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Industrial Value Chain: A Bridge Towards a Carbon
Neutral Europe

Energy Intensive Industries’ contribution to Europe’s long-term climate strategy
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Profiling Ells




Ells reduced greenhouse gas emissions by 36% between 1990 and 2015 and contributed
significantly to the EU’s overall emission reductions in same period (-24% in 2015 ref.
1990).
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Final energy use by Ells was reduced by 20% A major fuel shift occurred away from solid
between 1990 and 2016. fuels towards biomass, waste and electricity
Most sectors showed significant efficiency In same period.

Improvements over this period.
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Ells production was seriously
affected through the economic
crisis. Only chemicals
production was above pre-
crisis levels in 2017.

Most Ells have a high trade
intensity and are exposed to a
high-level of international
competition.
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Solutions Space




Important progress has been made in the development of low-CO2 breakthrough technologies for
Ell processes.

Continued European R&D support under different programmes together with private R&D initiatives
played an enabling role in this progress.

The gestation time of these breakthroughs is long and many of them have not reached industrial
scale demonstration level.

Much higher levels of final electricity demand are expected if industrial low-CO.technologies are
deployed across the EU.

Transition to higher levels of electrification can create a virtuous cycle between the EU’s renewable
energy and industrial transition, under the right conditions.

Ells play an important role in the circular economy and this role will increase in the future in a
conducive regulatory environment.

Industrial symbiosis, clustering and synergies with non-industrial sectors show potential for
significant energy savings and materials efficiency.

In the areas of energy transition and circular economy new business models are being explored.
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Low-carbon technology
database with over 80
technological options as
addendum to Ell
contribution



For each sector multiple technology options are being developed towards significant
GHG reductions.

Electrification = Electrification Hydrogen (heat = CCU Biomass CCSs Other
(heat and (processes: and/or process) (heat and (including process
mechanical) electrolysis/ feedstock)/ integration)
Electrochemistry biofuels
excl. H2)
Steel XXX XX XXX XXX X XXX Avoidance of intermediate
process steps and recycling
of process gases: xxx
Recycling high
quality steel: xxx
Chemicals XXX XXX XXX XXX XXX XXX(*) Use of waste streams
fertilizers (chemical recycling): xxx
Cement xx (cement) o (cement) x (cement) XXX XXX XXX Alternative binders
Lime x (lime) o (lime) X (lime) (cement (cement) (cement (cement): xxx
and lime) X (lime) and lime) Efficient use of cement in
concrete by improving
concrete mix design: xxx
Use of waste streams
(cement): xxx
Refining 58 0 XXX XXX XXX XXX Efficiency: xxx
Ceramics XXX 0 XX X X 0 Efficiency: xxx
Paper XX 0 0 o} XXX 0 Efficiency: xxx
Glass XXX 0 X o} XXX o} Higher glass recycling: xx
Non-ferrous XXX XXX X X XXX X Efficiency: xxx

metals/alloys

Recycling high quality
non-ferrous: xxx
Inert anodes: xxx

o: Limited or no significant application foreseen

x: Possible application but not main route or wide scale application
xx: medium potential

xxx! high potential

xxx: Sector already applies technology on large scale (can be expanded in some cases)
(*) in particular for ammonia and ethylene oxide''®




Synergies between the EU’s energy Nine Emerging Business Models
transition and the Ells’ low-CO, related to the green economy
transition
Industrial symbiosis
Reducing indirect emissions Product Management Service

Industrial Low-CO, Power Purchase Cradle to Cradle (C2C)
Agreements (PPAs) Green Supply Chain Management

Industrial Demand Response (GSCM)
Storage options Circular Supplies business model
New value chains in Europe: can Product Life Extension
become very important (size) Lean manufacturing
Closed loop production
= The virtuous cycle: Energy Transition Take Back Management (TBM)

powers Industrial Transition powers
Energy Transition -  Digital Economy/Digitisation  as

facilitator/enabler




Framework conditions




Two Horizontal Challenges

SPACE TIME

The industrial transition will have to For most energy intensive companies,

happen in highly competitive and 2050 is just one (large) investment cycle

dynamic international environment. away from today.




Three main R&D challenges

1. The need to scale up breakthrough technologies towards demonstration
and commercialisation.

2. Optimal combination and integration of technologies (incl. breakthrough

technologies)
3. An increased focus on cost reduction (OPEX).

Examples

*Reducing the cost of low-CO2 H2 production and development of alternative production of low-carbon H2 such as
methane pyrolysis and water photolysis;

*Reducing the cost of biomass (waste) transformation to fuels or basic chemicals

*Optimisation of technologies needed for the electrification of high temperature furnaces (comparable to commercial
sizes of current glass, cement and ceramic furnaces) and other electricity based processes (including electrochemistry,
intensified processes with alternative energy forms such as plasma and microwave technologies, and pyrolysis
technologies) at industrial scale.

*Reducing cost of capturing and purifying CO2.
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Infrastructure challenges

0-5 sites within a 200km radius circle
5-10 sites within a 200km radius circle
10-15 sites within @ 200km radius circle

15-20 sites within @ 200km radius circle
> 21 sites within a 200km radius circle
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Urgent need for (future) infstrastructure mapping: start bottom up (clusters), identify EU industrial
projects of common interest
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CAPEX for industrial low-CO:transition will be
high & significantly above current investment
levels

Investment decisions in low-CO. processes will
not happen if OPEX is not competitive.
Addressing the CAPEX-OPEX challenge will
require a mix of instruments

New low-CO: process plants will likely be
constructed at same industrial sites leading to
additional costs (CAPEX+OPEX) for producers.
Allowing accelerated depreciation of new
installations and other tax incentives can help
address this.

European environmental state aid guidance will
have to be reviewed



Regulatory challenges

1) Protection against unfair international competition towards a level playing field
2) Full carbon leakage protection from both direct and indirect costs of the EU ETS

3) A large and ambitious mission oriented RD&I program for industrial low-CO-technologies ,
including funding for industrial demonstration and scale up

4) Consistency within the energy and climate policy framework to ensure that energy consumption
and low-carbon policies are compatible

5) Reconsideration and a better alignment of the environmental state aid guidance

6) Industrial symbiosis and a circular economy through the effective combination of energy recovery
and recycling

7) Streamlining of the permitting procedures allowing a timely and predictable set of infrastructures
and interconnections

8) Transparent accounting framework for CCU across sectors and value-chains to allow business
cases to emerge



THE WAY FORWARD — A NEW INDUSTRIAL

STRATEGY




Design and implementation of a EU flagship mission oriented R&D programme addressing main
challenges towards competitive low-CO2 processes in Ells. Adequate support for demonstration of
advanced low- CO2 technologies towards market readiness.

Strategic alignment of the EU’s energy and industry transitions in particular (ample and
competitive supply of low-CO2 electricity to EIls).

Development of adequate financing mechanisms for high CAPEX (low-CO2) investments
including support for replacement of existing and productive assets. A state aid regime that
acknowledges the size and scope of the industrial low-CO2 transition.

Strategic industrial low-CO2 infrastructure planning with a focus on regional and transnational
industry clusters and industrial symbiosis & development of EU industrial projects of common
interests.

Smart regulatory instruments that can assist with lead market creation for low-CO2 products and
processes (e.g. public procurement & development of low-CO2 standards for products).

During the transition continued protection for energy intensive industries to safeguard
competitiveness and investments in Europe.




A Bridge Towards
carbon Neutral
Europe

AN EU STRATEGY FOR LONG-TERM EU
GREENHOUSE GAS EMISSION
REDUCTIONS WILL ONLY BE
SUCCESSFUL
IFIT FULLY EMBEDS SUCH
INDUSTRIAL STRATEGY.

WER - Dpownload here


https://www.ies.be/other/industrial-value-chain-bridge-towards-carbon-neutral-europe
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