whole-body risk (or tissue risk)

(i.e.Dose per unit intake)



Hence, effective dose is used 

• as primary quantity for dose-limits in radiation protection
--- for prospective dose assessment, optimization and for demonstrating 

compliance

• as surrogate for risk (within the broad approximations of the ICRP system)

• for simple additivity of doses (and implied risks) from low-dose exposure
scenarios, including • non-uniform irradiation of body or tissues

• mixed radiation qualities
• internal and external radiation sources
• any temporal distributions of dose

(i.e. dose-rate and dose fractionations)

Effective dose is not suitable for

• more accurate retrospective assessments of individual doses and risks

• use in epidemiological studies

• probability of causation in exposed individuals

[ICRP draft recommendations, Jan 2007]
©DTG
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Issues for this symposium could include:

• Appropriateness of ICRP specification of wR = 1 for ALL photon and 
electron irradiations, including for low-energy beta emitters

• Under what circumstances should this value be used? 
(e.g. prospective planning and routine records in radiation protection when 
doses are well below dose limits, ….)          

• What values of RBE should be used for particular low-energy beta-emitters 
when more accurate dose or risk assessments are required?
(e.g. retrospective dose/risk assessments, prospective assessments/planning if
approaching dose limits, epidemiology, compensation, litigation, …)

• What other factors, in addition to radiation quality, may require
consideration for particular low-energy beta-emitters?
(e.g. non-uniformity of absorbed dose to target cells within a tissue, 

to critical sub-cellular components, … )

• Appropriateness of ICRP wT values for ALL radiations, including 
low-energy beta emitters?

©DTG
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ICRP-prescribed values of radiation weighting factor

Implies equal risk per unit effective dose to body
per unit equivalent dose to a tissue
per unit absorbed dose to a tissue

For ALL photon 
and electron
irradiations

ICRP treats:  absorbed dose from low-energy beta emitters (few keV)
exactly as if from orthovoltage X-rays (~100 keV)

or from high-energy gamma-rays (~ 1 MeV).

Radiation type and energy range Prescribed wR

Photons, all energies 1                     1
Electrons and muons, all energies 1                     1
Neutrons, energy  < 10 keV 5       

10 keV to 100 keV 10
>100 keV to 2 MeV 20
>2 MeV to 20 MeV 10
>20 MeV 5

Protons, other than recoil protons, >2 MeV 5                     2
alpha particles, fission fragments, heavy nuclei    20          20

Continuous fnc
of energy,
min 2.5, max 21

ICRP(1991)        (ICRP2007 draft)
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Beta decay of radionuclides:

Electron emission (ß- decay):

AX AY +  0e +  0nu

Positron emission (ß+ decay):

AX AY +  0e +  0nu

_
Z Z+1 -1 0

Z Z-1 +1 0

H     He + e + nu
3         3              - _

1         2

Tritium beta
spectrum

Electron

Tritium ß- decay:
Emaxmax = 18.6 = 18.6 keVkeV

Eave = 5.7 keV

©DTG
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Some relevant low-energy beta- -emitting radionuclides:

3H         3He               18.6      5.7            ~7        ~0.56              12.3 y1     2 

Electron energy (keV) Electron range (µm)
Half-life

14C        14N              157                      ~290                          5730 y6                 7

35S        35Cl             167                      ~320                                87 d

106Ru      106Rh          39.4                     ~28                             574 d

Compare:
90

Sr          
90

Y                        546                         ~1950      29 y38                     39

131
I          

131
Xe                      971                         ~4200       8 d53                   54

137
Cs         

137
Ba                   1176                          ~5200        30 y

55                      56

210Pb       210Bi             63.5                      ~64                               22 y

Max          Average     Max          Average

16               17

44                  45

82                   83 (ß,a)

ß- -decay

(ß)

(+gamma)

(+gamma)

©DTG 23.11.07



Unusual features of low-energy beta-emitters:

1) Increased average ionization density (LET)

2) Short electron tracks

3) Non-uniformity of dose

4) Cell (or nucleus) hit frequencies per unit dose (numbers of tracks)

5) Nuclear transmutations

6) Isotopic mass differences

7) Molecular forms

[8) Positron annihilation for ß+-emitters]

Most of these features are not incorporated into conventional 
radiation protection dosimetry.

©DTG
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Average Linear Energy Transfer (LET),  L  = Sum e
l

l

>

Average energy restricted LET,  LDelta = Sum(e<Delta)
l total

Lineal energy,

y  = Sum e
2/3 d
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1) Increased average ionization density on subcellular scale
(by whatever measure)

LET (Linear Energy Transfer) (keV/µm)

Track-average LET (L100,T) 4.7 6.3             1.7              0.22

Dose-average LET (L100,D) 11.5            13.1             9.4              6.9
[LInf,D]                                                               [0.31]

Tritium ß 50kV       250kV   60Co gamma

Lineal energy (keV/µm)

Frequency-mean (yF) 1.4           ~1.7             1.0                0.28
Dose-mean (yD) 2.1           ~2.6             2.1            0.62

Site
diameter
d = 5 µm

Frequency-mean (yF) 3.1             2.2             1.2              0.37
Dose-mean (yD) 5.2             5.0             3.7               1.6

Frequency-mean (yF) 4.0 - - -
Dose-mean  (yD) 9.2 - 8.1 4.3

d = 1 µm

d = 0.1 nm

Frequency-mean (yF) 7.8             6.9              6.1 -
Dose-mean  (yD) 18.0           17.7             17.0 12.6

d = 0.01 nm

Unusual features:

X-rays

Frequency-mean (yF) 4.1             2.6             1.4               0.52
Dose-mean  (yD) 7.3             5.4             4.7              2.3

d = 0.5 µm

65kV            200kV

40kV              250 kV

[L8 ,T]                             [~12]

©DTG 23.11.07



1) Increased average ionization density on subcellular scale
(by whatever measure)

LET (Linear Energy Transfer)

Track-average LET (L100,T) (keV/µm)              4.7              6.3             1.7            0.22

Dose-average LET (L100,D) (keV/µm)             11.5            13.1             9.4             6.9
(LInf,D) (keV/µm)                                                              0.31

Tritium ß 50kV       250kV   60Co gamma

Unusual features:

X-rays

Compare with protons of similar LET:

~ 10 MeV protons have LET (LT) = 4.7 keV/µm

For protons ICRP prescribes wR = 5          (ICRP60, 1991)

= 2     (ICRP draft recs, Jan 07) 
(reduced partly on the basis of low 

penetration of external protons)

©DTG
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Two low-energy-electron tracks
(Typical of secondary e’s from X-, gamma-rays)

1 keV
electron

0.5 keV electron

DNA [ Nikjoo, Charlton, Goodhead
Adv Space Res 14,161(1994) ]

© DTG 21.8.03
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n = ionized molecule
h = excited molecule
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H

Clustered DNA damage
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2) Short ranges of electrons (beta-particles)

Ranges of tritium beta-particles:

Average       0.56 µm
Maximum  ~ 7 µm

Compare with:

Typical cell diameters                ~ 7 µm to 30µm
Typical cell nucleus diameters  ~ 6 µm to 15 µm
Chromatin fibre diameter          ~ 0.030 µm
DNA diameter                             ~ 0.0024 µm

Short range 
• does not mask increased LET of these electrons on scale of 

DNA and chromatin;
• limits ability of single track to damage two distant targets on cellular scale;
• can lead to non-uniformity of dose when emitters are inhogeneously

distributed. 

Unusual features:

Hence:

©DTG
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3) Non-uniformity of absorbed dose

Unusual features:

Occurs when ß-emitters are non-uniformly distributed on 
scales of:

• tissue compartments (all low-energy ß-emitters)

• individual cells (some low-energy ß-emitters)

• cell compartments, eg nucleus vs cytoplasm 
(a few low-energy ß-emitters)

• chromosomes or DNA (notably tritium)

Examples: Tritiated DNA precursors;
OBT in adipose tissue;
......
etc

NOTE: Also, mean ionization density may be increased in targets with bound tritium
compared to uniform HTO.   [ Chen (2006): yD ratio ~ 1.7 ]

Additional to enhancement of absorbed dose.
©DTG
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Unusual features:

4) Cell (or nucleus) hit frequencies per unit dose
• Larger mean energy deposition by single 3H ß than from single

track from Co gamma;

• Hence, fewer hits from tritium than from Co gamma-rays (for equal 
average absorbed dose to tissue);

• i.e. Fewer cells (or nuclei) are hit by 3H, but they are hit harder.

• Any consequences?

zF (mGy)         4.6           1.1

Hit frequency =1/zF (mGy-1)      0.2           0.9

zF 1.3           0.4

Hit frequency =1/zF (mGy-1)     0.8          2.5

For sphere d = 7 µm

For sphere d = 12 µm

3H

where zF = mean specific energy

(Thresholds, Dose rate)

©DTG
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Unusual features:

5) Nuclear transmutation

• Molecular changes result from transmutation of ß-emitting radionuclide

• Conversion of 3H to 3He loses its chemical binding in molecule
(e.g. deprotonation in a DNA base, potentially mutagenic?

disruption of hydrogen bonding in DNA)

• Conversion of 14C to 14N in DNA base (potentially mutagenic?)

• Conversion of 35S to 35Cl alters the biomolecule

©DTG
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Unusual features:

6) Isotopic mass difference ratio compared to stable isotope

• Affects physico-chemical properties

• Mass difference is very large for 3H compared to normal 1H,
by ratio of 3

(e.g. affect chemical reaction rates for uptake and clearance;
differential diffusion;

‘buried tritium’:
differential binding of water in hydration shell of DNA – enrichment factor 2?
differential binding in proteins, other macromolecules -- ” ” 1.4?

• Ratios are very small for most other ß-emitters

©DTG
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Unusual features:

7) Molecular forms

• Different molecular compounds of ß-emitters can influence uptake
ratios, retention times and other biokinetic parameters

• Notable forms for 3H include:
-- tritiated water
-- organically bound tritium (OBT) – exchangable

-- non-exchangable
-- DNA precursors

©DTG
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Unusual features:

8) Positron annihilation (ß+ emitters)

e+ +  e- 2 gamma   (High energies, >0.5 MeV each)

• Delocalizes energy of ß+ -emitters

©DTG
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Unusual features of low-energy beta-emitters:

1) Increased average ionization density (LET)

2) Short electron tracks

3) Non-uniformity of dose

4) Cell (or nucleus) hit frequencies per unit dose (numbers of tracks)

5) Nuclear transmutations

6) Isotopic mass differences

7) Molecular forms

[8) Positron annihilation for ß+-emitters]

• Most of these features are not incorporated into conventional 
radiation protection dosimetry.

• They may be incorporated in various ways into experimental
measurements of RBE

©DTG
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A few additional comments
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Dose fraction deposited by 
electrons of energies 0.1 to 5 keV
from: Tritium ß 77 %

220 kV X-rays      38 %
Co gamma rays   34 % 

Low-energy electrons are an important
component for dose deposition by 
all low-LET radiations (X, gamma, e);

in electron 
slowing-down
spectrum

But especially so for tritium ß-decay.

COMPARE:

NOTE: Low energy electrons are more 
efficient at:

• producing DNA double-strand 
breaks (DSB)

• producing a higher proportion of complex
DSB (and other clustered damage)

Comment

©DTG23.11.07
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Energy  % No  SSB  SSB+ 2SSB  DSB  DSB+  DSB++    SSB     DSB SS
keV Break    %      %        %       %       %          %       Complex Compl. DS

Total      Total
0.1 73.9 22.4   1.86    0.09   1.39   0.27     0.015       8.0%      17% 17
0.3      66.4   26.6   3.29    0.43   2.38   0.85     0.092 12.3%     28%   11
0.5      68.7   25.4   2.78    0.47   1.86   0.79     0.070 11.3%     29%   13
1.0 68.9   25.2   2.75    0.50   1.81   0.71     0.081      11.4%     32% 13
1.5      70.5   24.3   2.39    0.40   1.68   0.63     0.074 10.3%     29%   14
4.5      80.6   17.6   0.90    0.18   0.52   0.17     0.013 5.8%     26%   26

10         81.1   17.4   0.78    0.13   0.47   0.13     0.014 5.0%     23%   30
20         81.3   17.2   0.75    0.12   0.46   0.13     0.012 4.8%     23%   30
50         81.8   16.9   0.70    0.12   0.44   0.12     0.009 4.6%     22%   31

100 81.8   16.9   0.60    0.11   0.47   0.11     0.008      4.1%     20% 30

MeV
4.0        58.1   25.0   6.1     1.28   3.76   3.86     1.90  23 %       61%    3
2.0 53.3   23.1   6.8     1.90   4.01   6.14     4.81       27 %       73% 2

E
L
E
C
T
R
O
N
S

a

Complexity of DNA Strand Breaks

Nikjoo/Goodhead/O’Neill/Terrissol/Wilson/Bolton/Watanabe: IJRB 71,467(‘97); Rad Res 148,485(‘97) & 156,577(‘02); 
Rad Prot Dosim 99,77(‘02)



Table D-3--- Low Dose RBE studies of Low-Let Radiationa

(Bond et al 1978)
RBE = 

System Radiation       alpha ratio

Tradescantia
stamen hair  X                      
mutation gamma

Lymphocyte
chromosome X
aberrations e

Mouse
oocyte 3H
killing gamma

aEffect = alpha.D + ß.D2, RBE is equivalent to RBEM

2.1

3.2

2.9-4.2

Comment

Table commonly referred to as justification for claim of RBE = 2
of orthovoltage X-rays compared to 60Co gamma rays!!  (eg ICRP60)

• Very poor justification!!

(Table copied 
from

ICRU40, 1986)

Lymphocyte dicentric aberrations remain the
mainstay of such claims, with heavy reliance 
on simple curve-fitting extrapolations.

©DTG 23.11.07



Conclusions

• General expectation that low-energy beta emitters
will have greater biological effectiveness than standard 
reference radiations

Supported from many directions, experimental and theoretical.

• The magnitude and practical implications need consideration.

• Some special features of low-energy beta emitters may be
overlooked in routine RBE experiments

• There may be issues with use of standard tissue weighting 
factors for all low-energy beta emitters

e.g. access to target cells, or excesses therein
(radiation quality differences)

©DTG
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Some recommendations

• Use available information (experimental and theoretical) to 
establish the likely effectiveness of low-energy beta emitters
for human risk relative to reference radiations

• Consider special cases of potential practical relevance
e.g. extreme inhogeneity

• Determine yields and complexity of DNA damage from
tritium beta-emitters, including when bound to cellular DNA, 
in comparison with a reference radiation

• Seek agreement on a standard reference radiation of practical 
convenience and relevance to established human risks
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THE END


