The Relevance of Dose for Low-Energy Beta Emitters

Dudley T Goodhead

EU Scientific Seminar Emerging Issues on Tritium and Low Energy Beta Emitters

Luxembourg, 13 November 2007

OUTLINE

Introductory comments on dose, radiation quality and RBE

ICRP system

Some issues for this symposium

Beta-decay of radionuclides Low-energy beta emitters

Unusual features of low-energy beta emitters

A few additional comments

Conclusions and recommendations

Introductory comments on 'Dose' (and radiation quality)

Absorbed Dose

- <u>Physical</u> quantity, precisely defined, no changeable parameters
- Absorbed dose is the quotient of deby d*m*, where de is the mean energy imparted to matter of mass d*m*.
- Absorbed dose = Deposited Energy \div Mass D = de/dm
- Units: joule per kilogram = gray (Gy)
- Independent of type (quality) of ionizing radiation
- Approximately proportional to the <u>average</u> density of ionizations in the mass (volume) of interest

BUT <u>biological</u> effectiveness of a given absorbed dose depends on many additional factors, including:

- Type of radiation (i.e. radiation quality)
- Dose rate, dose fractionation
- Particular biological system, effect and level of interest

This symposium is particularly concerned with radiation quality

- of tritium (³H)and other low-energy beta emitters, that is, with <u>low energy electrons;</u>
- and comparison with reference radiations, that is, <u>mixed high- and low-energy electrons</u> from gamma-rays or orthovoltage X-rays;

Also some additional special features of these beta emitters.

Radiation quality

Determined by the track structure of the radiation

- Microscopic features of the individual tracks
- Relationship between separate tracks, in time and space.

Low-LET reference radiation:

Sparsely ionizing on average, but ~ 1/4 of energy deposited via denser <u>clusters of ionizations</u> from low-energy secondary electrons (on scale of nanometres) (Magnified in diagram) Very low dose from a single track (ave ~ 0.001 Gy to cell nucleus)

High-LET radiation:

Densely ionizing on average (especially for low-velocity ions, natural alpha-particles, etc)

High dose from a single track (~0.2 - 0.5 Gy from single a-track)

LET = <u>L</u>inear <u>Energy</u> <u>T</u>ransfer

© DTG 22.10.07

All radiation tracks are highly structured on the scale of DNA

© DTG 21.8.03

Example:

hprt mutation-induction by alpha-particles compared to X-rays

in V79 cells

© DTG

10.2.05

Relative Biological Effectiveness for Cell Inactivation by Ionizing Radiations

Schematic dose responses for radiation risks

LET = Linear Energy Transfer RBE_m = Relative Biological Effectiveness (maximum) w_R = Radiation weighting factor DDREF = Dose and Dose-Rate effectiveness Factor

Mod from Goodhead, Adv Radiat Biol <u>16</u>, 7 (1992) **ICRP** system developed for radiation protection

Dosimetry/risk system based on

- <u>Absorbed dose</u> (D_T) to each tissue or organ Units: gray (Gy) = J/kg (ie physical dose)
- but with 'subjective' prescribed weighting factors for approximate dependence of human risks:
 - (1) weighting for radiation quality: <u>Equivalent dose</u> to a tissue, $H_T = S_R (w_R.D_{T.R})$

Units: sievert (Sv) = J/kg

(2) weighting also for tissue sensitivity: <u>Effective dose</u> to whole body, $E = S_T (w_T H_T)$ $= S_{T,R} (w_T w_R D_{T,R})$ Units: sievert (Sv) = J/kg

For radiation protection, limits are set in terms of <u>effective dose</u> (or equivalent dose) as surrogates for whole-body risk (or tissue risk).

<u>Comment</u>: Complex, yet crude, system to achieve additivity of risk from all exposures; Convenient for <u>rough</u> planning purposes in radiological protection.

For radiation protection, limits are set in terms of <u>effective dose</u> (or equivalent dose) as surrogates for whole-body risk (or tissue risk)

<u>Comment</u>: Complex, yet crude, system to achieve additivity of risk from all exposures; Convenient for <u>rough</u> planning purposes in radiological protection.

Hence, effective dose is used

- as primary quantity for dose-limits in radiation protection
 - --- for prospective dose assessment, optimization and for demonstrating compliance
- as surrogate for risk (within the broad approximations of the ICRP system)
- for simple additivity of doses (and implied risks) from <u>low-dose</u> exposure

scenarios, including

- non-uniform irradiation of body or tissues
 - mixed radiation qualities
 - internal and external radiation sources
 - any temporal distributions of dose (i.e. dose-rate and dose fractionations)

Effective dose is <u>not</u> suitable for

- more accurate retrospective assessments of individual doses and risks
- use in epidemiological studies
- probability of causation in exposed individuals

[ICRP draft recommendations, Jan 2007]

Issues for this symposium could include:

- Appropriateness of ICRP specification of $\underline{w_R} = 1$ for <u>ALL</u> photon and electron irradiations, including for low-energy beta emitters
- Under <u>what circumstances</u> should this value be used? (e.g. prospective planning and routine records in radiation protection when doses are well below dose limits,)
- What <u>values of RBE</u> should be used for particular low-energy beta-emitters when <u>more accurate</u> dose or risk assessments are required? (e.g. retrospective dose/risk assessments, prospective assessments/planning if approaching dose limits, epidemiology, compensation, litigation, ...)
- What <u>other factors</u>, in addition to radiation quality, may require consideration for particular low-energy beta-emitters? (e.g. non-uniformity of absorbed dose to target cells within a tissue, to critical sub-cellular components, ...)
- Appropriateness of ICRP $\underline{w}_{\underline{T}}$ values for <u>ALL</u> radiations, including low-energy beta emitters?

ICRP-prescribed values of radiation weighting factor

Beta decay of radionuclides:

Some relevant low-energy beta⁻ -emitting radionuclides:

ß⁻-decav	Electron ene	Half-life			
	Max	Average	Max	Average	
³H → ³He	18.6	5.7	~7	~0.56	12.3 y
${}^{14}_{6}C \rightarrow {}^{14}_{7}N$	157		~290		5730 y
³⁵ ₁₆ S → ³⁵ ₁₇ CI	167		~320		87 d
¹⁰⁶ ₄₄ Ru → ¹⁰⁶ ₄₅ Rh	39.4		~28		574 d
${}^{210}_{82}\text{Pb} \rightarrow {}^{210}_{83}\text{Bi}_{+(\beta,a)}$	63.5		~64		22 у
Compare:					
⁹⁰ ₃₈ Sr → ⁹⁰ ₃₉ Y→(ß)	546		~1950		29 у
$^{131}_{53}$ I $\rightarrow ^{131}_{54}$ Xe (+gamma)	971		~4200		8 d
$^{137}_{55}$ \rightarrow $^{137}_{56}$ Ba (+gamma)	1176		~5200		30 y

©DTG 23.11.07

Unusual features of low-energy beta-emitters:

- 1) Increased average ionization density (LET)
- 2) Short electron tracks
- 3) Non-uniformity of dose
- 4) Cell (or nucleus) hit frequencies per unit dose (numbers of tracks)
- 5) Nuclear transmutations
- 6) Isotopic mass differences
- 7) Molecular forms
- [8) Positron annihilation for ß+-emitters]

Most of these features are not incorporated into conventional radiation protection dosimetry.

1) Increased average ionization density on subcellular scale (by whatever measure)

	X-r	ays]	
<u>LET (Linear Energy Transfer)</u> (keV/µm)	Tritium ß	50kV	250kV	⁶⁰ Co gamma
Track-average LET (L _{100,T}) [L _{8,T}]	4.7 [~12]	6.3	1.7	0.22
Dose-average LET (L _{100,D}) [L _{Inf,D}]	11.5	13.1	9.4	6.9 [0.31]
<u>Lineal energy</u> (keV/µm)				
Site		65kV	200kV	
diameter 🥤 Frequency-mean (ȳ _F)	1.4	~1.7	1.0	0.28
d = 5 μ m Dose-mean (\bar{y}_D)	2.1	~2.6	2.1	0.62
d – 1 um 🦿 Frequency-mean (ȳ _F)	3.1	2.2	1.2	0.37
$\Box = \Gamma \mu m$ Dose-mean (\bar{y}_D)	5.2	5.0	3.7	1.6
d = 0.5 µm ∫ Frequency-mean (ȳ _F)	4.1	2.6	1.4	0.52
Dose-mean (ȳ _D)	7.3	5.4	4.7	2.3
	10	40kV	250 kV	_
d = 0.1 nm	4.0	-	-	-
Dose-mean (ȳ _D)	9.2	-	8.1	4.3
$d = 0.01 \text{ pm} \int \text{Frequency-mean} (\bar{y}_F)$	7.8	6.9	6.1	-
J_{D} Dose-mean (\bar{y}_{D})	18.0	17.7	17.0	12.6

 Increased average ionization density on subcellular scale (by whatever measure)

		X-r	ays
LET (Linear Energy Transfer)	Tritium ß	50kV	2
Track-average LET (L _{100,T}) (keV/μm)	4.7	6.3	
Dose-average LET ([—] (L _{100,D}) (keV/μm) (L _{Inf,D}) (keV/μm)	11.5	13.1	

Compare with protons of similar LET:

~ 10 MeV protons have LET (L_T) = 4.7 keV/µm

For protons ICRP prescribes $w_R = 5$ (ICRP60, 1991)

= 2 (ICRP draft recs, Jan 07) (reduced partly on the basis of low penetration of <u>external</u> protons)

250kV

1.7

9.4

⁶⁰Co gamma

0.22

6.9 0.31

2) Short ranges of electrons (beta-particles)

Ranges of tritium beta-particles:

Average 0.56 μm Maximum ~ 7 μm

Compare with:

Typical cell diameters \sim 7 µm to 30µmTypical cell nucleus diameters \sim 6 µm to 15 µmChromatin fibre diameter \sim 0.030 µmDNA diameter \sim 0.0024 µm

Hence:

Short range

- does not mask increased LET of these electrons on scale of DNA and chromatin;
- limits ability of single track to damage two distant targets on cellular scale;
- can lead to <u>non-uniformity of dose</u> when emitters are inhogeneously distributed.

- 3) Non-uniformity of absorbed dose
 - Occurs when ß-emitters are non-uniformly distributed on scales of:
 - tissue compartments (all low-energy ß-emitters)
 - individual cells (some low-energy ß-emitters)
 - cell compartments, eg nucleus vs cytoplasm (a few low-energy ß-emitters)
 - chromosomes or DNA (notably tritium)
- Examples: Tritiated DNA precursors; OBT in adipose tissue; etc
- NOTE: Also, mean <u>ionization density</u> may be increased in targets with bound tritium compared to uniform HTO. [Chen (2006): \overline{y}_D ratio ~ 1.7] Additional to enhancement of absorbed dose.

- 4) Cell (or nucleus) hit frequencies per unit dose
 - Larger mean energy deposition by single ³H ß than from single track from Co gamma;
 - Hence, fewer hits from tritium than from Co gamma-rays (for equal average absorbed dose to tissue);
 - i.e. Fewer cells (or nuclei) are hit by ³H, but they are hit harder.

Any consequences	³ Н	Co gamma	
	_ z _F (mGy)	4.6	1.1
For sphere d = 7 μm	<u>Hit frequency</u> =1/z _F (mGy⁻¹)	0.2	0.9
For sphere d = 12 um	¯ Z _F	1.3	0.4
	<u>Hit frequency</u> =1/z _F (mGy ⁻¹)	0.8	2.5

where Z_F = mean specific energy

5) Nuclear transmutation

- Molecular changes result from transmutation of ß-emitting radionuclide
- Conversion of ³H to ³He loses its chemical binding in molecule (e.g. deprotonation in a DNA base, potentially mutagenic? disruption of hydrogen bonding in DNA)
- Conversion of ¹⁴C to ¹⁴N in DNA base (potentially mutagenic?)
- Conversion of ³⁵S to ³⁵Cl alters the biomolecule

6) Isotopic mass difference ratio compared to stable isotope

- Affects physico-chemical properties
- Mass difference is very large for ³H compared to normal ¹H, by ratio of 3
 - (e.g. affect chemical reaction rates for uptake and clearance;
 - differential diffusion;
 - 'buried tritium':

differential binding of water in hydration shell of DNA – enrichment factor 2? differential binding in proteins, other macromolecules -- " " 1.4?

• Ratios are very small for most other ß-emitters

- 7) Molecular forms
 - Different molecular compounds of ß-emitters can influence uptake ratios, retention times and other biokinetic parameters
 - Notable forms for ³H include:
 - -- tritiated water
 - -- organically bound tritium (OBT) exchangable
 - -- non-exchangable
 - -- DNA precursors

8) Positron annihilation (^{B+} emitters)

 $e^+ + e^- \longrightarrow 2$ gamma (High energies, >0.5 MeV each)

• Delocalizes energy of ß⁺ -emitters

Unusual features of low-energy beta-emitters:

- 1) Increased average ionization density (LET)
- 2) Short electron tracks
- 3) Non-uniformity of dose
- 4) Cell (or nucleus) hit frequencies per unit dose (numbers of tracks)
- 5) Nuclear transmutations
- 6) Isotopic mass differences
- 7) Molecular forms
- [8) Positron annihilation for ß+-emitters]
- Most of these features are not incorporated into conventional radiation protection dosimetry.
- They may be incorporated in various ways into experimental measurements of RBE

©DTG 8.11.07 A few additional comments

Comment

Low-energy electrons are an important component for dose deposition by all low-LET radiations (X, gamma, e);

But <u>especially</u> so for tritium ß-decay.

COMPARE:

Dose fraction deposited by electrons of energies 0.1 to 5 keV from: Tritium ß 77 % 220 kV X-rays 38 %

Co gamma rays 34 %

- **NOTE:** Low energy electrons are more efficient at:
- producing DNA double-strand breaks (DSB)
- producing a higher proportion of complex DSB (and other clustered damage)

Complexity of DNA Strand Breaks

	Energy	% No	SSB	SSB+	2SSB	DSB	DSB+	DSB++	SSB	DSB	<u>SS</u>
	keV	Break	%	%	%	%	%	%	<u>Complex</u>	<u>Compl</u> .	DS
									Total	Total	
Е	0.1	73.9	22.4	1.86	0.09	1.39	0.27	0.015	8.0%	17%	17
L	0.3	66.4	26.6	3.29	0.43	2.38	0.85	0.092	12.3%	28%	11
Ē	0.5	68.7	25.4	2.78	0.47	1.86	0.79	0.070	11.3%	29%	13
– C	1.0	68.9	25.2	2.75	0.50	1.81	0.71	0.081	11.4%	32%	13
Ť	1.5	70.5	24.3	2.39	0.40	1.68	0.63	0.074	10.3%	29%	14
R	4.5	80.6	17.6	0.90	0.18	0.52	0.17	0.013	5.8%	26%	26
0	10	81.1	17.4	0.78	0.13	0.47	0.13	0.014	5.0%	23%	30
Ň	20	81.3	17.2	0.75	0.12	0.46	0.13	0.012	4.8%	23%	30
S	50	81.8	16.9	0.70	0.12	0.44	0.12	0.009	4.6%	22%	31
	100	81.8	16.9	0.60	0.11	0.47	0.11	0.008	4.1%	20%	30
	MeV										
a	4.0	58.1	25.0	6.1	1.28	3.76	3.86	1.90	23 %	61%	3
	2.0	53.3	23.1	6.8	1.90	4.01	6.14	4.81	27 %	73%	2

Nikjoo/Goodhead/O'Neill/Terrissol/Wilson/Bolton/Watanabe: IJRB **71**,467('97); Rad Res **148**,485('97) & **156**,577('02); Rad Prot Dosim **99**,77('02)

Table commonly referred to as justification for claim of RBE = 2 of orthovoltage X-rays compared to ⁶⁰Co gamma rays!! (eg ICRP60)

(E			
System	Radiation	RBE = alpha ratio	(Table copied from ICRU40, 1986)
<i>Tradescantia</i> stamen hair mutation	X gamma	2.1	
Lymphocyte chromosome aberrations	X e	3.2	
Mouse oocyte killing	³ H gamma	2.9-4.2	
^a Effect = alpha.D + ß.	.D ² , RBE is equivalent	to RBE _M	
oor justification!	Lymphocyte dice	entric aberration	ons <u>remain</u> the

Table D-3--- Low Dose RBE studies of Low-Let Radiation^a

Very poor justification!!

Lymphocyte dicentric aberrations <u>remain</u> the mainstay of such claims, with heavy reliance on simple curve-fitting extrapolations.

Conclusions

- General expectation that low-energy beta emitters will have greater biological effectiveness than standard reference radiations Supported from many directions, experimental and theoretical.
- The magnitude and practical implications need consideration.
- Some special features of low-energy beta emitters may be overlooked in routine RBE experiments
- There may be issues with use of standard tissue weighting factors for all low-energy beta emitters e.g. access to target cells, or excesses therein (radiation quality differences)

Some recommendations

- Use available information (experimental and theoretical) to establish the likely effectiveness of low-energy beta emitters for human risk relative to reference radiations
- Consider special cases of potential practical relevance e.g. extreme inhogeneity
- Determine yields and complexity of DNA damage from tritium beta-emitters, including when bound to cellular DNA, in comparison with a reference radiation
- Seek agreement on a standard reference radiation of practical convenience and relevance to established human risks

THE END