
2015  
Ve r s i on  1a  

Jacopo Giuntoli 
Alessandro Agostini 
Robert Edwards 
Luisa Marelli 

Calculated according to the 

methodology set in  

COM(2010) 11 and  

SWD(2014) 259 

Solid and gaseous bioenergy pathways: 
input values and GHG emissions   

Report EUR xxxxx EN 

Report EUR 27215 EN 



European Commission 

Joint Research Centre 

Institute for Energy and Transport   

Contact information 

Address: Joint Research Centre, Via Enrico Fermi 2749, TP 230, 21027 Ispra (VA), Italy 

E-mail: luisa.marelli@jrc.ec.europa.eu 

Tel.: +39 0332 78 6332 

Fax: +39 0332 78 5869 

https://ec.europa.eu/jrc/en/publications 

http://iet.jrc.ec.europa.eu/bf-ca/  

Legal Notice 

This publication is a Science and Policy Report by the Joint Research Centre, the European Commission’s in-house science 

service. It aims to provide evidence-based scientific support to the European policy-making process. The scientific output 

expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person 

acting on behalf of the Commission is responsible for the use which might be made of this publication. 

All images © European Union 2015  

This document replaces the previous version of the report EUR 26696 EN published in August 2014 with ISBN number 978-92-

79-38667-1 (PDF) and PUBSY request number JRC90754. The corrections made in the new document are listed below: 

1)Added note for clarification in Table 100; 2)Eucalyptus cultivation input values updated in Table 55: values are corrected for

an averaging mistake. The updated input values have an impact on all pathways with Eucalyptus. The change in total GHG 

emissions, compared to version 1, is calculated to be circa -1% (not visible in aggregated values in Table 86 and Table 87 but 

visible in Table 90 and Table 91); 3)PKM transport distance: a mistype is corrected in the comments to Table 82 and in the 

caption of Table 84; 4)Figure 14 and its caption have been corrected with the appropriate allocation formulas; 5)Figure 13 and 

section 7.3.2 have been corrected; a mistype in the calculations spreadsheet had caused an error in the figure and in the 

conclusions drawn; 6) Caption of Table 1 updated to include additional information about the emission factors considered.; 

7)Maize whole crop cultivation data: data for aglime input and CO2 emissions from neutralization of soil acidity have been

updated due to a mistake in previous calculations. These changes affect the values in Table 98 to Table 103. The new GHG 

emissions for biogas pathways are higher than the ones in Version 1 by about 0.5% to 1.2% (on biogas basis) and consequently 

GHG savings lower by about 1% to 9%; 8)Table of content and pdf file re-compiled to for clarity and ease of use of readers. 

JRC95618 

EUR 27215 EN 

ISBN 978-92-79-47895-6 (PDF) 

ISSN 1831-9424 (online) 

doi:10.2790/299090 

Luxembourg: Publications Office of the European Union, 2015 

© European Union, 2015 

Reproduction is authorised provided the source is acknowledged. 

Abstract 

The Renewable Energy Directive (RED) (2009/28/EC) and the Fuel Quality Directive (FQD) (2009/30/EC) fix a threshold of savings 

of greenhouse gas (GHG) emissions for biofuels and bioliquids, and set the rules for calculating the greenhouse impact of 

biofuels, bioliquids and their fossil fuels comparators. To help economic operators to declare the GHG emission savings of their 

products, default and typical values are also listed in the annexes of the RED and FQD directives.  

The Commission recommended Member States to use the same approach for other bioenergy sources in the report from the 

Commission to the Council and the European Parliament on sustainability requirements for the use of solid and gaseous 

biomass sources in electricity, heating and cooling (COM(2010)11). Typical and default GHG emission values for solid and 

gaseousbioenergy pathways were reported in the report. 

SWD(2014)259  updates the values defined in the COM(2010)11 to account for the technogical and market developments in 

the bioenergy sector. 

This report describes the assumptions made by the JRC when compiling the updated data set used to calculate default and 

typical GHG emissions for the different solid and gaseous bioenergy pathways and the results of such calculations in terms of 

typical and default GHG emission values . In the annexes the comments/questions received from JRC as reaction to the 

presentation of the data in stakeholders/experts consultations are reported together with their relative answers/rebuttals. 

This report describes the assumptions made by the JRC when compiling the updated data set used to calculate default and 

typical GHG emissions for the different solid and gaseous bioenergy pathways and the results of such calculations in terms of 

typical and default GHG emission values . In the annexes the comments/questions received from JRC as reaction to the 

presentation of the data in stakeholders/experts consultations are reported together with their relative answers/rebuttals. 

https://ec.europa.eu/jrc/en/publications
http://iet.jrc.ec.europa.eu/bf-ca/
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Executive Summary 

The Renewable Energy Directive (RED) (2009/28/EC) and the Fuel Quality Directive (FQD) 

(2009/30/EC) fix a threshold of savings of greenhouse gas (GHG) emissions for biofuels and 

bioliquids, and set the rules for calculating the greenhouse impact of biofuels, bioliquids and 

their fossil fuels comparators. To help economic operators to declare the GHG emission 

savings of their products, default and typical values are also listed in the annexes of the RED 

and FQD directives. 

The Commission recommended Member States to use the same approach for other 

bioenergy sources in the report from the Commission to the Council and the European 

Parliament on sustainability requirements for the use of solid and gaseous biomass sources 

in electricity, heating and cooling (COM(2010)11). Typical and default GHG emission values 

for solid and gaseous bioenergy pathways were also reported in that report. 

The Commission Staff Working Document on State of play on the sustainability of solid and 

gaseous biomass used for electricity, heating and cooling in the EU (SWD(2014)259) 

updates the values and the methodology defined in COM(2010)11 to account for the 

technogical and market developments in the bioenergy sector. 

This report describes the assumptions made by the JRC when compiling the updated data 

set used to calculate default and typical GHG emissions for the different solid and gaseous 

bioenergy pathways, and the results of such calculations in terms of typical and default GHG 

emission values applying the methodology set in COM(2010)11 and SWD(2014) 259. 

The input values reported in this report can be directly used by stakeholders to better 

understand the default emissions reported in SWD (2014) 259 and the results of the JRC 

calculations. Furthermore, they can be used by private stakeholders to evaluate GHG 

emissions of specific bioenergy pathways and also by regulatory bodies as a basis for policy 

implementation. 

The database consists of more than 80 tables detailing the inputs and outputs of the 

processes used to build the bioenergy pathways. Data were derived from reports and 

databases of emission inventories produced by international organizations, such as the 

Intergovernmental Panel for Climate Change (IPCC) and European Environment Agency (EEA). 

peer-reviewed journal publications as well as original data provided by stakeholders and 

industrial associations. The geographical scope is European, therefore the data are aimed at 

being representative of the European average, 

The database contains data for solid biomass used for power and heat production as well as 

processes for anaerobic digestion and biogas production. Regarding solid biomass, six woody 

feedstocks are considered as well as five agricultural materials. A combination of transport 
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distances representing the main routes of biomass trade is included as well as multiple 

common technology options, for a total of more than ninety pathways. 

Data for biogas production include three of the main common substrates, two alternatives 

for digestate management, and multiple technological options for power and biomethane 

production, for a total of thirty pathways. 

There are several possible sources of uncertainty and data variation. The main factor is 

linked to the geographical variability of some processes (e.g. cultivation techniques and land 

productivity). The data are aimed at being valid throughout the whole EU, therefore the 

dataset may not represent exactly each specific condition. In these cases it is possible and 

recommended to calculate actual values. 

Secondly, technological differences may have significant impact; in this case, the values and 

pathways were disaggregated in order to represent the most common technological options 

(e.g. see the disaggregation of biogas upgrading pathways). Thirdly, for some processes 

there is a lack or scarcity of data; in this regard the largest possible set of modelling and 

empirical data has been analysed (e.g. publications, handbooks, emissions inventory 

guidebooks, LCA databases and, whenever available, proprietary data from stakeholders).  

Finally, the report contains a section where the sensitivity of the results to specific 

parameters is analysed in detail. 

The results calculated show that biogas and biomethane produced from wet manure 

benefits greatly from the emission credits due to avoided GHG emissions from the 

alternative manure management. Consequently, GHG savings of above 100% are possible in 

many plant configurations. 

Emission savings associated with biogas and biomethane produced from maize whole crop 

span from negative values (emissions higher than fossil reference) up to more than 50%. 

This variation is strongly dependent on the technology adopted. However, when a biogas 

plant is analyzed in its entirety and the emissions are averaged among multiple substrates 

(e.g. co-digestion), technological choices are still the main factor but the use of manure in 

combination with maize is essential to achieve GHG savings higher than 70%. 

Furthermore, the use of a gas-tight tank for the storage of the residual digestate is 

fundamental in most of the cases to achieve meaningful GHG savings.  

GHG savings for solid biomass pathways are in general above 60% both for power and heat 

produced. Some pathways are able to achieve savings above 70%. Transport distances, 

cultivation inputs and process utilities supply are the parameters which have the strongest 

influence on the final result. Furthermore, the GHG savings presented (especially the ones 

relative to power production) are subject to the choice of final energy conversion efficiency. 

A higher conversion efficiency, which for example can be achieved in co-firing application in 

existing power plants, would allow the majority of pathways to exceed 70% GHG savings.  
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1. Introduction  

The Renewable Energy Directive (RED) (2009/28/EC) specifies a minimum set of sustainability 

criteria for biofuels and bioliquids, with a threshold of 35% savings of greenhouse gas (GHG) 

emissions with respect to the fossil fuels they are compared to. Rules for calculating the 

greenhouse gas impact of biofuels, bioliquids and their fossil fuels comparators are also set 

in the Directive1. The RED does not specify similar rules for biomass used for heating, 

electricity and cooling, but mandates the Commission to report on the requirements for a  

sustainability scheme for energy uses of biomass. A first report that makes 

recommendations on sustainability criteria which may be implemented by Member States 

was published by the Commission in 2010 (COM(2010)11). The report includes figures of 

GHG savings of solid and gaseous biomass pathways, calculated applying similar provisions 

and methodology as the ones for biofuels and bioliquids in the RED and the Fuel Quality 

Directive, FQD (2009/30/EC). 

Against this policy background, the European Commission services have produced the Staff 

Working Document (SWD(2014) 259) to serve as a basis for future discussion at EU level on 

the issue of biomass sustainability. 

For the preparation of the Staff Working Document (SWD(2014) 259), the JRC received the 

mandate from the European Commission’s Directorate-General for Energy (DG Energy) to 

update the list of pathways and the relative input database to account for the scientific, 

technological and economic developments in the solid and gaseous bioenergy sector. 

This report describes input data, assumptions and methodological approach applied by the 

JRC when compiling the updated data set used to calculate GHG emissions for the different 

biomass pathways. The GHG emissions resulting from the application of the methodology 

from COM(2010) 11 and SWD(2014) 259 are also shown. 

 

Structure of the report 

The first part of the report (Chapters 2, 3, and 4) describes the data that are common for 

different  pathways. These data include: 

 fossil fuel provision emissions; 

 supply of chemical fertilizers, pesticides and process chemicals; 

 auxiliary plant processes (such as boilers and power plants); 

 fuel consumption for different means of transportation; 

                                              
1 Sustainability requirements for biofuels and methodology for GHG saving calculations are duplicated in identical 

terms also in the Fuel Quality Directive (FQD – 2009/30/EC). 
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The second part (Chapters 5 and 6) describes the specific input data used in the processes 

that make up the different solid and gaseous bioenergy pathways.  

The third part of the report includes methodological details regarding the typical and default 

values published in the SWD(2014) 259 and the resulting GHG emissions for the pathways 

analysed. 

The last part of the report details the comments received by experts and stakeholders, and 

the replies of JRC, during the review process undertaken for the definition of input data and 

related methodological choices. In particular this process consisted of two meetings where a 

preview of input data proposed by the JRC was presented to technical experts and 

stakeholders:  

 Expert workshop held in November 2011 in Ispra (IT), 

 Stakeholder workshop held in May 2013 in Brussels (BE). 

Detailed comments were collected after both meetings and taken into consideration by the 

JRC to finalise the dataset and the calculations. Values that were updated following 

stakeholders/experts comments are underlined along the report. Detailed 

questions/comments from stakeholders and related JRC answers may be found in Annexes 2 

and 3.  
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Part One — General input data and 

common processes 
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2. General input data for 

pathways 

This section presents the processes associated with the production and supply of fossil fuels, 

chemicals and European electricity. Furthermore, data on fuel consumption in auxiliary 

processes (e.g. boilers and power plants) and in various transport modes are also reported 

here. 

The total emission factors for the whole supply chain are indicated in the comments under 

each process table and are summarized in Table 13. To be noted that the climate metric 

utilized is the Global Warming Potential (GWP) at a time horizon of 100 years. The GWP(100) 

values chosen are the ones detailed in the IPCC 4th AR (2007) and they are equal to 25 for 

methane and 298 for nitrous oxides. 

The processes detailed in this section are used horizontally in the GHG emissions calculations 

of the pathways analysed in this report. 

2.1 Fossil fuels provision 

Electricity grid supply (and Fossil Fuel Comparator) 

 The Fossil Fuel Comparator (FFC) used in SWD(2014) 259, for power supplied to the 

electricity grid assumes a marginal mix of present and perspective fossil power 

production technologies and feedstocks; 

 For consistency reasons, it is appropriate that the GHG emissions considered for the 

supply and consumption of electricity in the calculated pathways are considered to 

be the same2; 

 This consistency must be maintained also for other fossil sources supply emissions 

(e.g. natural gas); 

 The emission factors for the supply of chemicals are also calculated using the 

approach defined in SWD(2014) 259, applying the marginal values for electricity and 

natural gas supply indicated here.  

 

The marginal mix assumed in in SWD(2014) 259 is reported in Table 1. To be noted that the 

emissions reported in Table 1 include both upstream and combustion GHG emissions from 

fossil fuels and that they refer to the power plant outlet (high voltage) and do not include 

transmission and distribution losses. They are thus different from the values reported in JEC 

WTT 4a report, which refer to low voltage electricity delivered to consumers. 

                                              
2 A difference in emissions between consumption and FFC would create fictitious emissions savings.  
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It is important to highlight that the values and approach used in this report are appropriate 

for the specific goal and purposes of these calculations, i.e. to determine the typical and 

default GHG emissions and GHG savings for specific solid and gaseous bioenergy pathways in 

accordance with a methodology designed for regulatory purposes. However the absolute GHG 

emission values reported in this report will likely be higher when compared with other 

literature studies using similar system boundaries and methodology. One reason for this is 

that the average value of GHG emissions associated to the EU electricity mix supply includes 

also low or zero-CO2 emission sources such as other renewables and nuclear. For illustration, 

the value indicated in the JRC WTT 4a for EU mix emissions at power plant outlet is equal to 

134 gCO2 eq./MJel. (see JEC WTT 4a, section 3.5.1.8 for more details) resulting in a value of 150 

gCO2 eq./MJel. for consumers. This difference will be more significant for the pathways with 

larger electricity consumption (e.g. the ones including pellet manufacturing)  
 

Table 1: Mix of sources and conversion pathways chosen to represent a marginal electricity mix and 

emission factor at power plant outlet to the high-voltage grid (380 kV, 220 kV, 110 kV) (as 

proposed by EC in SWD(2014) 259). The pathway code used in the JEC WTT v4a is also reported. The 

emission factors include upstream and combustion GHG emissions from fossil fuels. 

Pathway 

(WTT 

v4a) 

Electricity production Unit Amount Comment 

KOEL1 Conventional hard coal gCO2 eq./MJel. 261.5 43.5% el efficiency 

KOEL2 Coal (IGCC) gCO2 eq./MJel. 234.6 48% el efficiency 

GBEL1b Natural gas (CCGT) gCO2 eq./MJel. 118.2 
58.1% el efficiency, 4000 km 

pipe transport of natural gas 

GBEL1a Natural gas (CCGT) gCO2 eq./MJel. 129.4 
58.1% el efficiency,7000 km 

pipe transport of natural gas 

GREL1 Natural gas (CCGT) gCO2 eq./MJel. 126.5 58.1% el efficiency, LNG 

 
Emissions 

Average (25/25/16.7/16.7/16.7%) gCO2 eq./MJel. 186.4  

CO2 Output g/MJ 169.4  

CH4 Output g/MJ 0.61  

N2O Output g/MJ 0.006  

Comments: 

 The average mix considered consists of: 25% KOEL 1, 25% KOEL 2, 16.7% GBEL1a, 

16.7% GBEL1b, 16.7% GREL1. 

The transmission and distribution losses considered are reported in Table 2, Table 3 and 

Table 4. 
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Table 2 Electricity transmission losses in the high-voltage grid (380 kV, 220 kV, 110 kV) 

  I/O Unit Amount Source 

Electricity Input MJ/MJe 1.015 1 

Electricity (HV) Output MJ 1.0000  

 

Table 3 Electricity distribution losses in the medium-voltage grid (10 – 20 kV) 

  I/O Unit Amount Source 

Electricity (HV) Input MJe/MJe 1.038 2 

Electricity (MV) Output MJ 1.0000  

 
 

Table 4 Electricity distribution losses in the low voltage grid (380 V) 

  I/O Unit Amount Source 

Electricity (MV) Input MJ/MJe 1.064 2 

Electricity (LV) Output MJ 1.0000  

Comment 

 The final GHG emission factor for electricity supplied to consumers at 380 V is equal 

to 209 gCO2 eq./MJ el. 

Sources: 

1. ENTSO-E, 2011; 

2. AEEG, 2012; 

 

Diesel oil, gasoline and heavy fuel oil provision 

 Figures for crude oil production and transport emissions estimated for EU-mix are 

based on the OPGEE report (ICCT, 2014). 

 Emissions from refining are those calculated in JEC-WTW v4.1 on the basis of 

marginal emissions saved by producing marginally less of the different products. This 

makes the refining emissions for gasoline and especially diesel higher than the 

average for all refinery products, whereas those for heavy fuel oil are lower. 
Table 5: Emissions associated to the production, supply and combustion of diesel, gasoline and 

heavy fuel oil. 

WTW marginal refining emissions + OPGEE production emissions 

[gCO2 eq./MJ final fuel] DIESEL GASOLINE HFO Source 

1) production emissions from OPGEE including 

transport of crude 
11.0 10.8 10.5 

Calculated 

from [1] 

3) refining emissions 8.6 7.0 2.2 2 

4) transport of product 1.1 1.2 0 2 

5) combustion emissions 73.2 73.4 80.6 2 

Total emissions 93.9 92.4 93.3  
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Comments 

- CO2 emissions from combustion of crude oil = 75.5 gCO2/MJ crude [2] 

- Crude production emissions (incl. transport of crude) = 10.0 gCO2 eq./MJ crude [1] 

- Production emissions of diesel and gasoline are calculated based on the factors 

calculated in JEC-WTW 4a: 1.1 MJ crude / MJ diesel, 1.08 MJ crude / MJ gasoline and 

1.05 MJ crude / MJ HFO. 

Sources 

1. ICCT, 2014 

2. JEC-WTT v4a. 
 

Hard coal provision 

 
Table 6 Emission factor: hard coal provision 

  I/O Unit Amount 

Hard coal Output MJ 1 

Emissions 

CO2 Output g/MJ 6.50 

CH4 Output g/MJ 0.385 

N2O Output g/MJ 2.50E-04 

Comments 

 The total emission factor for the supply of 1 MJ of hard coal is 16.2 gCO2 eq/MJ. 

 The emission factor for combustion of 1 MJ of hard coal is 96.1 gCO2 eq/MJ. 

Source 

JEC-WTT v4; EU coal mix (updated with diesel and HFO factors in Table 5). 

 

Natural gas provision 

 
Table 7 Emission factor: natural gas provision (at MP grid) 

  I/O Unit Amount 

Natural gas Output MJ 1 

Emissions 

CO2 Output g/MJ 11.38 

CH4 Output g/MJ 0.207 

N2O Output g/MJ 3.61E-04 
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Comments 

 The total emission factor for the supply of 1 MJ of natural gas is 16.7 gCO2 eq/MJ. 

 The emission factor for combustion of 1 MJ of natural gas is 55.08 gCO2 eq/MJ. 

 The value is obtained as a mix of the following pathways: 33% EU mix (4000 km – 

GPCG1b); 33% 7000 km (GPCG1a) and 33% LNG (GRCG1). Note that the values 

reported in WTT v4 refer to compressed natural gas as a final product and thus 

contain an additional emission due to the final compression of the gas. This is not 

included in this number since the NG is considered at the level of medium pressure 

grid. 

Source 

JEC-WTT v4. 
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2.2. Supply of process chemicals and pesticides 

 

This section includes the processes with the input data used for the production and supply of 

various chemicals, fertilizers and pesticides used in the pathways. The emissions indicated in 

the following tables refer only to the emissions associated to the specific process. However, 

many processes are linked in a 'supply chain', in order to supply the final product. Therefore, 

for ease of reference, total emission factors for the whole supply chain are indicated in table 

comments and are summarized in Table 13. 

2.2.1 Chemical fertilizers 

 

Phosphorus pentoxide (P2O5) fertilizer supply 

 

Table 8 Supply of P2O5 fertilizer 

  I/O Unit Amount 

Hard coal Input MJ/kg 0.57 

Diesel oil Input MJ/kg 1.12 

Electricity Input MJ/kg 1.602 

Heavy fuel oil (1.8 % S) Input MJ/kg 5.00 

NG Input MJ/kg 3.15 

P2O5 fertilizer Output kg 1.0 

Emissions 

CO2 - g/kg 700 

CH4 - g/kg 0.023 

N2O - g/kg 0.042 

 

Comment 

 The total emission factor, including upstream emissions, to produce 1 kg of P2O5 

fertilizer is 1 176.1 gCO2 eq/kgP2O5. 

 

Source 

Kaltschmitt and Reinhardt, 1997. 
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Potassium oxide (K2O) fertilizer supply 

 

Table 9 Supply of K2O fertilizer 

  I/O Unit Amount 

Diesel oil Input MJ/kg 0.54 

Electricity Input MJ/kg 0.22 

NG Input MJ/kg 7.5 

K2O fertilizer Output kg 1.0 

Emissions 

CO2 - g/kg 453 

CH4 - g/kg 0.021 

N2O - g/kg 0.0094 

Comments 

 The total emission factor, including upstream emissions, to produce 1 kg of K2O 

fertilizer is 635.7 gCO2 eq/kgK2O. 

 K2O fertilizer production and transport 

 

Source 

Kaltschmitt and Reinhardt, 1997. 

 

Limestone (aglime–CaCO3) supply chain 

 

The supply chain for the provision of aglime fertilizer includes the processes for the mining, 

grinding and drying of limestone. The results are quoted per kilogram of CaO in the CaCO3, 

even though the product is ground limestone. Limestone was once converted to CaO by 

strong heating (calcining), using fuel. However, at present around 90 % of aglime is ground 

limestone (or dolomite), and even the small amount of CaO which is used on soil is a by-

product of industrial processes.  
 

Table 10 Limestone mining 

  I/O Unit Amount 

Diesel Input MJ/kg 0.0297 

Electricity (LV) Input MJ/kg 0.013 

Limestone Output kg 1 

Source 

GEMIS v. 4.9, 2014, 'Xtra-quarrying\limestone-DE-2010'. 
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Table 11 Limestone grinding and drying for the production of CaCO3 

  I/O Unit Amount 

Limestone Input kg/kg 1 

Electricity (LV) Input MJ/kg 0.179 

CaCO3 Output kg 1 

Comments 

 The total emission factor, including upstream emissions, to produce 1 kg of CaO 

fertilizer is 89.6 gCO2 eq/kgCaO. 

Source 

GEMIS v. 4.9, 2014, Nonmetallic minerals\CaCO3 -powder-DE-2000. 
 

Since the aglime (CaCO3) inputs to cultivation processes are quoted in terms of the CaO 

content ('calcium fertilizer as CaO') of the limestone, the inputs per kilogram of CaO are 

increased by the molecular weight ratio CaCO3/CaO = 1.785. 

The total emission factor becomes 50.2 gCO2 eq/kgCaCO3. 

 

Pesticides supply chain 

‘Pesticides’ is the name given to all ‘plant health products’ including pesticides, herbicides, 

fungicides and plant hormones. 

 
Table 12 Supply of pesticides 

  I/O Unit Amount 

Hard coal Input MJ/kg 7.62 

Diesel oil Input MJ/kg 58.1 

Electricity Input MJ/kg 28.48 

Heavy fuel oil (1.8 % S) Input MJ/kg 32.5 

NG Input MJ/kg 71.4 

Pesticides Output kg 1.0 

Emissions 

CO2 - g/kg 4921 

CH4 - g/kg 0.18 

N2O - g/kg 1.51 

Comment 

 The total emission factor, including upstream emissions, to produce 1 kg of pesticides 

is is 13 896.3 gCO2 eq/kg. 

Source 

Kaltschmitt, 1997. 
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2.2.2  Summary of emission factors for the supply of main products 

For ease of reference, Table 13 summarizes the emission factors for provision of various 

fossil fuels and supply of fertilizers.  
Table 13 Emission factors for fossil fuels and main fertilizers 

Emission factors 

Net GHG 

emitted 

[g CO2 eq./MJ] 

CO2 

[g/MJ] 

CH4 

[g/MJ] 

N2O 

[g/MJ] 

Natural Gas 

Supply 16.67 11.38 0.21 3.61E-04 

Combustion 55.08 55.08   

Total 71.7 66.45 0.21 3.61E-04 

EU el. mix (LV) 

Supply 208.84 189.80 0.68 6.86E-03 

Use 0.0 0.0 0.00 0.000 

Total 208.8 189.80 0.68 6.86E-03 

EU el. mix (MV) 

Supply 196.35 178.45 0.64 6.44E-03 

Use 0.0 0.0 0.00 0.000 

Total 196.3 178.45 0.64 6.44E-03 

Hard coal 

Supply 16.21 6.50 0.39 2.50E-04 

Combustion 96.11 96.11   

Total 112.3 102.62 0.39 2.50E-04 

Lignite 

Supply 1.73 1.68 1.44E-03 5.56E-05 

Combustion 115.0 115.0   

Total 116.7 116.68 1.44E-03 5.56E-05 

Heavy fuel oil 

Supply 12.70 -3 - - 

Combustion 80.60 80.60 0 0 

Total 93.3 - 0.00 0.000 

Diesel 

Supply 20.70 - - - 

Combustion 73.25 73.25 0.00 0.00 

Total 93.9 - 0.00 0.000 

N fertilizer Supply [g/kg] 4567.8 3680.00 7.49 2.35 

P2O5 fertilizer Supply [g/kg] 1176.1 1112.11 1.92 0.054 

K2O fertilizer Supply [g/kg] 635.7 588.71 1.72 0.014 

Aglime (as CaO) Supply [g/kg] 89.6 82.94 0.23 2.90E-03 

Pesticides Supply [g/kg] 13896.3 12480.15 36.13 1.72 

 

                                              
3  Disaggregated values are not available for Diesel and HFO since the main source used only reports values 

aggregated as [gCO2 eq.]. However, from the data reported in JEC WTT v.4a, it is clear that the large majority 
of emissions in diesel and HFO supply are due to CO2 (>90%) and the rest to methane. 
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2.3. N fertilizer manufacturing emissions calculation 

 

Nitrogen fertilizer production emissions 

The emissions associated with mineral nitrogen fertilizer production are calculated according 

to the following assumptions: 

 

 Emissions represent an average for all N fertilizer consumed in the EU, including 

imports. 

 The data are principally from the emissions reporting by Fertilizers Europe (4)in the 

frame of ETS. Data from inputs were also provided by FE, who report data from a 

world survey of fertilizer plant emissions. 

 There is only one N fertilizer value including a mix for urea and ammonium nitrate (AN) 

and a mix of EU production and imports. There are sparse data on which N fertilizers 

are used, where, and for which crop. 

 Results for the 2005-2007 period are coherent with values defined by JRC in 2005 

(Kaltschmitt, 2001). 

 Other figures for EU fertilizer emissions in the literature are often extrapolated from 

individual factories. 

 There is much scope for producers to reduce emissions by choosing a good fertilizer 

 Imported urea is assumed to come from the Middle East (expert judgment by 

Fertilizer Europe). 

 The same default N fertilizer emissions are used for fertilizer applied to foreign crops 

(even though emissions from making fertilizers are generally higher outside EU, and 

especially in China). 

 

                                              
4 Fertilizers Europe: see http://www.fertilizerseurope.com online. 

http://www.fertilizerseurope.com/
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Nitrogen (N) fertilizer supply chain 

 

Table 14 Supply of nitrogen (N) fertilizer used in EU 

  I/O Unit Amount 

N fertilizer Output kg N 1.0 

Emissions 

CO2 - g/kg N 3 090 

CH4 - g/kg N 7.49 

N2O - g/kg N 2.35 

Emissions from acidification by fertilizer, whether or not aglime is used - g/kg N 590 

Comments 

 For comparison: previous N fertilizer emissions for RED annex V calculations was 

equal to about 6 000 gCO2/kgN; 

 Average for all N fertilizer used in the EU, including imports; 

 Emissions from acidification: N fertilizers cause acidification in the soil. The acid 

reacts with carbonates in the soil (or downstream in river-beds or the sea), releasing 

CO2. The carbonates can come from rock naturally present in the soil, or from applied 

agricultural lime. In either case, we attribute these emissions to fertilizer use. 

 

Source 

1 JRC own calculations, 2014. 

 

Figure 1 explains the processes in the calculation of emissions from production of N fertilizer 

used in EU. 
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Figure 1 EU Nitrogen fertilizer production sources 
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Table 15 Input data for fertilizer manufacturing emissions calculation, based on the ETS 

 

Ammonia production in the EU 

2011 average Fertilizers Europe total-energy 

use in EU ammonia plants [7] 35.3 GJ/t NH3 

includes NG, electricity and other energy inputs. Does not 

include upstream energy losses. 

2011 (last available information) energy use 

for EU ammonia other than NG [8] 0.5 GJ/t NH3  

2011 EU NG use for ammonia (latest available 

information) 34.8 GJ/t NH3  

Assumption: fraction of imports (ammonia and solid fertilizers) remains constant at last-reported values: 2008-9 

N2O EMISSIONS FROM Nitric acid plants in EU 

2020 EU average (ETS benchmark) [2]  1.0134 kg N2O/t HNO3 

For current emissions, we use the N2O emissions in the ETS 2020 target. 

Although EU nitric acid plants already surpassed the taget savings, the excess savings will be sold under ETS, so other emissions become attached to nitric 

acid. Therefore we consider the 2020 ETS target emissions, not the actual emissions from nitric acid. 

Although the savings in ammonia production emissions fall short of the 2020 targets (according to the latest available data), it is not necessary for 

producers to buy emissions savings from elsewhere before 2020. 

Therefore we consider the actual emissions for nitric acid. 

Minor inputs for EU fertilizer plants (EU data, but assumed the same for outside the EU) 

Electricity for ammonium nitrate plant 'is less than..'[3] 1 GJ/t AN 

Electricity for urea plant [3] 5 GJ/t Urea 

Calcium ammonium nitrate is assumed to have same emissions per tonne of N as ammonium nitrate (emissions from CaO are relatively small) 

Note: urea (= ammonium carbonate) manufacture reacts to ammonia with otherwise-emitted CO2. However, the CO2 is lost when urea decomposes on the 

field. We count neither the sequestration nor the emission. 

IMPORTED UREA 

Assumption: urea is imported from North Africa, especially Egypt [6] (China exports > 50% world urea with much higher (coal) emissions, but it is further 

away). 

Fraction of EU-consumed Urea-type fertilizers imported (see table below). 75% 

Imported ammonium nitrate assumptions 

Imports are mostly from Russia, Ukraine and Belarus [6]: we represent them with weighted average of data for Russian and Ukrainian production. 
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Fraction of EU-consumed AN -type fertilizer imported [5] 8% 

 

N2O emissions from imported AN production are calculated from the total emissions in quoted in [9] (which we understand come from a complete LCA by 

Integer Consultants), assuming emissions for AN from other sources are the same as in EU 2007. 

LCA emissions for AN supply 2013 [9]   

Russia  

3130  g per kg AN 

0.35 N/AN 

8943 g per kg N in AN 

Emissions from other-than-N2O   3127 gCO2e/kg N in AN calculated by E3database using EU 2007 data on other emissions sources. 

Emissions from N2O 5816  gCO2e/kg N in AN  

Emissions from N2O 19.52  gN2O/kg N in AN  

IMPORTED AMMONIA 

Fraction of ammonia used in EU which is imported 16% 

Assumption: all ammonia imports are from Russia, Ukraine and Belarus [6]: we use weighted average data. 

 

UPSTREAM ELECTRICITY AND TRANSPORT ASSUMPTIONS 

Electricity for fertilizer production generated via a natural gas fuelled combined cycle (CCGT) power plant with an efficiency of 55% 

Transport from Russia to EU via train over a distance of 6000 km 

Maritime transport of urea from Damietta in Egypt to Rotterdam in the EU over a distance of 6500 km 

Electricity for the train derived from the Russian electricity mix 

 

Natural Gas consumption for ammonia and urea production outside EU [Fertilizer Euorpe 2012] (on-site NG consumption only). 

  NG use 

MMbtu/tonne 

NH3 2014 [1] 

NG use 

MMbtu/tonne 

urea 2014 

NG use GJ/tonne 

NH3 2014 

NG use GJ/tonne 

urea 2014 

NG use kWh/kg 

urea 2014 

NG use kWh/kg N in 

urea 2014 

Russia, Ukraine, Belarus 36.9 26.9 34.94 25.5 7.07 15.16 

N.Africa 37 not reported 35.1 25.6 7.10 15.22 
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Trade data 
        

EU trade (2009) in kilo tonnes of  nitrogen Ammonia 
Ammonium 

nitrate 

Calcium 

ammonium 

nitrate 
 

Urea 
Ammonium 

sulphate  
Total 

 
NH3 [4] AN [5] CAN [4] AN+CAN U [5] AS [4] U+AS 

 
Imports 3 173 165   1 524    

Exports 914 
 

  
 

   

EU consumption 13 975 2 097 2 811 4 907.5 2 024 745 2 769 7 676 

% imported per type 16 % 8 % 
 

 75 % 
   

% imports=imports/(use + exports) 
        

% of AN and urea in EU-consumed N 

fertilizer (in terms of N content)    
64 % 

  
36 % 
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Sources 

 

1 Hoxha, A., Fertilizers Europe, personal communication February 2012 quoting forward 

projections by Fertecon, a fertilizer consultancy company. 

2 Commission proposal for ETS benchmarking of EU fertilizer industry, via Heiko Kunst, 

Climate Action, December 2010. 

3 Werner, A., BASF SE, Chairman of TESC in EFMA, 'Agriculture, fertilizers and Climate 

change': Presentation at EFMA conference, 12 February 2009, download from EFMA 

website. Numbers are based on IFA world benchmarking report on fertilizer emissions. 

4 IFA statistics for 2009, (http://www.fertilizer.org/ifa/Home-Page/STATISTICS/Production-

and-trade-statistics) accessed February 2011. 

5 Hoxha, A., Fertilizers Europe (former EFMA), personal communication, 20 February 2010. 

For agricultural use only (important for urea and AN), average of 2008/9 and 2009/10 

data. 

6 Palliére, C., Fertilizers Europe (former EFMA), personal communication to JRC, December 

2010. 

7 Hoxha, A., Fertilizers Europe, personal communication, May 2014. 

8 Hoxha, A., Fertilizers Europe, personal communication, February 2011. 

9 S. Mackle, Fertilizers Europe, 2013: Trade & economic policy outlook of the EU Nitrogen 

Fertilizer Industry, presentation on Fertilizers Europe website, accessed May 2014. 

 
 

  

http://www.fertilizer.org/ifa/Home-Page/STATISTICS/Production-and-trade-statistics
http://www.fertilizer.org/ifa/Home-Page/STATISTICS/Production-and-trade-statistics
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3. Utilities and auxiliary 

processes 

This section contains the processes for utilities such as boilers and power plants that are 

used throughout the various pathways.  

  

NG boiler 

 
Table 16 Process for a NG boiler 

Steam from NG boiler (10 MW) 

  I/O Unit Amount Source 

NG Input MJ/MJheat 1.11 1,2 

Electricity Input MJ/MJheat 0.020 2 

Steam Output MJ 1.0  

Emissions 

CH4 Output g/MJheat 0.0028 1 

N2O Output g/MJheat 0.00112 1 

Comments 

 Electricity taken from the grid at 0.4kV. 

 Thermal efficiency = 90 % (based on LHV). 

 This process is common to all pathways involving pellet production, case 1. 

 CO2 emissions from natural gas combustion are considered to be 198.27 gCO2/kWh. 

Source 

1 GEMIS v. 4.9, 2014, gas-boiler-DE 2010. 

2 GEMIS v. 4.9, 2014, gas-heat plant-medium-DE 2010. 
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Industrial wood pellet boiler 

 
Table 17 Process for an industrial wood pellet boiler 

Heat from industrial wood pellet boiler (0.5 MW)  

  I/O Unit Amount 

Wood pellets Input MJ/MJheat 1.124 

Electricity Input MJ/MJheat 0.015 

Steam Output MJ 1.0 

Emissions 

CH4 Output g/MJheat 0.003336 

N2O Output g/MJheat 0.000667 

Comments 

 Electricity taken from the grid at 0.4kV. 

 Thermal efficiency = 89 % (based on LHV). 

 This process is common to all pathways involving pellet production, Case 2. 

 

Source 

1 GEMIS v. 4.9, 2014, wood-pellet-wood-industry-heat plant-DE-2010. 

 

 

Industrial wood chips boiler 

 
Table 18 Process for an industrial wood chips boiler 

Heat from industrial wood chips boiler (1 MW)  

  I/O Unit Amount 

Wood chips Input MJ/MJheat 1.176 

Electricity Input MJ/MJheat 0.020 

Steam Output MJ 1.0 

Emissions 

CH4 Output g/MJheat 0.005751 

N2O Output g/MJheat 0.001150 
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Comments 

 Electricity taken from the grid at 0.4kV. 

 Thermal efficiency = 85 % (based on LHV). 

 Wood chips are considered to be dried prior the use (10% moisture, same as the wood 

chips for pellet production). 

 This process is common to all pathways involving pellet production as alternative to 

the wood pellet boiler, Case 2a. 

 

Source 

1 GEMIS v. 4.9, 2014, wood-chips-forest-heat plant-1 MW-EU - 2005. 

 

Wood pellet CHP based on ORC technology 

 

Table 19 Process for an industrial CHP based on ORC technology 

Heat and electricity from CHP based on ORC engine 

  I/O Unit Amount Source 

Wood pellets Input MJ/MJel. 6.135 1 

Electricity Output MJ 1.0 1 

Heat Output MJ/MJel. 4.27 1 

Emissions 

CH4 Output g/MJel. 0.01822 2 

N2O Output g/MJel. 0.00364 2 

Comments 

 Electrical efficiency = 16.3 % (based on LHV). 

 Thermal efficiency = 69.6 % (based on LHV). 

 This process is common to all pathways involving pellet production, case 3. 

 

Sources 

1 Seeger Engineering AG; 2009. 

2 GEMIS v. 4.9, 2014, wood-pellet-wood-industry-heat plant-DE-2010. 
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Wood chips CHP based on ORC technology 

 

Table 20 Process for an industrial CHP based on ORC technology 

Heat and electricity from CHP based on ORC engine 

  I/O Unit Amount Source 

Wood chips Input MJ/MJth. 1.437 1 

Electricity Output MJ/MJth. 0.234 1 

Heat Output MJ 1.0 1 

Emissions 

CH4 Output g/MJth. 0.0070 2 

N2O Output g/MJth. 0.00140 2 

Comments 

 Electrical efficiency = 16.3 % (based on LHV). 

 Thermal efficiency = 69.6 % (based on LHV). 

 This process is common to all pathways involving pellet production and is alternative 

to the wood pellets CHP, case 3a. 

 

Sources 

1 Seeger Engineering AG; 2009. 

2 GEMIS v. 4.9, 2014, wood-chips-forest-heat plant-1 MW-EU - 2005. 
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Sawdust boiler 

Table 21 Process for an industrial sawdust boiler 

Heat from sawdust boiler 

  I/O Unit Amount Source 

Sawdust Input MJ/MJth. 1.333 1 

Electricity Input MJ/MJth. 0.02 2 

Heat Output MJ 1.0 1 

Emissions 

CH4 Output g/MJth. 0.0065 2 

N2O Output g/MJth. 0.0013 2 

Comments 

 Thermal efficiency = 75 % (based on LHV). 

 This process is common to all pathways involving pellet production from wood 

industry residues, case 2a. 

 Sawdust input moisture is considered to be around 34%. 

 

Sources 

1 Mani, S., A System Analysis of Biomass Densification Process, PhD Thesis at the 

University of British Columbia, 2005. (https://circle.ubc.ca/handle/2429/17106) 

2 GEMIS v. 4.9, 2014, wood-chips-forest-heat plant-1 MW-EU - 2005. 
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4. Transport processes 

This section contains all the processes that pertain to fuel consumption for all the vehicles 

and means of transportation used in all the pathways. 

The section is structured by road, waterborne (maritime and inland) and rail transportation. 

The processes are recalled in each pathway. 

4.1 Road transportation 

40 t truck (27 t payload) 

The common means of transport considered for road transport is a 40 t truck with a payload 

of 27 t. 

For the transport of solid materials, a flatbed truck transporting a container is considered. 

The weight of such a tank is considered, for the sake of simplicity, to be equal to 1 t. 

For the transport of liquids and pellets, special tank trucks are used. It is assumed that such 

trucks have the same general fuel efficiency and general payload of the truck for solids but 

with a higher, 2 t, weight for the tank, to account for the pneumatic system and 

characteristics of the tank. 

The payload of a typical trailer truck with a gross weight of 40 t for the transport of wood 

chips with push floor trailer amounts to 90 m³ (e.g. “Schubboden”). The mass of the 

semitrailer tractor amounts to about 7.6 t (see e.g.: MERCEDES-BENZ 1844 LS 4x2, 400 kW) 

and the mass of the trailer for the transport of wood chips (92 m³) ranges between 7.5 and 

7.9 t. Then the net payload amounts to (40-7.6-7.5…7.9) t = 24.5…24.9 t. For the DAF CF 

75.360 the empty mass is indicated with 6.5 t which would lead to a net payload of up to 

26t. 

The truck considered in this work is a 40 t truck with a payload of 27 t, a part of the 27 t 

consists of payload specific structure. Assuming a net payload of 26 t leads to a “tank” mass 

of 1 t. 

The truck fuel consumption is assumed to be linear with the weight transported and on the 

distance. The amount of tonnes per kilometer is calculated from the formula (in this case, for 

solid fuels transport): 
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This value is calculated and reported for each pathway in the following chapters of this 

report, and the specific LHV and moisture content of the analysed materials will also be 

highlighted. 

In order to obtain the final fuel consumption of the transportation process, the 'distance' 

process needs to be multiplied by the fuel consumption of the vehicle considered. For the 

case of a 40 t truck, this value and the associated emissions are reported in Table 22. 

 
Table 22 Fuel consumption for a 40 t truck 

 
I/O Unit Amount Source 

Diesel Input MJ/tkm 0.811 1 

Distance Output tkm 1.00  

CH4 Output g/tkm 0.0034 1 

N2O Output g/tkm 0.0015 1 

Comments 

 The return voyage (empty) is taken into account in this value. 

 This process is commonly used for the transportation of solids and liquids.  

 The fuel consumption corresponds to 30.53 l/100 km. 

 The fuel consumption and emissions are a weighted average of Tier 2 values among 

different Euro classes based on the fleet composition indicated in the COPERT model. 

Sources 

1 EMEP/EEA 2013, air pollutant emission inventory guidebook, Technical report 

N12/2013. Part B 1.A.3.b.i-iv. 
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4.2 Maritime transportation 

Handysize bulk carrier (26,000 t payload) 

 

Woodchips from a short distances (e.g. 2000 km) are assumed to be transported to Europe 

via Handysize bulk carriers of 28 000 DWT and 26 000 t of net payload. 

The fuel consumption of these carriers is calculated by the JRC via data provided by the 

International Maritime Organization (IMO, 2009), and it is dependent on several parameters, 

the most important being the bulk density of the transported goods. In fact, from the 

calculations, it transpired that for goods with bulk density lower than 750 kg/m3, the load is 

volume-limited. 

 

Bulk carriers transport a variety of goods and over a variety of routes. Due to the logistics of 

such hauling, the ships inevitably travel for certain distances with an empty or partial cargo 

load. The fuel consumption in these trips under ballast is obviously lower than at full cargo 

but it still needs to be properly assigned to the transported good. 

A common way to approach this is to define a Capacity factor (CF) which indicates the share 

of distance travelled by the ship under ballast over the total distance travelled.  

In order to define a proper CF, cargo manifestos of some carriers delivering biomass have 

been analysed. From such analysis it has transpired that on the total distance travelled by 

carriers, an average 20 – 40% of such distance is travelled under ballast. As a consequence 

an average capacity factor of 30% has been chosen. 

In this way the total fuel consumption can be assigned as follows: 

 

Total Fuel Consumption [
gHFO

tkm
] =

FC@Cargo+FC@Ballast*( CF (1-CF))⁄

CargoOutward

 

 

Where, FC@Cargo is the fuel consumption at cargo load in the outward journey (generally 

volume limited for chips), FC@Ballast is the fuel consumption under ballast and CF is the 

Capacity factor defined as the share of distance travelled by the ship under ballast over total 

distance travelled. Cargo is the cargo loaded in the outward journey.  

By using this formula it is possible to assign to the chips/pellet cargo only a share of the 

empty trips of the carrier as well as it would be assigned to all other cargos.  

 

The 'distance' parameter (tkm/MJgoods) is calculated by a simple operation, since the tank 

weight is already included in the calculations of the fuel consumption. 
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The distance values for each material are reported in the specific pathways. 

Due to the relation of the fuel consumption value with the physical properties of the goods, 

specific values for each product are reported here. 

 
Table 23 Fuel consumption for a Handysize (28000 DWT) bulk carrier for wood chips with bulk 

density 0.22 t/m3 

 
I/O Unit Amount 

Heavy fuel oil Input MJ/tkm 0.2409 

Distance Output tkm 1.0 

Comments 

 The woodchips are considered to have a moisture content of 30 %, and the bulk 

density is calculated roughly as proportional to the bulk density dry (0.155 t/m3), 

therefore: 0.155/0.7 = 0.221 t/m3. 

 LHV heavy fuel oil = 40.5 MJ/kg. 

 Oil consumption = 5.95 gHFO/tkm.  

 

Handysize bulk carrier (26 000 t payload for agri residues) 

Table 24 Fuel consumption for a Handysize (28000 DWT) bulk carrier for agri-residues with bulk 

density of 0.125 t/m3 

  I/O Unit Amount 

Heavy fuel oil Input MJ/tkm 0.398 

Distance Output tkm 1.0 

Comments 

 Valid for agricultural residues <0.2 t/m3 (with typical bulk density = 0.125 t/m3). 

 Oil consumption = 9.82 gHFO/tkm.  

 
Table 25 Fuel consumption for a Handysize (28000 DWT) bulk carrier for agricultural residues with 

a bulk density of 0.3 t/m3 

  I/O Unit Amount 

Heavy fuel oil Input MJ/tkm 0.1865 

Distance Output tkm 1.0 

Comments 

 Valid for agricultural residues >0.2 t/m3 (with typical bulk density = 0.3 t/m3). 

 Oil consumption = 4.60 gHFO/tkm.  

 

Sources 

1 IMO, 2009. 

2 JRC own calculations, 2014. 
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Supramax bulk carrier (54,000 t payload) 

 

Woodchips and pellets shipped to EU from longer distances (e.g. > 8000 km) are assumed to 

be transported to Europe via Supramax bulk carriers of 57 000 DWT and 54 000 t of net 

payload. 

The fuel consumption of these carriers is calculated by the JRC via data provided by the 

International Maritime Organization (IMO, 2009), and it is dependent on several parameters, 

the most important being the bulk density of the transported goods. In fact, from the 

calculations, it transpired that for goods with bulk density lower than 750 kg/m3, the load is 

volume-limited. 

The assumptions on the capacity factor are the same as described for Handysize carriers. 

Except that the basic fuel consumption reported by the IMO is lower due to the larger cargo 

capacity (1.09 g HFO/tkm fully loaded). 

 
Table 26 Fuel consumption for a Supramax (57000 DWT) bulk carrier for wood chips with bulk 

density 0.22 t/m3 

 
I/O Unit Amount 

Heavy fuel oil Input MJ/tkm 0.1523 

Distance Output tkm 1.0 

Comments 

 The woodchips are considered to have a moisture content of 30 %, and the bulk 

density is calculated roughly as proportional to the bulk density dry (0.155 t/m3), 

therefore: 0.155/0.7 = 0.221 t/m3. 

 LHV heavy fuel oil = 40.5 MJ/kg. 

 Oil consumption = 3.76 gHFO/tkm.  

 
Table 27 Fuel consumption for a Supramax (57000 DWT) bulk carrier for wood pellets with bulk 

density 0.65 t/m3 

 
I/O Unit Amount 

Heavy fuel oil Input MJ/tkm 0.0656 

Distance Output tkm 1.0 

Comments 

 The wood pellets are considered to have a moisture content of 10 %, and the bulk 

density is considered to be 0.65 t/m3. 

 LHV heavy fuel oil = 40.5 MJ/kg. 

 Oil consumption = 1.62 gHFO/tkm.  
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Supramax bulk carrier (54 000 t payload for agri residues) 

 
Table 28 Fuel consumption for a Supramax (57000 DWT) bulk carrier for agri-residues with bulk 

density of 0.125 t/m3 

  I/O Unit Amount 

Heavy fuel oil Input MJ/tkm 0.249 

Distance Output tkm 1.0 

Comments 

 Valid for agricultural residues <0.2 t/m3 (with typical bulk density = 0.125 t/m3). 

 Oil consumption = 6.14 gHFO/tkm.  

 
Table 29 Fuel consumption for a Supramax (57000 DWT) bulk carrier for agricultural residues with 

a bulk density of 0.3 t/m3 

  I/O Unit Amount 

Heavy fuel oil Input MJ/tkm 0.119 

Distance Output tkm 1.0 

Comments 

 Valid for agricultural residues >0.2 t/m3 (with typical bulk density = 0.3 t/m3). 

 Oil consumption = 2.93 gHFO/tkm.  

 

Sources 

1 IMO, 2009. 

2 JRC, own calculations, 2014. 
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4.3 Rail transportation 

Freight train (diesel) 

The distance parameter is calculated as described above for the road and maritime transport, 

and the specific values are reported for each pathway in the following sections. 

The fuel consumption is reported below. 

 
Table 30 Fuel consumption for a freight train run on diesel fuel 

 
I/O Unit Amount 

Diesel Input MJ/tkm 0.252 

Distance Output tkm 1.00 

CH4 Output g/tkm 0.005 

N2O Output g/tkm 0.001 

Comment 

 This process is used for the transportation of pellets, woodchips and agricultural 

residues from the mill to the harbour in the United States or Canada prior to shipping 

to Europe. 

 

Source 

1 GEMIS v. 4.9, 2014, Train-diesel-freight-CA-2010. 
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Part Two — Solid and gaseous 

biofuels processes and input data 
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5.  Biogas processes and input 

data 

Biogas can be  produced by anaerobic digestion of a multitude of feedstocks. The biogas 

produced can be used for electricity generation or, after an additional upgrading process, 

injected into the natural gas grid. The biogas upgraded to natural-gas grid quality is defined 

in this report as biomethane. Biomethane can be injected into the natural-gas grid and 

utilized exactly as fossil natural gas, or it can be compressed and distributed as compressed 

natural gas (CNG) for transportation purposes. However, CNG pathways are not considered in 

this report but they can be found in the JEC-WTT v.4. 

Based on the current and most common practices in Europe, three main feedstocks were 

chosen: 

 an energy crop: maize silage; 

 an agricultural waste: feedlot manure; 

 municipal organic and agro-industrial waste: biowastes. 

They were combined with two means of digestate management: 

 open tank storage; 

 closed tank storage (gas tight). 

They were also combined with two end-use processes for the biogas produced: 

 biogas for power and heat production; 

 biogas upgrading to biomethane. 

The biogas-to-electricity pathways are sub-divided depending on the origin of the power and 

heat consumed to run the plant (e.g. digester and engine auxiliaries). 

 Case 1: Electricity and heat are taken directly from the output of the CHP engine 

(lower net power output but imposed by legislation in some MS); 

 Case 2: Electricity is taken from the grid and heat is recovered from the CHP engine 

(maximum power output but forbidden in some MS); 

 Case 3: Electricity is taken from the grid and heat is produced on site with a biogas 

boiler (biogas produced in decentralised small digesters and transported to a central 

location for final conversion or upgrading). 

The various biogas upgrading technologies available in the market are grouped into two 

main categories (better defined in Table 39):  

 Upgrading without combustion of the off-gas (off-gas vented – OGV)    

 Upgrading with combustion of the off-gas (off-gas combusted – OGC) 
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As a result, the following pathways were studied. 

A. Maize silage 

1. Biogas for electricity from maize: open digestate 

2. Biogas for electricity from maize: closed digestate 

3. Biomethane from maize — off-gas vented: open digestate 

4. Biomethane from maize — off-gas vented: closed digestate 

5. Biomethane from maize — off-gas combusted: open digestate 

6. Biomethane from maize — off-gas combusted: closed digestate. 

B. Manure 

1. Biogas for electricity from wet manure: open digestate 

2. Biogas for electricity from wet manure: closed digestate 

3. Biomethane from wet manure — off-gas vented: open digestate 

4. Biomethane from wet manure — off-gas vented: closed digestate 

5. Biomethane from wet manure — off-gas combusted: open digestate 

6. Biomethane from wet manure — off-gas combusted: closed digestate. 

C. Biowaste 

1. Biogas for electricity from biowaste: open digestate 

2. Biogas for electricity from biowaste: closed digestate 

3. Biomethane from biowaste — off-gas vented: open digestate 

4. Biomethane from biowaste — off-gas vented: closed digestate 

5. Biomethane from biowaste — off-gas combusted: open digestate 

6. Biomethane from biowaste — off-gas combusted: closed digestate. 
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5.1 Biogas from maize silage 

 

A. Biogas for electricity 

 

 
 

B. Biomethane 
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Step 1: Maize cultivation 

Process updated in line with expert consultations’ outcomes 

Following the suggestions received during the consultations with experts and stakeholders, 

the data for maize cultivation were corrected/integrated with the data found in the European 

database CAPRI for the category of 'maize fodder'. 

The values for diesel consumption and for pesticides/herbicides use are shown in Table 31.  

The emissions due to neutralisation of fertilizer acidification and application of aglime are 

added. CH4 and N2O emissions due to the combustion of diesel from agricultural machinery 

were taken into account. 

The amount of synthetic fertilizers was also updated according to the values provided by the 

European Fertilizers Manufacturers Association. The new values are reported in the following 

table (Table 31). 

 
Table 31: Process for cultivation of maize whole plant 

Maize whole plant cultivation 

  I/O Unit Amount Source 

Diesel Input MJ/MJBiomass  0.01553 1 

N fertilizer Input kg/MJBiomass  0.00026 2 

K2O fertilizer Input kg/MJBiomass  0.00010 2 

P2O5 fertilizer Input kg/MJBiomass  0.00016 2 

CaCO3 fertilizer Input kg/MJBiomass  0.00160 7 

Pesticides Input kg/MJBiomass  0.00003 1 

Seeding material Input kg/MJBiomass  0.00010 3 

Maize whole plant Output MJ 1.0  

Field N2O emissions - g/MJBiomass 0.0193 6 

Field CO2 emissions-acidification - g/MJBiomass 0.257 4 

CH4 Output g/MJBiomass 1.98E-05 5 

N2O Output g/MJBiomass 4.90E-05 5 

Comment 

- The amount of synthetic fertilizer applied accounts already for the application of 

other organic fertilizers such as manure and digestate (the residue of the anaerobic 

digestion). 

- The yield of maize whole crop is calculated as an average over the EU-27 based on 

FAOSTAT data for the years 2011 and 2010. 

- Yield silage maize = 40.76 t fresh matter / ha [FAO, 2013; EUROSTAT, 2013]; 

- Diesel consumption = 104.32 l/ha [1]; 

- The amount of synthetic fertilizers applied is calculated as a weighted average over 

the total land cultivated with maize for fodder (based on FAOSTAT data) for the EU-
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27 area, starting from the amounts provided by Fertilizers Europe on a country-per-

country basis. 

- Mineral N-fertilizer = 63.24 kg N/ha [2]; for maize grains (e.g. corn etanol) the 

mineral N input is about double; 

- Mineral P2O5 fertilizer = 38.52 kg P2O5/ha [2]; 

- Mineral K2O fertilizer = 24.0 kg K2O/ha [2]; 

- Moisture content (silage maize) = 65%. 

- Field N2O emissions are calculated from the N inputs and volatilization indicated in 

Table 33. For the purpose of this calculation, the standard factors from IPCC and EEA 

have been used (detailed in the "High volatilization scenario"). 

 

Sources  

1 CAPRI database, data extracted by Markus Kempen of Bonn University, March 2012. 

2 Fertilizers Europe, personal communication, Palliére C., 2013. 

3 KTBL, 2006; 

4 Joint Research Centre, own calculation (JRC-IET), Petten, the Netherlands, April 20155. 

5 EMEP/EEA Guidebook 2013, Chapter 1.A.4.c.ii - Tier 1 - Table 3-1 – Agricultural 

machinery. 

6 Joint Research Centre (JRC-IET), Petten, the Netherlands, own calculations, based on 

IPCC, 2006, N2O Guidelines. 

7 EDGAR v4.1 database (JRC/PBL, 2010). 
 

The harvested maize needs to be ensiled for preservation purposes. During this process, dry 

matter losses are encountered and diesel is consumed for ensiling and de-siling the maize 

(Table 32). 
 

Table 32: Maize ensiling 

Maize whole plant ensiling 

  I/O Unit Amount Source 

Maize whole plant Input MJ/MJmaize silage 1.11 1 

Diesel Input MJ/MJmaize silage 0.00375 2 

Maize silage Output MJ 1  

CH4 Output g/MJmaize silage 4.79E-06 3 

N2O Output g/MJmaize silage 1.18E-05 3 

 

 

                                              
5 Details on the calculation of aglime input and CO2 emissions from neutralization will be released in a following JRC report 

currently under preparation. 
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Comment 

- Diesel for ensiling/desiling = 22.1 l/ha = 0.56 l/tonne maize 

- 10% dry matter losses 
 

Sources  

1 Kohler et al., 2013. 

2 Bacenetti et al., 2014. 

3 EMEP/EEA Guidebook 2013, Chapter 1.A.4.c.ii - Tier 1 - Table 3-1 – Agricultural 

machinery. 
 

5.1.1 Maize whole crop nitrogen fertilization 

 

Maize composition: Nitrogen removal and needs 

Based on an average maize composition (see e.g. Phyllis, https://www.ecn.nl/phyllis2/), the N 

content of fresh maize is around 0.37%F.M. 

Based on this number, the removal of N by the crop is equal to: 40.8 * 0.0037 = 

150.8 kg N/ha. 

IPCC prescribes that below ground residues (BG) for maize amount to 22% of the total 

above ground (AG) biomass (on a dry basis). We consider a loss of AG material at harvest 

equal to 1 t dry/ha with a N content equal to 0.6% (IPCC, 2006). Furthermore, the N content 

in the BG is taken from IPCC and it is slightly higher than for the AG residues, it is equal to 

0.7% on a dry matter basis.  

Thus, the N content in the BG residues is equal to: ((40.8*0.35)+1)*0.22)*0.007 = 

23.5 kg N/ha. 

The N content in the AG residues is equal to: (1*0.6) = 6 kg N/ha. 

The total N demand for the crop is thus equal to 180.3 kg N/ha. 

After harvest, the crop is ensiled for preservation, encountering dry matter losses. 

Based on a collection of data we have assumed a dry matter loss of 10% (Kohler, 2013; 

Herrmann, 2011; Styles, 2014). However, we assume no significant losses of N (it is possible 

that a little organic N is mineralized to ammoniacal N during the processes but eventual 

leachate is assumed to be recirculated to the digester). The N content after ensiling thus 

remains the same at 150.8 kg N/ha.  

Nitrogen losses 

N losses of about 6% are considered to happen during digestion (Schievano, 2011; Battini, 

2014). This leaves around 141.7 kg N/ha in the digestate sent to storage. 

During the storage period, direct emissions of N2O and volatilization losses to NH3 and NOx 

are expected. 

https://www.ecn.nl/phyllis2/
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The IPCC Guidelines were originally designed for manure management and thus may not be 

directly applicable to energy crops digestates. However, this could work as a first 

assumption. 

IPCC recommends a value of 0.005 N-N2O/Nslurry (IPCC, 2006, Vol.10, Table 10.21). 

Furthermore, the latest EMEP/EEA guidelines (EEA, 2013, Vol. 3.B, Table 3.7), indicate (for 

dairy slurry) emissions of N-NH3 as 20% of Total Ammoniacal Nitrogen (TAN), 0.01% of TAN 

as N-NO and 0.3% of TAN as N2. 

Considering a TAN level of 60% in the maize digestate, this would lead to a total loss of 

digestate – N equal to: 0.2*0.6 + 0.0001 * 0.6 + 0.003 * 0.6 + 0.005 = 12.7 % of 

digestate-N. (High Volatile Scenario) 

Therefore, the N available for field spreading in the digestate (in the high volatile scenario) 

is equal to: 123.8 kg N/ha. 

However, this could be considered as an upper limit, other values around 2-3% of total 

losses have been reported [e.g. Corrè, 2010]. (Low volatile scenario) 

In this second case the N available for spreading would be equal to: 141.7 * 0.97 = 

137.5 kg N/ha. 

From the IPCC guidelines, at the moment of field spreading, 20% of available N from 

organic fertilizer, is volatilized as NH3 and NO and 30% is leached. In addition to the 1% N 

that is emitted directly as N2O. (High volatile scenario) 

This would mean additional N losses on the field equal to 51% of applied N. This would 

leave 60.6 kg N/ha. (High volatile scenario) 

Alternatively, Battini et al., 2014 reports the following losses from field spreading of 

digestate: 1% to N-N2O, 0.55% to N-NO, 5% to N-NH3 and about 30% of leaching. This 

leads to total losses of 36.55% of the applied N. 

This would leave available: 137.5 * 0.6345 = 87.2 kg N/ha (low volatile scenario). 

Nitrogen fertilization balance 

Considering all associated N losses, thus, it appears that effectively only 60.6 kg N/ha or 

87.2 kg N/ha are available on the field. Of this amount, a fraction will be directly available 

while the rest of the organic N will be released over time. Anyway, we assume that this 

entire N is available for the plant (in the present or future rotations).  

Additional to this amount, we consider the application of 63.2 kg N/ha of mineral-N 

fertilizer. This number is the EU-27 average resulting from the values provided to us from 

Fertilizers Europe for the category "Silage Maize"6.  
                                              
6 Mr. Christian Pallière, pers. Comm., 2014: "Our Forecast is an expert based approach (attached a brief document on 

explanations/references for use, and the EEA report which has compared with other model based system), it is therefore our national 

experts who locally make investigation for each crop, visiting generally the crop institutes and the main agriculture universities when it 

comes for application rates, the same organizations plus the national administration which are reporting statistics when it comes to 

acreages. They report the outcomes of these several contacts. These data have been provided to several specialist (Wageningen university, 

UN ECE Task Force on reactive Nitrogen)". 
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Our assumption in this case is that the fertilizing power of raw slurry and manure is the 

same as for digestate in the long-term. This is still debated and long-term trials are 

currently under way (Fouda et al., 2013; Gutser et al., 2005; Lukehurst et al., 2010; Schröder 

et al., 2007; Smith et al., 2010), however, we think this assumption is valid for the level of 

accuracy required in this study. 

Nitrogen losses from mineral fertilization are considered by the IPCC guidelines, to be equal 

to 1% as N-N2O, 10% as volatilization to N-NH3 and N-NO and 30% as leached. (High 

volatile scenario) 

This would leave 37.3 kg N/ha available for plant absorption (High volatile scenario). 

So, considering 100% efficiency of the remaining N, the apported N by organic and mineral 

fertilization would be equal to 97.9 kg N/ha. 

Alternatively, nitrogen losses from mineral fertilization are considered to be equal to 0.6% 

as N-N2O (Battini et al., 2014), 5.6% as volatilization to N-NH3(EEA, 2013, 3.D – average 

value based on share of sold fertilizers in Europe), 0.9% N-NO (Battini et al., 2014) and 30% 

as leached (Battini et al., 2014). (Low volatile scenario) 

This would leave 39.8 kg N/ha available for plant absorption (Low volatile scenario). 

So, considering 100% efficiency of the remaining N, the apported N by organic and mineral 

fertilization would be equal to 127.0 kg N/ha (Low volatile scenario). 

The IPCC indicates that the N remaining in the crop residues is equal, for our condition, to 

about 29.5 kg N/ha. Of this amount of nitrogen, the IPCC indicates that a fraction equal to 

1% will be released as N2O and that a fraction equal to 30% will be leached away. So, the 

resulting available N from residues is equal to: 29.5*(1– 0.31) = 20.4 kg N/ha 

The final N balance would indicate thus (see also Table 33 for all the relevant data): 

High Volatile Scenario: 

 Plant needs = -180.3 kgN/ha; 

 Mineral N (available on field) = +37.3 kgN/ha; 

 Digestate N (available on field) = +60.6 kgN/ha; 

 AG+BG residues N (available on field) = +20.4 kgN/ha; 

 N to close balance = 62.0 kg N/ha (of which about/up to 20 kg may be from 

atmospheric deposition) 

Low volatile scenario: 

 Plant needs = -180.3 kgN/ha; 

 Mineral N (available on field) = +39.8 kgN/ha; 

 Digestate N (available on field) = +87.2 kgN/ha; 

 AG + BG residues N (available on field) = +20.4 kgN/ha; 

 N to close balance = 32.9 kg N/ha (of which about/up to 20 kg may be from 

atmospheric deposition) 
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For the purposes of the calculations of N2O emissions (direct and indirect) from maize whole 

crop cultivation (reported in Table 31 and used for calculations in Chapter 7), the IPCC 

methodology described in the 2006 Guidelines, Vol. 4, Ch. 11 is used. For coherence, thus, all 

emission factors in the High volatilization scenario are used to calculate both N2O emissions 

and the actual amount of N available in the digestate at field. 
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Table 33: Summary of input data, assumptions and N balance for the cultivation of Maize whole crop. 

 

High volatile scenario Low volatile scenario 
Value Unit Source Value Unit Source 

Yield (AG removal) 40.8 t F.M./ha EUROSTAT 40.8 t F.M./ha EUROSTAT 

TS 35% % F.M. JRC 35% % F.M. JRC 

BG residues (kg dry/kg dry AG) 22% % AG dry IPCC 22% % AG dry IPCC 

AG residues (t dry/ha) 1 t dry/ha Taube, 2014 1 t dry/ha Taube, 2014 

N content (AG maize whole crop) 0.37% % F.M. Hermann, 2005 0.37% % F.M. Hermann, 2005 

N content (AG residues) 0.6% % dry AG IPCC 0.6% % dry AG IPCC 

N content (BG residues) 0.7% % dry BG IPCC 0.7% % dry BG IPCC 

N losses ensiling 0% % N crop JRC 0% % N crop JRC 

N losses digester 6% % N crop Battini, 2014 6% % N crop Battini, 2014 

TAN (maize digestate) 60% % N digestate Taube, pers. Comm. 2014 60% % N digestate Taube pers. Comm. 2014 

Mineral-N fertilizer applied 63.2 kg N/ha Fertilizers Europe 63.2 kg N/ha Fertilizers Europe 

N Losses digestate storage 
      

N-N2O direct (digestate storage) 0.5% %N digestate IPCC (Dairy manure, slurry with crust) 

3.0% 

%N digestate 

Battini, 2014 
N-NH3 (digestate storage) 20% % TAN digestate EEA, 2013 (3.B) % TAN digestate 

N-NO (digestate storage) 0.01% % TAN digestate EEA, 2013 (3.B) % TAN digestate 

N-N2 (digestate storage) 0.3% % TAN digestate EEA, 2013 (3.B) % TAN digestate 

N Losses Field application – Organic fertilizer 
      

N-N2O direct (field application organic) 1% % N at field IPCC 1% % N at field IPCC 

N-NH3 + N-NO (field application organic) 20% % N at field IPCC 5.55% % N at field Battini,2014 

N-NO3-- (field application organic) 30% % N at field IPCC 30% % N at field Battini, 2014 

N Losses Field application – Crop residues 
      

N-N2O direct (field crop residues) 1% % N at field IPCC 1% % N at field IPCC 

N-NO3-- (field crop residues) 30% % N at field IPCC 30% % N at field IPCC 

N Losses Field application – Mineral fertilizer 
      

N-N2O direct (field application mineral) 1% % N mineral IPCC 0.6% % N mineral Battini, 2014 

N-NH3 + N-NO (field application mineral) 10% % N mineral IPCC 6.5% % N mineral EEA,2013 (3.D) + Battini, 2014 

N-NO3-- (field application mineral) 30% % N mineral IPCC 30% % N mineral Battini, 2014 

N Balance 
      

N needs (AG + BG + AGR) 180.3 kg N/ha 
 

180.3 kg N/ha 
 

N (AG maize - removal) 150.8 kg N/ha 
 

150.8 kg N/ha 
 

N (AG + BG residues) 29.5 kg N/ha 
 

29.5 kg N/ha 
 

N (maize silage) 150.8 kg N/ha 
 

150.8 kg N/ha 
 

N digestate 141.7 kg N/ha 
 

141.7 kg N/ha 
 

N after storage - at field 123.8 kg N/ha 
 

137.5 kg N/ha 
 

N available for plants (digestate) 60.6 kg N/ha 
 

87.2 kg N/ha 
 

N available for plants (crop residues) 19.3 kg N/ha 
 

19.3 kg N/ha 
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N mineral - available for plant 37.3 kg N/ha 
 

39.8 kg N/ha 
 

Final Balance 
      

Total N needs 180.3 kg N/ha 
 

180.3 kg N/ha 
 

Total N applied 118.3 kg N/ha 
 

147.4 kg N/ha 
 

N deficit (deposition) 62.0 kg N/ha 
 

32.9 kg N/ha 
 

 

Sources: 

 

 [Battini, 2014] Battini F., Agostini A., Boulamanti A.K., Giuntoli J., Amaducci S.; Mitigating the environmental impacts of milk production via anaerobic digestion of manure: Case study of a 

dairy farm in the Po Valley. Science of the Total Environment 481 (2014) 196 – 208. 

 [EEA, 2013] EMEP/EEA air pollutant emission inventory guidebook — 2013. Vol. 3.B & 3.D. 

 [EUROSTAT, 2013] EUROSTAT, Table (apro_cpp_crop), Green Maize. Weighted average over cultivated surface for EU-27 countries between years 2010 and 2011. 

 [Fouda, 2013] Fouda S, von Tucher S, Lichti F & Schmidhalter U; Nitrogen availability of various biogas residues applied to ryegrass", Journal of Plant Nutrition and Soil Science 176 

(2013) 572–584.  

 [Gutser et al., 2005] Gutser R, Ebertseder Th, Weber A, Schraml M & Schimdhalter U; Short term ad residual availability of nitrogen after long term application of organic fertilizers on 

arable land. Journal of Plant Nutrition and Soil Science 168 (2005), 439-446. 

 [Hermann, 2005] Hermann, A. and Taube, F., 2005, 'Nitrogen Concentration at Maturity—An Indicator of Nitrogen Status in Forage Maize', Agronomy Journal (97) 201 – 210. 

 [Herrmann, 2011] Herrmann C., Heiermann M., Idler C.; Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresource Technology 102 (2011) 

5153 – 5161 

 [IPCC, 2006] 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC National Greenhouse Inventories Programme; Volume4; Ch. 10 and Ch. 11. 

 [Kohler, 2013] Kohler B., Diepolder M., Ostertag J., Thurner S., Spiekers H.; Dry matter losses of grass, lucerne and maize silages in bunker silos. Agricultural and Food Science 22 (2013) 

145 - 150. 

 [Lukehurst et al., 2010] Lukehurst C, Frost P & Al Seadi T; Utilisation of digestate from biogas plants as biofertiliser, IEA Bioenergy Task 37 http://www.iea-biogas.net/files/daten-

redaktion/download/publi-task37/Digestate_Brochure_Revised_12-2010.pdf, 2010. 

 [Schievano, 2011] Schievano A, D'Imporzano G, Salati S, Adani F; On-field study of anaerobic full-scale plants (Part I): an on-field methodology to determine mass, carbon and nutrients 

balance. Bioresource Technology 102 (2011) 7737–7744. 

 [Schröder et al., 2007] Schröder JJ, Uenk D & Hilhorst J; Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland, Plant Soil 299 (2007) 83–99. 

 [Smith et al., 2010] Smith KA, Jeffrey WA, Metcalfe JP, Sinclair AH & Williams JR; Nutrient value of digestate from farm based biogas plants, 14th Ramiran Conference, September 

2010. 

 [Styles, 2014] Styles D., Gibbons J., Williams A.P., Stichnothe H., Chadwick D.R., Healey J.R.; Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock options on 

dairy farms. GCB Bioenergy, published on-line 2014. DOI: 10.1111/gcbb.12189 

http://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/Digestate_Brochure_Revised_12-2010.pdf
http://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/Digestate_Brochure_Revised_12-2010.pdf
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Step 2: Transport 

Process updated in line with workshop outcomes. 

The description of the road transport processes is given in Chapter 6 and it is not repeated 

here. Only the value of the 'distance' parameter is given. 

Following suggestions received during the workshop, the average transport distance for 

maize from the field to the biogas plant has been adjusted to 20 km. 

The new values are reported in the following table (Table 34). 

 
Table 34 Transport distance for maize to biogas plant 

Transport of wet maize via a 40 t truck over a distance of 20 km (one way) 

  I/O Unit Amount 

Distance Input tkm/MJmaize (65% H2O) 0.0035 

Maize silage Input MJ/MJmaize (65% H2O) 1.0 

Maize silage Output MJ 1.0 

Comments 

- LHV (maize silage) = 16.9 MJ/kg dry. 

- Moisture (maize silage) = 65 %. 

 

Source 

1 Consensus during the workshops and comments received by IEA Task 37. 

 

Step 3: Digestion 

Process updated in line with workshop outcomes. 

 

Following suggestions received during the workshop, the electricity consumption for the 

digestion process was differentiated for manure and maize. 

Below is the new process considered for maize digestion. 

 
Table 35 UPDATED Process for anaerobic digestion of maize silage. 

Anaerobic digester (maize silage) 

  I/O Unit Amount Ref  

Electricity Input MJ/MJbiogas 0.0250 1,3 

Heat Input MJ/MJbiogas 0.10 1,2 

Maize silage Input MJ/MJbiogas 1.429 See comment 

Biogas Output MJ 1.0  

  



 

 50 

Comment 

- The efficiency of the digestion is considered to be equal to 70 % (in terms of energy 

content). The details for this calculation are explained in the following section (Step 4: 

Digestate storage). 

- Biogas yield = 651 lbiogas / kgVS  

- Methane yield = 345 lCH4 / kgVS [1] 

 

Source 

1. IEA Bioenergy; The biogas handbook, 2013.  

2. GEMIS 4.9, 2014. Fermenter\biogas-maize-(no LUC)-DE-2010. 

3. Boulamanti et al., 2013 

 

Biogas boiler 

 

In the case of production of biomethane, the heat for the digester is provided by an external 

biogas boiler. For the purposes of this work, the input data are taken equal to a natural gas 

boiler. 

 
Table 36 Process for a biogas boiler 

Steam from biogas boiler 

  I/O Unit Amount 

Biogas Input MJ/MJheat 1.11 

Heat Output MJ 1.0 

Emissions 

CH4 Output g/MJheat 0.0028 

N2O Output g/MJheat 0.00112 

Comments 

 Thermal efficiency = 90 % (based on LHV). 

 

Source 

1 GEMIS v. 4.9, 2014, gas-boiler-DE 2010. 

 

Step 4: Digestate storage 

 

Digestate is the name generally assigned to the residue from the anaerobic digestion. It is a 

liquid product that is generally used as organic fertilizer on the fields. Once collected from 

the digester, the digestate must be stored before it is again applied to the fields. However, 

the digestion process actually continues during the storage period, and the gases released 

can have an important impact on the final GHG balance of the pathway.  
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The digestate can be stored in either an open or a closed tank: with the latter option, the 

additional biogas released during storage is recovered; with the former, the methane is 

released to the atmosphere.  

 
Table 37 Process for open-tank storage of digestate from maize 

Open-tank storage of digestate from maize 

  I/O Unit Amount 

Biogas Input MJ/MJbiogas 1.00 

CH4 Output MJ/MJbiogas 0.022 

N2O Output g/MJbiogas 0.008 

Biogas Output MJ 1.00 

 

Digestate methane emissions. 

Calculations were based on the following data:  

 

• LHV dry (maize): 16.9 MJ/kg 

• Moisture (maize): 65 %f.m. 

• VS (maize): 33.6 %f.m. (96% of total solids) 

• Methane yield: 345 l CH4/kgVS 

• Biogas composition: CH4 = 53 %vol., CO2 = 47 %vol. 

• VS reduction in digestion (calculated from carbon balance): 72 % 

• Density of digestate: 1 000 kg/m3 

• Temperature in digestate: ca. 20°C 

• Based on various sources, the residual methane potential of digestate was 

established to be equal to 30 l CH4 / kg VS (residual) 

• VS (digestate): 0.25 kg VS / kg VS substrate 

• Final result: 7.6 / 345 l CH4 digestate / l CH4 produced = 0.022 

MJCH4/MJbiogas = 0.44 g CH4 / MJbiogas 

 

This result derives from a series of measurements on various plants using different 

substrates. The results obtained from Weiland, 2009, Gioelli et al., 2011 and Amon et al. 

2006a all converge towards the value chosen in this pathway.  

The value obtained following the IPCC Guidelines would instead be higher (using a B0 

potential of 360 l CH4/kg VS, the results would range between 0.03 MJCH4/MJbiogas at an 

average ambient temperature of 10°C and 0.077 MJCH4/MJbiogas at 20°C). But the values 

of IPCC are expected to be overestimated since the method only accounts for the reduction 

in absolute amount of VS but non for the difference in quality of such VS (with the majority 

of digestible compounds being already digested in the reactor). 
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Sources 

1 IPCC, IPCC Guidelines for National Greenhouse Gas Inventory, Vol. 4, Emissions from 

Livestock and Manure Management, 2006.  

2 Joint Research Centre (JRC-IET), Petten, the Netherlands, own calculations. 

3 Weiland, 2009. 

4 Amon, B. et al., 2006a 

5 Amon, B. et al.; 2006b 

6 Gioelli et al., 2011 

7 Amon, Th. et al., 2007a 

8 Amon, Th. et al., 2007b 

9 Khalid et al., 2011 

10 Oechsner et al., 2003 

11 Braun et al. 2009 

12 Bruni et al., 2010 

 

Digestate N2O emissions. 
Based on the IPCC guidelines, direct and indirect emissions of N2O (from re-deposition of 

volatilized ammonia and nitrogen oxides) are considered. 

Total N content in maize is considered to be equal to 0.37%f.m., and the content in digestate 

is assumed to be equal to 3.48 gN/kg silage fed to the digester (including a 6% losses in the 

digester and equivalent to an initial N content in the harvested maize of 1.06%dry) (see Table 

33). The total ammoniacal nitrogen is considered to be equal to 60% of the total N content. 

A factor of 0.005 of total N is emitted directly as N2O (IPCC, 2006, Vol. 10). 

Volatilization factors used are indicated in Table 33. 

 

Step 5: Biogas use 

A. Electricity production — combined heat and power (CHP) 

Table 38 Process for electricity generation via a biogas-fuelled gas engine CHP 

Electricity generation via biogas-fuelled gas engine CHP 

  I/O Unit Amount Source 

Biogas Input MJ/MJel. 2.78 1 

Electricity Output MJ 1.00  

Methane slip Output MJ/MJbiogas 0.017 2,4 

N2O Output g/MJbiogas. 0.00141 3 

Comments 

 The gross electrical efficiency of the CHP engine is considered to be 36 % based on a 

pool of references gathered by the JRC. From this efficiency, 1 % is considered to be 

internal consumption and should be subtracted.  
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 When the results are provided on the basis of a MJ of biogas, the final conversion 

efficiency is not relevant for the final emissions. 

 

Sources 

1 Murphy et al., Biogas from Crop Digestion, IEA Bioenergy Task 37, September 2011. 

2 Liebetrau et al., Eng. Life Sci. 10 (2010) 595–599. 

3 GEMIS v. 4.9, 2014, biogas-maize-noLUC-ICE-500-DE-2010/gross. 

4 Boulamanti et al., 2013 

 

B. Biomethane production 

There are currently many different technologies used to remove CO2 from the biogas stream 

in order to obtain a gas with the quality needed to be injected in the natural gas grid.  

None of these technologies are actually prominent in the market yet, since biogas upgrading 

is still developing, albeit at a fast pace. Therefore, for the purposes of this work, several 

different techniques of biogas upgrading are grouped into two broad categories, as follows: 

 

 Upgrading with venting of the off-gas [OVG – off-gas vented]: this group 

includes the following upgrading techniques in case a system to oxidize the methane 

in the off-gas is not installed: pressure swing absorption, pressure water scrubbing, 

membranes and organic physical scrubbing. The methane lost in the off-gas is 

considered to be emitted to the atmosphere. 

 Upgrading with oxidation of the off-gas [OGO – off-gas oxidized]: this group 

includes the following upgrading techniques in case the methane in the off-gas is 

oxidized: pressure swing absorption if the water is recycled, organic physical 

scrubbing, chemical scrubbing and cryogenic. In this case, the off-gases are 

considered to be flared with a high efficiency of methane conversion, so that no 

methane is released in the atmosphere. 

 

The biogas that is lost in the process is considered to amount to: 3–10 % PSA; 1–2 % water 

scrubbing; 2–4 % organic physical scrubbing; 0.1 % chemical scrubbing; <1 % cryogenic, 1-

15 % membranes. 
Table 39 Process for upgrading with venting of the off-gas 

Upgrading OGV 

  I/O Unit Amoun

t 

Source  

Comment 

Biogas Input MJ/MJCH4 1.03 

1, 2, 3, 4, 5, 

6, 7 

3 % of the methane is emitted from 

upgrading 

Electricity Input MJ/MJCH4 0.03 

Biomethane Output MJ 1.00 

CH4 Output MJ/MJCH4 0.03 
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Table 40 Process for upgrading with oxidation of the off-gas 

Upgrading OGO 

  I/O Unit Amount Source  Comment 

Biogas Input MJ/MJCH4 1.03 

1, 2, 3, 4, 5, 

6, 7 
No methane emitted from upgrading Electricity Input MJ/MJCH4 0.03 

Biomethane Output MJ 1.00 

Sources 

1 Petersson and Wellinger, 2009. 

2 De Hullu et al., 2008. 

3 Berglund M., 2006. 

4 Patterson et al., 2011. 

5 Lukehurst et al., 2010. 

6 Schulz, W., 2004. 

7 IEA Bioenergy; The biogas handbook; 2013 
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5.2 Biogas from manure 

 

A. Biogas for electricity 

 
 

B. BIOMETHANE 
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Manure is considered to be a residue, so no production step is required.  

 

Step 1: Transport 

 

The description of the road transport processes is given in Chapter 6 and will not be 

repeated here. Only the value of the 'distance' parameter is given. After receiving comments 

on the default values, the distance for manure was set to 5 km.  

 

Table 41 Transport distance for manure to biogas plant 

Transport of wet manure via a 40 t truck over a distance of 5 km (one way) 

  I/O Unit Amount 

Distance Input tkm/MJmanure (90% H2O) 0.0045 

Manure Input MJ/MJmanure (90% H2O) 1.0 

Manure Output MJ 1.0 

Comments 

 LHV (manure) = 12 MJ/kg dry. 

 Moisture (manure) = 90 %. 

 

Step 2: Digestion 

Process updated according to the workshop outcomes 

Following suggestions received during the workshop, the electricity consumption for the 

digestion process was differentiated for manure and maize. 

Below is the new process considered for manure digestion. 
 

Table 42 UPDATED Process for anaerobic digestion of manure 

Anaerobic digester (manure) 

  I/O Unit Amount Sources 

Electricity Input MJ/MJbiogas 0.020 1 

Heat Input MJ/MJbiogas 0.10 2 

Manure Input MJ/MJbiogas 2.38 See 

comment 

Biogas Output MJ 1.0  

Sources 

1. IEA Bioenergy; The biogas handbook, 2013. 

2. GEMIS 4.9, 2014. Fermenter\biogas-maize-0LUC-DE-2010. 

3. Boulamanti et al., 2013 
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Comments 

The efficiency of the digestion is considered to be equal to 42 % (in terms of energy 

content). The details for this calculation are explained in the following section (Step 3: 

Digestate storage). 

 

Step 3: Digestate storage 

Digestate is the name generally assigned to the residue from the anaerobic digestion. It is a 

liquid product that is generally used as fertilizer on the fields. Once it is collected from the 

digester, the digestate must be stored before it is applied again to the fields. However, the 

digestion process actually continues during the storage period, and the gases released can 

have an important impact on the final GHG balance of the pathway.  

The digestate can be stored either in an open or a closed tank: in the latter case, the 

additional biogas released during storage is recovered; in the former, the methane is 

released into the atmosphere.  

 
Table 43 Process for open-tank storage of digestate from manure 

Open-tank storage of digestate from manure 

  I/O Unit Amount 

Biogas Input MJ/MJbiogas 1.00 

CH4 Output MJ/MJbiogas 0.10 

N2O Output g/MJbiogas 0.066 

Biogas Output MJ 1.00 

 

Digestate methane emissions. 

Calculations were based on the following data:  

• LHV dry (slurry): 12 MJ/kg 

• Moisture (slurry): 90 %f.m. 

• VS (manure): 7 %f.m. (70% of total solids) 

• Methane yield: 200 l CH4/kgVS 

• Biogas composition: CH4 = 51 %vol., CO2 = 49 %vol. 

• VS reduction in digestion (calculated from carbon balance): 43 % 

• Density of digestate: 1 000 kg/m3 

• Temperature in digestate: ca. 20°C 

• Based on various sources, the residual methane potential of digestate was 

established to be equal to 35 l CH4 / kg VS (residual) 

• VS (digestate): 0.57 kg VS / kg VS substrate 

• Final result: 20 / 200 l CH4 digestate / l CH4 produced = 0.10 MJCH4/MJbiogas 

= 2.0 g CH4 / MJbiogas 
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This result derives from a series of measurements on various plants using different 

substrates. The results obtained from Weiland, 2009, Gioelli et al., 2011 and Amon et al. 

2006a all converge towards the value chosen in this pathway.  

The value obtained is also consistent with the number obtained following IPCC Guidelines at 

an average ambient temperature of 14°C. 

 

Sources 

1 IPCC, IPCC Guidelines for National Greenhouse Gas Inventory, Vol. 4, Emissions from 

Livestock and Manure Management, 2006.  

2 Joint Research Centre (JRC-IET), Petten, the Netherlands, own calculations. 

3 Weiland, 2009. 

4 Amon, B. et al., 2006a 

5 Amon, B. et al.; 2006b 

6 Amon, B. et al.; 2006c 

7 Gioelli et al., 2011 

8 Amon, Th. et al., 2006 

9 Amon, Th. et al., 2007a 

10 Sami et al., 2001 

11 Kaparaju et al., 2011 

12 Braun R., 1982 

13 El-Mashad et al., 2010 

14 Wang et al., 2011 

 

Digestate N2O emissions. 

Based on the IPCC guidelines, direct and indirect emissions of N2O (from re-deposition of 

volatilized ammonia and nitrogen oxides) are considered. 

Total N content in the original slurry is assumed to be equal to 3.6 gN/kg slurry (Battini, 

2014) (equivalent to 3.6%dry ) while the content in the digestate is assumed to be equal to 

3.38 gN/kg slurry fed to the digester. The total ammoniacal nitrogen (TAN) is considered to 

be equal to 60% of the total N content. 

A factor of 0.005 of total N is emitted directly as N2O (IPCC, 2006, Vol. 10). 

Volatilization factors used are taken from the latest EMEP/EEA guidelines (2013), and 

correspond to 20% of TAN released as ammonia and 0.01% of TAN as nitrogen oxides. No 

leaching is considered to happen from the storage tank. 

According to the IPCC guidelines 0.01 of the volatilized N is converted into N-N2O. 

 

Step 4: Biogas use 

 

This step is considered to be the same as in the pathway for maize.  
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5.2.1 Manure methane credits  

 

When raw (solid) manure or raw (liquid) slurry is stored, waiting to be spread on the fields, it 

releases gases in the atmosphere as result of bacterial activity.  

Methane is the main gas released by manure decomposition, but also nitrogen compounds 

such as N2O, NH3 and nitrogen oxides are released.  

When the manure is treated in an anaerobic digester, the methane produced is collected as 

biogas and either distributed in the natural gas grid or burned on-site in a gas engine to 

produce power and heat. The biogenic methane produced can be considered to be oxidised 

to CO2 (except for the losses during production, accounted in the calculations). 

It is unquestionable that if biogas is not produced, the raw manure/slurry management 

would cause higher GHG emissions compared to digestate management. This is mostly due, 

though, to common, less than optimal agricultural practices rather than to pure merits of the 

biogas pathway. 

Another important factor to keep into account is that biogas can be produced using solid 

manure or liquid slurry as feedstock material. While the processes leading to the GHG 

emissions from liquid slurry and digestate storage can be considered similar (also 

recommended by the IPCC Guidelines), emissions from solid manure piles are known to be 

significantly lower (due to more aerobic conditions); however the liquid part of the excreta 

has to be managed in a similar way to untreated slurry. 

Based on IPCC Guidelines, the ratio between the methane emissions due to slurry storage 

and the emissions due to digestate storage is simply given by the reduction of volatile solids 

(VS) during digestion (methane yield and methane conversion factor are suggested to be 

kept the same between the two situations). This implies that with the specific conditions 

assumed in our calculations (VS reduction = 43%) the credits would be equal to 1/0.57 = 

1.76 times the emissions from digestate storage. 

Considering that the methane emissions from digestate are equal to 10.0% of the produced 

methane, thus, the credits would be equal to 17.5% of the methane produced = 

0.175 MJ CH4 / MJ biogas = 3.5 g CH4/MJ biogas = 1.5 g CH4 / MJ manure = -

36.8 g CO2 eq. / MJ manure. 

Concerning N2O emissions, instead, considering that the proportion of ammoniacal nitrogen 

in the digestate is supposed to increase and that the total N is decreased due to losses in 

the digester, we assume that the net emissions from raw slurry and digestate are equal and 

thus the credit would simply balance out the N2O emissions assigned to digestate storage. 

Numerically this would be equal to 0.066 g N2O / MJ biogas = 

19.8 g CO2 eq. / MJ biogas = 0.03 g N2O / MJ manure = 8.3 g CO2 eq. / MJ manure.  
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5.3 Biogas from biowaste 

 

A. Biogas for electricity 

 

 
 

B. BIOMETHANE 
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Biowastes are considered to be a residue, so no production step is required.  

Bio-waste is defined as biodegradable garden and park waste, food and kitchen waste from 

households, restaurants, caterers and retail premises, and comparable waste from food 

processing plants and agroindustrial processing. It does not include forestry residues, 

manure, sewage sludge, or other biodegradable waste such as natural textiles, paper or 

processed wood. It also excludes those by-products of food production that never become 

waste. 

The pathways described here for the production of biogas and biomethane from the 

anaerobic digestion of biowastes are modelled mainly over Source Separated-Food Waste 

(SS-FW). 

 

Step 1: Transport 

 

The description of the road transport processes is given in Chapter 6 and will not be 

repeated here. Only the value of the 'distance' parameter is given. After receiving comments 

on the default values, the distance for municipal organic waste was set to  20 km.  

This value should not be interpreted as the fuel consumption due to the collection door-to-

door of the waste because the collection would have happened independently from the 

choice of producing biogas. This fuel consumption should be interpreted as additional 

transport of the feedstock from the waste collection/separation point to the plant where the 

digestion happens. 

 

Table 44: Transport distance for biowaste to biogas plant 

Transport of biowaste via a 40 t truck over a distance of 20 km (one way) 

 
I/O 

Unit Amount 

Distance 
Input tkm/MJmow (76% H2O) 0.0042 

Biowaste Input MJ/MJmow (76% H2O) 1.0 

Biowaste Output MJ 1.0 

 

Comments 

 LHV (Biowaste) = 20.7 MJ/kg dry. 

 Moisture (Biowaste) = 76.3 %. 

Sources 

1. Zhang et al., 2012.  
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Step 2: Digestion 

Process updated according to the workshop outcomes 

The electricity and heat consumption for the digestion process was updated. 

Below is the new process considered for Biowaste digestion. 

 
Table 45 UPDATED Process for anaerobic digestion of biowaste 

Anaerobic digester (biowaste) 

  I/O Unit Amount 

Electricity Input MJ/MJbiogas 0.030 

Heat Input MJ/MJbiogas 0.10 

Biowaste Input MJ/MJbiogas 1.45 

Biogas Output MJ 1.0 

 

Comments 

The efficiency of the digestion is considered to be equal to 69 % (in terms of energy 

content). The details for this calculation are explained in the following section (Step 3: 

Digestate storage). 

Sources 

1. GEMIS v. 4.9, 2014, fermenter/biogas–org. wastes–DE–2005.  

2. Zhang et al., 2012.  

 

Step 3: Digestate storage 

The digestate can be stored in either an open or a closed tank: in the latter case, the 

additional biogas released during storage is recovered; in the former, the methane is 

released in the atmosphere. The use of the digestate from the digestion of municipal organic 

wastes as fertilizer depends from its composition, since there are limit values for heavy 

metals, organic pollutants and pathogens in materials used as crop fertilizers.  

 
Table 46 Process for open-tank storage of digestate from biowaste 

Open-tank storage of digestate from biowaste 

  I/O Unit Amount 

Biogas Input MJ/MJbiogas 1.00 

CH4 Output MJ/MJbiogas 0.025 

N2O Output g/MJbiogas 0.032 

Biogas Output MJ 1.00 
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Digestate methane emissions. 

Calculations were based on the following data:  

• LHV dry (Biowaste): 20.7 MJ/kg 

• Moisture (Biowaste): 76.3 %f.m. 

• VS (Biowaste): 21.7 %f.m. 

• Methane yield: 438 l CH4/kgVS 

• Biogas composition: CH4 = 60 %vol., CO2 = 40 %vol. 

• VS reduction in digestion (based on carbon balance): 75.5 % 

• Density of digestate: 1 000 kg/m3 

• Temperature in digestate: ca. 20°C 

• Based on various sources, the residual methane potential of digestate was 

established to be equal to 44 l CH4 / kg VS (residual) 

• VS (digestate): 0.245 kg VS / kg VS substrate 

• Final result: 11 / 438 l CH4 digestate / l CH4 produced = 0.025 

MJCH4/MJbiogas = 0.49 g CH4 / MJbiogas 

This result derives from a mix of sources. The results obtained from Hansen et al., 2006 and 

Amon et al. 2006a converge towards the value chosen in this pathway.  

The value obtained following the IPCC Guidelines would be slightly higher (using a B0 

potential of 460 l CH4/kg VS, the results would range between 0.026 MJCH4/MJbiogas at an 

average ambient temperature of 10°C and 0.052 MJCH4/MJbiogas at 20°C).  

Sources 

1 IPCC, IPCC Guidelines for National Greenhouse Gas Inventory, Vol. 4, Emissions from 

Livestock and Manure Management, 2006.  

2 Joint Research Centre (JRC-IET), Petten, the Netherlands, own calculations. 

3 Weiland, 2009. 

4 Amon, B. et al., 2006a 

5 Amon, B. et al.; 2006b 

6 Amon, B. et al.; 2006c 

7 Amon, Th. et al., 2006 

8 Amon, Th. et al., 2007a 

9 Rapport et al., 2012 

10 Zhang et al., 2012 

11 Zhu et al., 2009 

12 El-Mashad et al., 2010 

 

Digestate N2O emissions 

Based on the IPCC guidelines, direct and indirect emissions of N2O (from re-deposition of 

volatilized ammonia and nitrogen oxides) are considered. 
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Total N content in the original biowaste is assumed to be equal to 8.17 gN/kg biowaste 

(Zhang, 2012) (equivalent to 3.44%dry ) while the content in the digestate is assumed to be 

equal to 7.68 gN/kg biowaste fed to the digester.  

A factor of 0.005 of total N is emitted directly as N2O (IPCC, 2006, Vol. 10). 

Volatilization factors used are taken from the IPCC guidelines, and correspond to 40% of the 

nitrogen content. No leaching is considered to happen from the storage tank. 

According to IPCC, 0.01 of the volatilized N is converted into N-N2O. 

Step 4: Biogas use 

This step is considered to be the same as in the pathway for maize and manure.  
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5.4 Co-Digestion 

Biogas plants with only one substrate are in practice rare, due to limited availability of any 

single feedstock and also for the convenience of simply disposing of multiple residues from 

the agricultural activities into the digester. This paragraph describes the methodology that 

could be applied to estimate the GHG emissions of biogas obtained by co-digestion between 

maize, manure and other biowastes. The combination of emissions from more than one 

substrate in a plant represents a deviation from the mass balance approach set in other 

regulation (e.g. the RED and FQD). This methodological choice is suggested in SWD (2014) 

259.   

A possible way to flexibly apply the GHG emissions calculated for pathways employing a 

single substrate (Table 98 and Table 99) to pathways using co-digested multiple substrates 

is to treat the co-digestion as a simple weighted average of the results obtained for single-

substrate pathways. The underlying assumption is that no significant synergies exist among 

the different substrates in the digester to change dramatically the overall productivity of 

biogas. This assumption is within the accuracy of the results needed for these calculations. 

The important methodological issue, however, resides in the choice of the basis for the 

weighted average. In fact, it would not be correct to simply use the LHV of the feedstocks as 

a basis, since maize and manure have very different biogas productivities and the typical 

GHG emissions are calculated on the basis of the biogas (energy) produced. 

Therefore, the methodology proposed is to base the average upon the share of biogas 

produced by each feedstock. The following formulas describe the calculations needed: 

 

Pn= Biogas yield n [
mbiogas

3

kgVS

] ⋅Volatile solidsn [
kgVS

kgwet feedstock

] ⋅LHVbiogas [
MJbiogas

mbiogas
3 ]  

 

Where Pn is the productivity of biogas each substrate n. 

 

The following standard values have been used in JRC calculations: 

 Biogas yield (maize) = 0.65 [m3 biogas / kg volatile solids] 

 Biogas yield (manure) = 0.39 [m3 biogas / kg volatile solids] 

 Biogas yield (biowaste) = 0.73 [m3 biogas / kg volatile solids] 

 Volatile solids (maize) = 0.336 [kg volatile solids / kg maize] (or 96% of dry matter 

content) 

 Volatile solids (manure) = 0.07 [kg volatile solids / kg manure] (or 70% of dry matter 

content) 

 Volatile solids (biowaste) = 0.22 [kg volatile solids / kg biowastes] 

 LHV biogas (maize) (53% CH4) = 19.0 [MJ / m3 biogas (@0°C, 1 atm)] 

 LHV biogas (manure) (51% CH4) = 18.3 [MJ / m3 biogas (@0°C, 1 atm)] 
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 LHV biogas (biowaste) (60% CH4) = 21.5 [MJ / m3 biogas (@0°C, 1 atm)] 

This produces as a result: 

 P (maize) = 4.16 [MJ biogas/kg wet feedstock] 

 P (manure) = 0.50 [MJ biogas/kg wet feedstock] 

 P (biowaste) = 3.41 [MJ biogas/kg wet feedstock] 

The final share of each substrate n to be used for the weighted average is then given for 

each feedstock n (maize, manure, biowastes) as: 

 

Sn= 
[Pn⋅Wn]

∑ [Pn⋅Wn]n
1

 

 

Where the Wn is considered to be the weighting factor of substrate n defined as: 

 

Wn= 
In

∑ In
n
1

⋅ (
1-AMn

1-SMn
) 

Where: 

In = Annual input to digester of substrate n [tonne of fresh matter] 

AMn = Average annual moisture of substrate n [kg water / kg fresh matter] 

SMn = Standard moisture for substrate n7. 

 

                                              
7 The moisture content used are: Manure 90%, Maize 65%, Biowaste 76%. 
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Figure 2: Relation between the initial wet mass share of maize (and manure) (variable 'I' in the 

formula) and the share of energy produced by both co-substrates (variable 'W').  

 

Figure 2 presents the relationship between In and Wn for the example in which manure and 

maize are co-digested. 

 

The final typical or default GHG emissions for a co-digestion case, starting from single-

feedstock values, would then be given by the following formula: 

 

GHG emissions (co-digestion) [
gCO2 eq.

MJbiogas
] = ∑ Sn⋅En

n

1
 

 

Where En represents the GHG emissions calculated for each single feedstock pathways 

(maize, manure, biowastes). 

Using this general formula it is possible to extract the typical or default value for any 

arbitrary composition of the feedstock mix to the digester. 
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6. Biomass and solid densified 

biomass pathways 

For this study, three types of biomass based energy carriers are considered: 

1 Chips; 

2 Pellets; 

3 Bales. 

These are considered in combination with nine different raw materials:  

 Forest logging residues 

 Short rotation coppice (SRC): Eucalyptus 

 Short rotation coppice (SRC): Poplar 

 Wood industry residues 

 Stemwood 

 Agricultural residues 

 Straw  

 Sugar cane bagasse 

 Palm kernel meal. 

As a result, the following pathways are studied: 

1. Woodchips from forest logging residues 

2. Woodchips from Eucalyptus 

3. Woodchips from Poplar 

4. Woodchips from wood industry residues 

5. Woodchips from stemwood 

6. Wood pellets from forest logging residues 

7. Wood pellets from Eucalyptus 

8. Wood pellets from Poplar 

9. Wood pellets from wood industry residues 

10. Wood pellets from stemwood 

11. Agricultural residues with bulk density < 0.2 t/m3 

12. Agricultural residues with bulk density > 0.2 t/m3 

13. Straw pellets 

14. Bagasse pellets/briquettes 

15. Palm kernel meal. 
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Transport scheme for solid biomass 

Table 47 Transport scheme for solid biomass pathways; distances are to plant gate8 

Pathways Distance tag 

Representative 

geographic 

origin 

Typical distances (km) 

Truck 

(chips/raw) 

Truck 

(pellets/finished 

product) 

Train 

(chips/pellets) 

Bulk carrier 

(chips/pellets) 

Woodchips 

1–500 km Intra-EU 500 - - - 

500–2 500 km Russia 250 - - 2 000 

2 500–10 000 km Brazil 200 - - 8 000 

> 10 000 km Western Canada - - 750 16 500 

Wood pellets 

1–500 km Intra-EU 50 500 - - 

500 – 2500 km Russia 50 250  2 000 

2500–10 000 km Brazil 50 200 - 8 000 

> 10 000 km Western Canada 100 - 750 16 500 

Agricultural residues 

1–500 km Intra-EU 500 - - - 

500–2 500 km Russia 250 - - 2 000 

2 500–10 000 km Brazil 200 - - 8 000 

> 10 000 km Western Canada - - 750 16 500 

Charcoal 
1–50 km Intra-EU - 50 - - 

> 10 000 km Brazil - 700 - 10 186 

Straw pellets 

1–500 km Intra-EU 50 500 - - 

500–10 000 km Brazil 50 200 - 8 000 

> 10 000 km Western Canada 100 - 750 16 500 

Bagasse 

pellets/briquettes 

500–10 000 km Brazil - 200 - 8 000 

> 10 000 km Brazil - 700 - 10 186 

Palm kernel meal > 10 000 km 
Malaysia — 

Indonesia 
50 700  13 000 

                                              
8 Specific combinations of feedstocks and transport schemes are excluded from the results because they would not represent any realistic situation. 
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Moisture schemes for solid biomass 

The moisture content of solid biomass fuels is a very important parameter throughout the 

pathways. Its effect is significant, especially on long-distance hauling of woodchips. 

The following figures aim to define the moisture content of the woody fuels along their 

production chain. 

 

 
 

Seasoning at roadside 

(open-air storage —

covered bundles) 

Residues collection + 

forward to roadside (+ 

bundling) 

Moisture = 50 % 

Moisture = 50 %  30 % 

Dry matter loss = 5 % 

Sources: Hamelinck, 2005; Kofman, 

2012 

Chipping Moisture = 30 % 

Transport of chips 

(truck — train — bulk 

carrier) 

Moisture = 30 % 

Woodchips pathway Wood pellets pathway 

Forest residues to woodchips and pellets pathways 

Moisture = 10 % Transport of pellets 

(truck — train — bulk 

carrier) 

Pellet mill Moisture = 50 % 10 % 

Moisture = 50 % Transport to pellet mill 

(50–100km) 

Chipping Moisture = 50 % 

Moisture = 50 % Residues collection + 

forward to roadside (+ 

bundling) 
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Stemwood harvest + 

forwarding 

Seasoning at terminal 

(open-air storage — 

covered) 

Moisture = 50 % 

Chipping Moisture = 30 % 

Transport of chips 

(truck — train — bulk 

carrier) 

Moisture = 30 % 

Stemwood harvest + 

forward  

Chipping 

Moisture = 50 % 

Moisture = 50 % 

Transport to pellet mill 

(50–100 km) 

Moisture = 50 % 

Transport of pellets 

(truck — train — bulk 

carrier) 

Moisture = 50 % 10 % Pellet mill 

Moisture = 10 % 

Moisture = 50 %  30 % 

Dry matter loss = 5 %  

Source: Hamelinck, 2005; Kofman 

2012 

Wood pellets pathway Woodchips pathway 

Stemwood to wood chips and pellets pathways 



 

 73 

 

SRC (eucalyptus+poplar) to woodchips and pellets pathways 

SRC cultivation + 

harvest 

Moisture = 50 % 

Chipping Moisture = 50 % 

Transport of chips to 

terminal (truck, 50 

km) 

Moisture = 50 %  30 % 

Dry matter loss = 12 % 

Source: Kofman, COFORD, 2012. 

Seasoning at terminal 

of chips (indoor 

storage of chips — no 

mechanical  

ventilation) 

Moisture = 50 % 

Wood pellets pathway Woodchips pathway 

SRC cultivation + 

harvest 

Chipping 

Moisture = 50 % 

Moisture = 50 % 

Transport to pellet mill 

(50 km–100 km) 

Moisture = 50 % 

Transport of pellets 

(truck — train — bulk 

carrier) 

Moisture = 50 %  10 % Pellet mill 

Moisture = 10 % 
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6.1 Woodchips 

The transportation schemes in the case of woodchips are shown in Table 52. 

 
Table 48 Transportation scheme for woodchips pathways 

  
Total travel-distance 

range 

Truck 

(chips) 

Truck 

(pellets) 
Train Ship Notes 

Woodchips 

pathways 

1–500 km 500    Intra-EU 

500–2 500 km 250   2 000 E.g. Russia 

2 500–10 000 km 200   8 000 E.g. Brazil 

Above 10 000 km   750 16 500 
E.g. Western 

Canada 
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A. Woodchips from forest logging residues (Pathway no 1) 

 

 
 

Step 1: Forest residues collection 

 

In the case of forest residues, a specific process is needed to account for the energy spent 
for their collection. In Table 49, the process depicted includes stump harvesting. Moreover, 
various logistic choices that are being developed, especially in Scandinavian countries, are 
considered, including the use of bundled and loose residues. The following steps are included 
in the process: 
 

 Forwarding 

 Bundling/lifting 

 Oil use 

 Forestry machinery transport 

 Load/unload. 
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Table 49 Process for forest residues collection 

Forestry residues collection including stump harvesting and chipping 

  I/O Unit Amount Source 

Wood Input MJ/MJwoodchips 1.00 2 

Diesel Input MJ/MJwoodchips 0.0120 1 

Woodchips Output MJ 1.00 1 

CH4 Output g/MJwoodchips 9.20E-6 3 

N2O Output g/MJwoodchips 3.85E-5 3 

Comments 

 LHV dry = 19 MJ/kg. 

 Moisture = 50 %. 

 This step is common for Pathways no 1, no 5 and no 9. 

 

Sources 

1 Lindholm et al., 2010. 

2 Sikkema et al., 2010. 

3 EMEP/EEA Guidebook 2013, Chapter 1.A.4.c.ii - Tier 1 - Table 3-1 -Forestry. 

 

Step 2: Forest residues seasoning 

 

By storage of bundled residues at the roadside over a period of 3 to 12 months, it is 

possible to reduce the moisture of the wood from 50 % down to about 30 %. This is 

essential to reduce costs and energy use in long-distance hauling of low-bulk, high-moisture 

biomass such as woodchips. However, the moisture loss is accompanied by dry matter 

losses due to bacterial activity within the stored wood. 

The storage technique is essential in order to minimise dry matter losses; that is why, in this 

pathway, it was decided to consider the open-air storage of bundled residues (covered with 

plastic or paper wrap), for a period of 3 to 8 months. 

 
Table 50 Process for forest residues bundles seasoning at forest roadside 

Forestry residues seasoning at roadside 

  I/O Unit Amount 

1, 2, 3 Wood Input MJ/MJwood 1.053 

Wood Output MJ 1.0 

 

Comments 

 LHV dry = 19 MJ/kg. 

 Moisture = from 50 % to 30 %. 

 It includes open air seasoning at roadside with the residues covered from rain. 
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 Storage is usually for a period of 3 to 8 months. 

 5 % of dry matter losses is considered. 

 This process is used for the woodchips pathways prior to chipping and prior to long-

distance hauling. 

 

Sources 

1 Hamelinck et al., 2005. 

2 Kofman, 2012. 

3 Lindholm et al., 2010. 

 

Step 3: Forest residues chipping 

 

In the case of forest residues, the output of the collection is loose or bundled residues. As a 

result, an additional process for chipping is necessary. 

 
Table 51 Process for woodchipping 

Woodchipping 

  I/O Unit Amount Source 

Wood Input MJ/MJwoodchips 1.025 1,2 

Diesel Input MJ/MJwoodchips 0.00336 1 

Woodchips Output MJ 1.00  

CH4 Output g/MJwoodchips 2.57E-06 3 

N2O Output g/MJwoodchips 1.07E-05 3 

Comments 

 LHV dry = 19 MJ/kg. 

 Moisture = 30 %. 

 Bulk density (chips) = 0.155 dry tonne/m3. 

 The process covers a range of scenarios including roadside chipping with small-scale 

diesel chipper and comminution at the power plant, using a large-scale electrical 

chipper. 

 This step is common for Pathways no 1, no 2, no 4, no 6, no 8 and no 10. 

Sources 

1 Lindholm et al., 2010. 

2 Sikkema et al., 2010. 

3 EMEP/EEA Guidebook 2013, Chapter 1.A.4.c.ii - Tier 1 - Table 3-1 –Forestry. 

 

Step 4: Transport 

The description of the transport processes is set out in Chapter 6 and will not be repeated 

here.  
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The transport distances, calculated as explained in Chapter 6, for all the road cases, are 

reported in Table 52, while the ones for maritime transport are detailed in Table 53. Table 

54 instead reports the distance value for the train transport section. 
Table 52 Transport distances via a 40 t truck of woodchips to final destination 

  I/O Unit 200 km 250 km 500 km 

Distance Input tkm/MJwoodchips 0.0156 0.0195 0.0390 

Woodchips Input MJ/MJwoodchips 1.0 1.0 1.0 

Woodchips Output MJ 1.0 1.0 1.0 

 
Table 53 Transport distances via bulk carrier of woodchips to final destination 

Maritime transport of woodchips over the planned distances (one way) 

  I/O Unit 2 000 km 8 000 km 16 500 km 

Distance Input tkm/MJwoodchips 0.1504 0.6015 1.2406 

Wood pellets Input MJ/MJwoodchips 1.0 1.0 1.0 

Wood pellets Output MJ 1.0 1.0 1.0 

 
Table 54 Transport distances via freight train of woodchips to port 

Transport of woodchips via a train over a distance of 750 km (one way) 

 I/O Unit Amount 

Distance Input tkm/MJwood pellets 0.0564 

Woodchips Input MJ/MJwood pellets 1.0 

Woodchips Output MJ 1.0 

Comments 

 LHV (woodchips) = 19 MJ/kg dry. 

 Moisture (woodchips) = 30 %. 

 

These values are valid for any pathway which involves the transportation of woodchips to a 

final destination. 
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B1. Woodchips from SRC - Eucalyptus (Pathway no 2a) 

 

 
 

Step 1: Eucalyptus cultivation 

Process updated in line with workshop outcomes. 

 

Short rotation coppice (SRC) is defined, according to Regulation (EU) No 1307/2013, as: 

"areas planted with tree species of CN code 06029041 to be defined by Member States, that 

consist of woody, perennial crops, the rootstock or stools remaining in the ground after 

harvesting, with new shoots emerging in the following season and with a maximum harvest 

cycle to be determined by the Member States."  

Regarding the difference between fast-growing species under short rotation coppice and 

short rotation forestry, the Delegated Act C(2014) 1460 final explains that: "as regards fast-

growing species, Member States shall define the minimum and maximum time before felling. 

The minimum time shall not be less than 8 years and the maximum shall not exceed 20 

years; This implies that "short rotation coppice" are expected to have a growing cycle : 

between 2 and 7 years". 

The various practices are thus characterized in this document as follows: 

 Short rotation coppice: rotations between 2 and 7 years; 

 Short rotation forestry: rotations between 8 and 20 years; 

 Conventional forestry operations: rotations above 20 years. 
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In practical terms, SRC practices for bioenergy pruposes entail growing of trees in extremely 

dense stands, harvested at specific intervals and regenerated from the stools, which are 

expected to survive five rotations at least. They differ from common forestry operations (i.e. 

for logging or for pulp and paper), because the rotation between harvests is shortened to 

about 3 to 5 years. 

The most common species generally cultivated for wood pulp are willow, poplar and 

eucalyptus; however, their use for bioenergy (with the management changes that this entails) 

is not yet commercially widespread.  

Currently, the cultivation of eucalyptus in tropical areas is common for charcoal and wood 

pulp production (Couto et al., 2011). Interest is rising to implement denser plantations for 

bioenergy production from eucalyptus. Poplar with relatively longer rotations is already 

extensively cultivated for wood furniture in Italy (González-García et al., 2012). 

After investigating several publications concerning eucalyptus plantations under short 

rotation, it was concluded that the data available in literature are rather scattered.  

The values for the yields of Eucalyptus were found to vary: from 5.5 t dry substance/(ha*yr) 

(Patzek and Pimentel, 2005) up to 22 t dry substance/(ha*yr) (Franke, B. et al., 2012). 

Depending on the soil quality, the GEF study indicates yields as low as 6.8 t dry 

substance/(ha*yr) for Mozambique and as high as 22 t dry substance/(ha*yr) for suitable 

land in Brazil. 

The data in the GEF report (Franke et al., 2012) are considered of high quality and thus form 

the basis for both eucalyptus and poplar cultivation processes. 

The process defined for the cultivation of eucalyptus is reported in Table 55. 

 
Table 55 Process for cultivation of eucalyptus 

Plantation of eucalyptus 

  I/O Unit Amount Source 

Diesel Input MJ/MJwood chips 5.98E-03 4 

N fertilizer Input kg/MJwood chips 9.29E-04 4 

P2O5 fertilizer Input kg/MJwood chips 3.56E-04 4 

K2O fertilizer Input kg/MJwood chips 7.43E-04 4 

CaO fertilizer Input kg/MJwood chips 1.08E-03 4 

Pesticides Input kg/MJwood chips 6.39E-06 4 

Seeds Input kg/MJwood chips 7.15E-05 4 

Wood chips Output MJ 1.0  

Field N2O emissions - g/MJwood chips 0.0193 4,5 

Field CO2 emissions-acidification - g/MJwood chips 0.3030 4,6 

CH4 Output g/MJwood chips 7.63E-06 7 

N2O Output g/MJwood chips 1.89E-05 7 
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Comments 

 This process represents an average between the values reported in Franke et al., 

2012 for three different conditions: Mozambique, Brazil (suitable fertile land), Brazil 

(less suitable land). 

 LHV dry = 19 MJ/kg. 

 Moisture = 50 %. 

 Yield = 12.9 t dry substance/(ha*yr) [4]. 

 Diesel = 1 469 MJ diesel/(ha*yr) [4]. 

 N- fertilizer = 228.2 kg N/(ha*yr) [4]. 

 P2O5 fertilizer = 87.5 kg P2O5/(ha*yr) [4]. 

 K2O fertilizer = 182.6 kg K2O/(ha*yr) [4]. 

 Pesticides / herbicides = 1.6 kg/(ha*yr) [4]. 

 Cao fertilizer = 266.3 kg CaO/(ha*yr) [4]. 

 This step is common for Pathways no 2, no 6 and nr 10.  

 This process considers the use of a combined harvester-chipper, so that the final 

products are directly wood chips. 

 

Sources 

1 Patzek, T. W. and D. Pimentel, Critical Reviews in Plant Sciences 24(2005) 327-364. 

2 van den Broek, R. et al. Biomass and Bioenergy 19(2000) 311-335. 

3 van den Broek, R. et al. Biomass and Bioenergy 21(2001) 335-349. 

4 Franke, B.; Reinhardt, G.; Malavelle, J.; Faaij, A.; Fritsche, U. Global Assessments and 

Guidelines for Sustainable Liquid Biofuels. A GEF Targeted Research Project. 

Heidelberg/Paris/Utrecht/Darmstadt, 29 February 2012. 

5 IPCC, 2006, N2O Guidelines. 

6 Joint Research Centre, (JRC-IET), Petten, the Netherlands, August 2012. 

7 EMEP/EEA Guidebook 2013, Chapter 1.A.4.c.ii - Tier 1 - Table 3-1 – Agricultural 

machinery. 
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Step 2: Transport to terminal 

 

The chips are transported from plantation roadside to a central terminal where they are 

stored to decrease the moisture content before long-distance hauling. 

 
Table 56 Transport of woodchips from roadside to terminal 

Transport of woodchips via a 40 t truck over 50 km 

  I/O Unit 50 km 

Distance Input tkm/MJwoodchips 0.0055 

Woodchips Input MJ/MJwoodchips 1.0 

Woodchips Output MJ 1.0 

 

Comments 

 LHV (woodchips) = 19 MJ/kg dry. 

 Moisture (woodchips) = 50 %. 

 

Step 3: Woodchips storage 

Storage conditions for woodchips can cause severe dry matter losses. This pathway 

considers indoor storage of a pile of chips, covered by plastic or paper wrap and with good 

natural ventilation in the room.  

Bacterial reactions in woodchips piles can cause emissions of methane. However, the data 

available are very limited (Wihersaari, 2005; Jäppinen et al., 2013) and the emissions have 

been shown to depend strongly on the storage conditions, ambient temperature and initial 

moisture content.  

With the conditions considered in this report, it is assumed that aeration is sufficient to 

minimize anaerobic conditions in the pile. Therefore, methane emissions are considered to 

be negligible. However, as more research is being carried out on the topic and more reliable 

data are gathered, this process may be updated and emissions may increase. 

 
Table 57 Storage and seasoning of woodchips at terminal 

SRC chips seasoning at terminal 

 I/O Unit Amount Sources 

Woodchips Input MJ/MJwood 1.136 1 

Woodchips Output MJ 1.0  
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Comments 

 

 LHV (woodchips) = 19 MJ/kg dry. 

 Moisture (woodchips) = from 50 % to 30 %. 

 It includes storage at central terminal in a closed environment without artificial 

ventilation, but with good natural ventilation. 

 The most common harvesting technique for SRC at present is a combined harvester 

and chipper, so chips need to be stored. 

 Storage is usually for a period of 3 to 8 months. 

 12 % dry matter losses are considered 

 Emissions of methane from storage are considered to be negligible in these 

conditions. 

Source 

1 Kofman, 2012. 

 

Step 4: Transport to end user 

 

See Table 52, Table 53 and Table 54 for the detailed values. 
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B2. Woodchips from SRC - Poplar (Pathway no 2b-c) 

 

 
 

Step 1: Poplar cultivation 

 

As explained above, poplar is currently cultivated in EU mostly for pulp and for furniture with 

rotations ranging typically around 9 – 12 years. 

However, poplar has been considered also as a species suitable for biomass for energy 

production under short rotation practices. Significant variations in yields and agricultural 

practices can be found in the literature, since interest in woody biomass for bioenergy is still 

recent (see for example Hauk et al., 2014). 

Dedicated SRC cultivation of poplar can undergo a rather intensive management (irrigation, 

weed and pest control, fertilization). However, poplar can also be cultivated in marginal land 

or in areas where other cultures cause significant nitrogen leaching (e.g. buffer strips). 

In order to reflect these two possible situations, two processes are proposed and described 

in Table 58 and Table 59. 
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Table 58 Process for cultivation of poplar (fertilized) 

Plantation of poplar 

  I/O Unit Amount Source 

Diesel Input MJ/MJwood chips 0.0126 1 

N fertilizer (synthetic) Input kg/MJwood chips 0.0 1 

Organic fertilizer (manure) Input kg/MJwood chips 0.0752 1 

Pesticides Input kg/MJwood chips 0.000015 1 

Poplar cuttings Input kg/MJwood chips 0.00021 1 

Woodchips Output MJ 1.0  

Field N2O emissions - g/MJwood chips 0.0067 1,2 

CH4 Output g/MJwood chips 1.61E-05 3 

N2O Output g/MJwood chips 3.98E-05 3 

 

Comments 

 LHV dry = 19 MJ/kg. 

 Moisture = 50 %. 

 Yield = 14 t dry substance/(ha*yr) [1]. 

 Diesel = 93.5 l diesel/(ha*yr) [1]. 

 Manure = 20000 kg /(ha*yr) [1]. 

 Assumed total N = 0.4% N over wet manure. Total = 80 kgN/ha/yr. 

 Pesticides / herbicides = 4 kg/(ha*yr) [1]. 

 This step is common for Pathways no 2b, no 6b and nr 10b.  

 The process models poplar cultivated in Ukraine on suitable land using organic 

fertilizer. 

 This process considers the use of a combined harvester-chipper, so that the final 

products are directly wood chips. 
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Table 59 Process for cultivation of poplar (No fertilization) 

Plantation of poplar 

  I/O Unit Amount Source 

Diesel Input MJ/MJwood chips 0.0176 1 

N fertilizer (synthetic) Input kg/MJwood chips 0.0  

Organic fertilizer (manure) Input kg/MJwood chips 0.0  

Pesticides Input kg/MJwood chips 2.11E-05 1 

Poplar cuttings Input kg/MJwood chips 2.89E-4 1 

Wood chips Output MJ 1.0  

Field N2O emissions - g/MJwood chips 0.0  

CH4 Output g/MJwood chips 2.25E-05 3 

N2O Output g/MJwood chips 5.57E-05 3 

 

Comments 

 LHV dry = 19 MJ/kg. 

 Moisture = 50 %. 

 Yield = 10 t dry substance/(ha*yr) [1]. 

 Yield is considered about 30% lower than the fertilized case as reported by Di 

Candilo et al., 2010. 

 Diesel = 93.5 l diesel/(ha*yr) [1]. 

 Manure = 20000 kg /(ha*yr) [1]. 

 Pesticides / herbicides = 4 kg/(ha*yr) [1]. 

 This step is common for Pathways no 2b, no 6b and nr 10b.  

 The process models poplar cultivated in Ukraine on suitable land using no fertilizer. 

 This process considers the use of a combined harvester-chipper, so that the final 

products are directly wood chips. 

 

Sources (for Table 58 and Table 59) 

1 Franke, B.; Reinhardt, G.; Malavelle, J.; Faaij, A.; Fritsche, U. Global Assessments and 

Guidelines for Sustainable Liquid Biofuels. A GEF Targeted Research Project. 

Heidelberg/Paris/Utrecht/Darmstadt, 29 February 2012. 

2 IPCC, 2006, N2O Guidelines. 

3 EMEP/EEA Guidebook 2013, Chapter 1.A.4.c.ii - Tier 1 - Table 3-1 – Agricultural 

machinery. 

 

The other steps are the same as described for the pathway 2a (Eucalyptus). 

 

  



 

 87 

C. Woodchips from wood industry residues (Pathway no 3) 

 

 

 

Residues from the wood industry such as sawdust and wood shavings are indeed considered 

as residues, and so no emissions are allocated to these products from their upstream 

processes. Moreover, they are already delivered as small chips, and thus do not require any 

additional processing before being delivered and transported. 

 

Step 1: Transport 

 

See Table 52, Table 53 and Table 54 for the detailed values. 
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D. Woodchips from stemwood (Pathway no 4) 

 

 
 

Step 1: Cultivation and harvest of stemwood 

 

Process updated in line with workshop outcomes. 
 

Table 60 Process for cultivation and harvesting of stemwood 

Cultivation of stemwood (mainly pine) 

 I/O Unit Amount Source 

Diesel Input MJ/MJbio 0.0107 1, 2 

Biomass Output MJ 1.00  

CH4 Output g/MJbio 8.16E-06 3 

N2O Output g/MJbio 3.41E-05 3 

Comments 

 LHV dry = 19 MJ/kg. 

 Moisture = 50 %. 

 The effects of standing carbon stock change are not included in the calculations. See 

for example (Agostini et al., 2013) for a discussion on the issue. 

 Even though fertilisation is included in the operations considered (diesel 

consumption), no N2O emissions are included in the process nor emissions for N-
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fertilizer production because fertilisation of native forests with urea is not a common 

practice in Europe but it is limited to a few parts of Scandinavia. 

Sources 

1 Berg and Lindholm, 2005. 

2 Aldentun, 2002. 

3  EMEP/EEA Guidebook 2013, Chapter 1.A.4.c.ii - Tier 1 - Table 3-1 – Forestry. 

 

The data collected include diesel, petrol, engine oil and electricity consumption for the 

following steps: 

 

 Seedling production and cultivation (from Aldentun (2002)) 

 Soil scarification 

 Cut-over clearing 

 Fertilisation (energy for application of fertiliser) 

 Cleaning 

 Regeneration 

 Logging 

 Forwarding to terminal. 

 

Following workshop input, the value for energy consumption in stemwood cultivation and 

harvesting was checked against additional literature sources. 

The investigation concluded that the value chosen is appropriate for several cases in 

European countries. 

Other sources indicate values of diesel consumption for forestry harvesting in the range of 

0.6 % to 0.8 % [MJdiesel/MJstemwood], but most of these values are only for the actual 

mechanical harvesting and primary hauling (Schwaiger and Zimmer, 2001; Michelsen et al., 

2008). The value chosen by the JRC also includes energy consumption for seedling 

establishment and forest regeneration. Values for non-Scandinavian countries might differ 

slightly regarding the latest processes, but we do not expect large variations on the 

harvesting/logging operations, which are the most energy intensive processes. 

Possible future improvements might include the use of urea as nitrogen fertilizer, if this 

practice becomes more common in European forests. This would imply additional emissions 

of N2O from the soil and the emissions associated to the production and application of urea 

balanced by the increased productivity of the forest (Sathre et al., 2010; Adams et al., 2005; 

Nohrstedt, 2001). 
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Sources 

1. Schwaiger, H. and Zimmer, B., 2001. 

2. Michelsen et al., 2008. 

3. Nohrstedt, H-Ö., 2001. 

4. Adams et al., 2005. 

5. Sathre et al., 2010. 

 

Step 2: Wood seasoning 

By storage of stemwood stems at a central terminal for a period of 3 to 12 months, it is 

possible to reduce the moisture of the wood, from 50 % down to about 30 %. This is 

essential to bring down costs and energy use in long-distance hauling of low-bulk, high-

moisture biomass such as woodchips. The moisture loss is, however, accompanied by dry 

matter losses due to bacterial activity within the stored wood. 

The storage technique is essential in order to minimise dry matter losses; for this reason, 

this pathway is considered as the open-air storage of stems, covered with plastic or paper 

wrap, for a period of 3 to 8 months. 
 

Table 61 Process for seasoning of stemwood at central terminal 

Stemwood seasoning at roadside 

 I/O Unit Amount Source 

Wood Input MJ/MJwood 1.053 1, 2 

Wood Output MJ 1.0  

Comments 

 LHV dry = 19 MJ/kg. 

 Moisture = from 50 % to 30 %. 

 It includes open air seasoning at terminal with the stems covered from rain. 

 Storage is usually for a period of 3 to 8 months. 

 5 % of dry matter losses are considered. 

 No emissions of methane are considered for this step in these conditions. 

 This process is used for the woodchips pathways prior to chipping and prior to long-

distance hauling. 

Sources 

1 Hamelinck, 2005. 

2 Kofman, 2012. 

 

Step 3: Transport 

See Table 52, Table 53 and Table 54 for the detailed values. 
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6.2 Pellets 

 

Pellets are a solid biofuel with consistent quality — low moisture content, high energy 

density and homogeneous size and shape.  

 

The transportation schemes for the pathways involving the use of pellets are shown in Table 

62. 

 
Table 62 Transportation scheme for pellets pathways 

  Total travel-distance range Truck (chips) 
Truck 

(pellets) 
Train Ship Notes 

Pellets 

pathways 

1–500 km 50 500   Intra-EU 

500 – 2500 km 50 250  2 000 E.g. Russia 

2500–10 000 km 50 200  8 000 E.g. Brazil 

Above 10 000 km 100  750 16 500 
E.g. Western 

Canada 

 

Three cases are considered for the pellets pathways, depending on the fuel source used for 

drying the feedstock in the pellet mill: 

 

 Case 1: Process heat from a fossil-fuelled boiler (usually NG); 

 Case 2: Process heat from an industrial pellet boiler;  

 Case 2a: Process heat from an industrial wood chips boiler; 

 Case 3: Process heat and electricity from a pellet CHP based on ORC technology. 

 Case 3a: Process heat and electricity from a wood chips CHP based on ORC 

technology. 
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A. Pellets from forest logging residues and stumps (Pathway no 5) 
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Step 1: Forest residues collection and chipping 

 

The same processes are used as in Pathway no 1; see Table 49 and Table 51. 

 

Step 2: Transport 

 

The transport processes are described in detail in Chapter 4 and are not repeated here. 

Transportation distances are calculated as explained in Chapter 4, and are reported in Table 

63, Table 64, Table 65 and Table 66. 

These processes are common to all the pellet pathways, including the woodchips transport 

to the pellet mill. 
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Table 63 Transport distance via a 40 t truck for woodchips to pellet mill 

Transport of wood pellets via a 40 t truck over the planned distances (one way) 

  I/O Unit 50 km 100 km 

Distance Input tkm/MJwoodchips 0.0055 0.0109 

Woodchips Input MJ/MJwoodchips 1.0 1.0 

Woodchips Output MJ 1.0 1.0 

Comments 

 LHV (woodchips) = 19 MJ/kg dry. 

 Moisture (woodchips) = 50 %. 

 
Table 64 Transport distance via a 40 t truck for wood pellets to final destination 

Transport of wood pellets via a 40 t truck over the planned distances (one way) 

  I/O Unit 200 km 500 km 

Distance Input tkm/MJwood pellets 0.0126 0.0316 

Woodchips Input MJ/MJwood pellets 1.0 1.0 

Wood pellets Output MJ 1.0 1.0 

 
Table 65 Transport distance via a bulk carrier for wood pellets to final destination 

Maritime transport of wood pellets over the planned distances (one way) 

  I/O Unit 8 000 km 16 500 km 

Distance Input tkm/MJwood pellets 0.4678 0.9649 

Wood pellets Input MJ/MJwood pellets 1.0 1.0 

Wood pellets Output MJ 1.0 1.0 

 
Table 66 Transport distance via a freight train for wood pellets to port 

Transport of wood pellets via a train over a distance of 750 km (one way) 

  I/O Unit Amount 

Distance Input tkm/MJwood pellets 0.0439 

Wood pellets Input MJ/MJwood pellets 1.0 

Wood pellets Output MJ 1.0 

 

Comments 

 LHV (wood pellets) = 19 MJ/kg dry. 

 Moisture (wood pellets) = 10 %. 
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Step 3: Pellet mill 

 

Process updated in line with workshop outcomes. 

 

Following workshop input, it was decided to revise the values for energy requirements in a 

pellet mill. The JRC received data from Dr Sven-Olov Ericson for Swedish sources, and from 

Mr. Yves Ryckmans from Laborelec. These data are representative of more than 50 pellet 

plants worldwide, processing different feedstocks in various combinations (from sawmill 

residues to 100 % stemwoodchips), and were based on real figures audited by an accredited 

independent company. 

According to this new information, the data for electricity consumption in a pellet mill using 

fresh chips (considered at 50 % moisture) have been revised as follows in Table 67 below. 

 
Table 67 Process for the production of pellets from fresh woodchips 

Production of wood pellets & briquettes from fresh forest chips: moisture ~ 50 %, and 

final pellet moisture 10 % 

  I/O Unit Amount Source 

Woodchips Input MJ/MJwood pellets 1.01 4 

Electricity Input MJ/MJwood pellets 0.050 5 

Heat Input MJ/MJwood pellets 0.185 1,2 

Diesel Input MJ/MJwood pellets 0.0020 1,3 

Wood pellets Output MJ 1.00  

CH4 Output g/MJpellets 1.53E-06 6 

N2O Output g/MJpellets 6.40E-06 6 

 

Sources 

1 Hagberg et al.,2009. 

2 Obernberger, I. and Thek, G., The Pellet Handbook, 2010. 

3 Mani, 2005. 

4 Sikkema et al., 2010. 

5 Ryckmans, 2012. 

6 EMEP/EEA Guidebook 2013, Chapter 1.A.4.c.ii - Tier 1 - Table 3-1 – Forestry. 

 

The values for a pellet mill using a mix of wet and dry sawdust have been left unchanged, 

since the current values were confirmed by the new information received. 
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The values for heat and fuel for internal consumption have also remained unchanged, and 

they are in the range indicated by several independent sources (Hagberg et al., 2009; 

Obernberger and Thek, 2010; Mani, 2005). The heat demand is based on the value of 1100 

kWh/tonne of evaporated water (as indicated by Obernberger and Thek (2010)) and 

considering a drying of the feedstock from 50% moisture input down to 10% moisture in 

output. 

All the wood chips delivered at 50% at the plant are considered to be dried down to 10% 

before being utilised either in the pellet mill or in the chips boiler or CHP. 
The addition of a limited amount of organic additives is permitted under international 

standards; however, the use of such materials is generally limited to pellets for domestic 

use, since they need better characteristics to work efficiently in small-scale domestic stoves. 

The amounts used are also limited, and vary greatly throughout the market; additives can 

also be avoided with proper mixing and steam conditioning of the feedstocks (Obernberger 

and Thek, 2010). The JRC decided therefore not to include the energy and emissions due to 

additives. If their use becomes more important in future, the JRC will update the pathways. 

 

Comments 

 Pellets LHV dry = 19 MJ/kg. 

 Moisture woodchips = 50 %. 

 Moisture pellets = 10 %. 

 Bulk density (chips) = 0.155 dry tonne/m3. 

 Bulk density (pellets) = 0.650 dry tonne/m3. 

 Fuel: diesel for internal handling of wood. 

 Electricity consumption was measured at the plant gates and it thus includes not only 

consumption by the pellet press but also consumption from all auxiliaries (drying, 

boilers offices etc…). 

 This process is similar for all pathways involving pellet production from fresh chips. 

 

The electricity needed for the process can be either taken from the grid at 0.4kV (cases 1, 2 

and 2a) or produced internally by CHP (Case 3 and 3a).  

The heat needed can be produced by a NG boiler (Case 1), by a pellet boiler (Case 2), by a 

chips boiler (Case 2a), by pellet CHP (Case 3) or by chips CHP (Case 3a). 

The processes for these auxiliary components are summarised in Table 16, Table 17, Table 

18, Table 19 and Table 20. 
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B1. Pellets from SRC - Eucalyptus (Pathway no 6a) 

 

 
The processes involved in this pathway have been all previously described in Table 55, Table 

56 and Table 67. The transport distances are indicated in Table 63, Table 64, Table 65 and 

Table 66.  
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B2. Pellets from SRC - Poplar (Pathway no 6b-6c) 

 

 
The processes involved in this pathway have been all previously described in Table 58, Table 

56 and Table 67.  

The transport distances are indicated in Table 63, Table 64, Table 65 and Table 66 
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C. Pellets from wood industry residues (Pathway no 7) 
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Step 1: Pellet mill 

 

For this pathway, a different process for the pellet mill is needed, because of the lower 

consumption of electricity (less power is needed for the grinding phase, compared to chips), 

and of heat (since the mix of wet and dry feedstock has a lower moisture content than fresh 

chips). 

 
Table 68 Process for the production of pellets from a mix of wet and dry residues 

Production of wood pellets & briquettes from wood industry residues 

 I/O Unit Amount Source 

Sawdust Input MJ/MJwood pellets 1.01 5 

Electricity Input MJ/MJwood pellets 0.028 1, 3, 4 

Heat Input MJ/MJwood pellets 0.111 1, 2 

Diesel fuel Input MJ/MJwood pellets 0.0016 1, 3 

Wood pellets Output MJ 1.0  

CH4 Output g/MJpellets 1.23E-06 6 

N2O Output g/MJpellets 5.12E-06 6 

 

Comments 

 Chips/pellets LHV dry = 19 MJ/kg. 

 Moisture pellets = 10 %. 

 Moisture wet sawdust = 50 %. 

 Moisture dry sawdust = 10 %. 

 Fuel: diesel internal transport. 

 Bulk density (chips) = 0.155 dry t/m3
. 

 Bulk density (pellets) = 0.650 dry t/m3
. 

 The results are a weighted average between the process for dry and wet industry 

residues. The weight was based on market research and it amounts to 60 % wet and 

40 % dry sawdust. [4]  

 For the cases 2a and 3a it is considered that only the dry part of sawdust is used to 

fuel the boiler and the CHP. 

 Electricity consumption was measured at plant gate so it includes both consumption 

for pellet press but also for auxiliaries (drying, boilers, offices etc…). 

Sources 

1 Hagberg et al., IVL, 2009; 

2 Obernberger and Thek, 2010; 

3 Mani, S., 2005; 

4 Christian Rakos, Propellets Austria, personal communication, 27 June 2011. 
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5 Sikkema et al., 2010. 

6 EMEP/EEA Guidebook 2013, Chapter 1.A.4.c.ii - Tier 1 - Table 3-1 – Forestry. 

 

The electricity needed for the process can be taken either from the grid at 0.4 kV (cases 1, 2 

and 2a) or produced internally by CHP (Case 3 and 3a). The heat needed can be produced by 

a NG boiler (Case 1), by a pellet/sawdust boiler (Case 2/2a) or by CHP (assumed equal to the 

process used for wood chips) (Case 3/3a). 

 

Step 2: Transport 

 

The transport distances are indicated in Table 63, Table 64, Table 65 and Table 66. 
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D. Pellets from stemwood (Pathway no 8) 
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All the processes of this pathway have been already described and can be found in Table 60, 

Table 56 and Table 67. 

The transport distances are indicated in Table 63, Table 64, Table 65 and Table 66. 

Details on calculations for cases 2/2a and 3/3a 

Cases 2 and 3. 

In these cases the finished products of the pellet mill (pellets) are used to supply the power 

and heat needed by the mill itself. In practice, this solution is rarely used sinceit is 

economically more favourable to use of woodchips and other residues (e.g. bark) rather than 

pellets. 

 

Here are the detailed calculations for the mass and energy balances of these two cases: 

 

Case 2: 

 

 
 

The additional pellets to be produced can be calculated as: 

 

Additional pellets=
Heatmill

(ηth.-Heatmill)
=

0.185

(0.89-0.185)
=0.262 MJ MJpellet produced⁄  

 

Where: 

Heatmill represents the amount of heat required to dry a MJ of pellet and ηth represents the 

thermal efficiency of the pellet boiler. 

 

  

Pellet mill (drying + press)
Heat = 0.185 MJ / MJ 

pellet

Pellet boiler 
(89% efficiency)

Heat = 0.234 MJ / MJ pellet
Wood chips 

total = 1.01 x 
(1+0.262) MJ / 

MJ pellet

Wood chips 
@ 50% 

moisture

Total pellets = 
1+0.262 MJ / 

MJ pellet

Additional 
pellets = 0.262 
MJ / MJ pellet

Pellets 
produced = 1 

MJ @ 10% 
moisture
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Case 3: 

 

 
 

In the case of a CHP, the dimensioning of the engine can be based on the heat or power 

requirements of the pellet mill. In this case, it is considered that the CHP is dimensioned on 

the power requirements as this is achievable with the engine characteristics. In the real 

world this technology is not widely employed but the decision whether to dimension the 

engine on the heat needs and purchase power from the grid or to dimension on the power 

needs will be based on economic considerations. 

The additional pellets required can be calculated as follows: 

 

Additional pellets=
El.mill

(ηel.-El.mill)
=

0.05

(0.163-0.05)
=0.442 MJ MJpellet produced⁄  

 

The criterion to verify whether the CHP can be dimensioned on the power needs of the plant 

is give by the formula: 

Additional pellets* Max ηth.achievable≥Heat required by the mill to produce 1+Additional pellets 

 

Cases 2a and 3a. 

In these cases the intermediate product of the pellet mill (dried wood chips) are used to 

supply the power and heat needed by the mill itself. This solution is the most commonly 

used in practice. Other residues are generally used for power and heat production, such as 

bark, but pre-drying is often still necessary (since the fresh bark has a moisture >50%) and 

the only bark is generally not enough to provide energy for the whole mill. So, in this 

calculation it is assumed that all the power and heat are supplied by wood chips. 

 

  

Pellet mill (drying + press)
Heat = 0.185 MJ / MJ pellet

Electricity = 0.05 MJ / MJ 
pellet

Pellet CHP 
(16.3% el. 
efficiency)

Electricity = 0.072 MJ / MJ pellet
Heat = 0.267 MJ / MJ pellet

Wood chips 
total = 1.01 x 

(1+0.442) MJ / 
MJ pellet

Wood chips 
@ 50% 

moisture

Total pellets = 
1+0.442 MJ / 

MJ pellet

Additional 
pellets = 0.442 
MJ / MJ pellet

Pellets 
produced = 1 

MJ @ 10% 
moisture
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Case 2a: 

 

 
 

The additional chips to be supplied can be calculated as: 

 

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑖𝑝𝑠 =
𝐻𝑒𝑎𝑡𝑚𝑖𝑙𝑙 ∗ 1.01

(𝜂𝑡ℎ. − 𝐻𝑒𝑎𝑡𝑚𝑖𝑙𝑙)
=

0.185 ∗ 1.01

(0.85 − 0.185)
= 0.281 𝑀𝐽 𝑀𝐽𝑝𝑒𝑙𝑙𝑒𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑⁄  

 

Case 3a: 

 

 
In the case of a CHP engine fuelled with wood chips it is not possible anymore to dimension 

the CHP on the power needs only, because the heat requirement would not be fulfilled. 

Therefore, the CHP is dimensioned over the heat demand and an excess electricity is 

exported to the grid. 

 

The additional chips required can be calculated as follows: 

 

Pellet mill 
(drying)

Heat = 0.185 MJ / 
MJ pellet

Wood chips boiler 
(85% efficiency)

Wood chips total 
= 1.01 + 0.281 
MJ / MJ pellet

Wood chips 
@ 50% 

moisture

Total chips dried 
= 1.01+0.281 MJ / 

MJ pellet

Additional chips 
= 0.281 MJ / MJ 

pellet

Pellets 
produced = 1 

MJ @ 10% 
moisture

Pellet mill 
(press)

El. = 0.05 MJ / 
MJ pellet

Chips for pellet 
= 1.01 MJ / MJ 

pellet

Heat = 0.239 MJ / MJ pellet

Pellet mill 
(drying)

Heat = 0.185 MJ / 
MJ pellet

Electricity = 0.05 
MJ / MJ pellet

Wood chips CHP 
(69.6% efficiency)

Wood chips total 
= 1.01 + 0.366 
MJ / MJ pellet

Wood chips 
@ 50% 

moisture

Total chips dried 
= 1.01+0.366 MJ / 

MJ pellet

Additional chips 
= 0.366 MJ / MJ 

pellet

Pellets 
produced = 1 

MJ @ 10% 
moisture

Pellet mill 
(press)

El. = 0.05 MJ / 
MJ pellet

Chips for pellet 
= 1.01 MJ / MJ 

pellet

Heat = 0.239 MJ / MJ pellet
Electricity = 0.05 MJ / MJ pellet

Excess electricity = 
0.01 MJ / MJ pellet
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𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑖𝑝𝑠 =
𝐻𝑒𝑎𝑡𝑚𝑖𝑙𝑙 ∗ 1.01

(𝜂𝑡ℎ. − 𝐻𝑒𝑎𝑡𝑚𝑖𝑙𝑙)
=

0.185 ∗ 1.01

(0.696 − 0.185)
= 0.366 𝑀𝐽 𝑀𝐽𝑝𝑒𝑙𝑙𝑒𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑⁄  

 

This amount of wood chips would produce the following excess electricity: 

 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = (𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑐ℎ𝑖𝑝𝑠 ∗  𝜂𝑒𝑙.) − 𝐸𝑙.𝑚𝑖𝑙𝑙 = (0.366 ∗ 0.163) − 0.05

= 0.096 𝑀𝐽 𝑀𝐽𝑝𝑒𝑙𝑙𝑒𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑⁄  
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6.3 Charcoal (Pathway eliminated) 

Process updated in line with workshop outcomes 

 

Pathway: charcoal v torrefied biomass 

 

Following feedback and input received from experts and stakehodelrs as a follow-up of 

various consultations,  the JRC decided that the pathway for charcoal production has no 

place in regulation addressing feedstocks for power and heat production.  

Workshop discussions with experts helped ascertain that charcoal produced in, or imported 

to, Europe is mostly used either for recreational purposes (e.g. as a heat source for 

barbeques), or for the metallurgical industry (as a source of heat and carbon). It has no use 

in the industrial production of power and heat. 

Emissions from the charcoal production pathway should therefore be accounted for using 

other policy instruments (e.g. the ETS). 

 

It was proposed that the JRC focus on the definition of a pathway for torrefied and densified 

torrefied biomass, rather than one for charcoal production. Owing to the scarcity of 

commercial operations and thus of operational data, this is not yet possible, but the JRC will 

continue to monitor technological developments in the field. 
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6.4 Other raw materials 

A. Agricultural residues with bulk density <0.2 tonne/m3 (Pathway no 11) 

 

 
 

This group of materials includes agricultural residues with a low bulk density; it includes 

materials such as: straw bales (chosen as a model component), oat hulls, rice husks and 

sugar cane bagasse bales. 

Properties of model compound: 

 bulk density: 0.125 tonne/m3 

 LHV dry = 18 MJ/kg 

 moisture = 13 %. 

 

B. Agricultural residues with bulk density >0.2 tonne/m3 (Pathway no 12) 

 
 

The group of agricultural residues with higher bulk density includes materials such as: corn 

cobs, nut shells, soybean hulls and palm kernel shells. 

Properties of model compound: 

 bulk density: 0.3 tonne/m3 

 LHV dry = 18 MJ/kg 

 moisture = 13 %. 

Baling of residues

Transport 

(bales/truck — ship)

Residues processing

Transport 

(pellets/truck — ship)
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Step 1: Processing 

 

Since all of these materials require a preprocessing step before being transported, whether 

this be baling or additional grinding or clustering, one single process was chosen, and it was 

assimilated to the process for baling straw. 

 
Table 69 Process for agri-residues preprocessing 

Baling/processing 

 I/O Unit Amount Source 

Agri-residue Input MJ/MJbale 1.0 1 

Diesel Input MJ/MJbale 0.010 1 

Bales Output MJ 1.0 1 

CH4 Output g/MJbale 1.23E-05 2 

N2O Output g/MJbale 3.03E-05 2 

Comments 

 This process is valid for straw baling, but can also be considered valid for other 

processes such as nut crushing.  

 This process is used in both agricultural residues pathways (no 11 and no 12), but 

also for straw baling in the straw pellets pathway (no 13). 

Sources 

1 GEMIS v. 4.9, 2014, Xtra-residue\straw bales-DE-2010. 

2 EMEP/EEA Guidebook 2013, Chapter 1.A.4.c.ii - Tier 1 - Table 3-1 – Agricultural 

Machines. 

Step 2: Transport 

Table 70 Transport distances via a 40 t truck of agri-residues to final destination 

Transport of agri-residues via a 40 t truck over the planned distances (one way) 

  I/O Unit 200 km 250 km 500 km 

Distance Input tkm/MJresidues 0.0133 0.0166 0.0332 

Agri-residues Input MJ/MJresidues 1.0 1.0 1.0 

Agri-residues Output MJ 1.0 1.0 1.0 

Table 71 Transport distances via a bulk carrier of agri-residues to final destination 

Maritime transport of agri-residues over the planned distances (one way) 

  I/O Unit 2 000 km 8 000 km 16 500 km 

Distance Input tkm/MJresidues 0.1277 0.5109 1.0536 

Agri-residues Input MJ/MJresidues 1.0 1.0 1.0 

Agri-residues Output MJ 1.0 1.0 1.0 
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Table 72 Transport distance via a freight train of agri-residues to port 

Transport of agri-residues via a train over a distance of 750 km (one way) 

  I/O Unit Amount 

Distance Input tkm/MJresidues 0.0479 

Agri-residues Input MJ/MJresidues 1.0 

Agri-residues Output MJ 1.0 

 

Comments 

 LHV dry (residues) = 18 MJ/kg. 

 Moisture (residues) = 13 %. 

C. Straw pellets (Pathway no 13) 

 

 
 

Step 1: Baling 

The process for straw baling is assumed to be the same as the process illustrated in Table 

69. 

  

Straw baling

Truck transport 

(bales — 50 km)

Pellet mill (straw)

Transport (pellets 

— truck/ship)

Electricity

Grid
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Step 2: Pellet mill 

Table 73 Process for the production of pellets from straw bales 

Production of straw pellets 

 I/O Unit Amount Source 

Straw bales Input MJ/MJpellet 1.01 1,4 

Electricity EU mix LV Input MJ/MJpellet 0.020 1,2,3,5 

Straw pellets Output MJ 1.0  

 

Comments 

 LHV dry (straw) = 17.2 MJ/kg. 

 Moisture pellets = 10 %. 

 Moisture bales = 13.5 %. 

 Bulk density (bales): 0.125 dry tonne/m3. 

 Bulk density (pellets): 0.650 dry tonne/m3. 

 The electricity needed is taken from the grid. 

 No process heat is needed since straw is already sufficiently dry by nature.  

 The electricity consumption is an average value among the sources 1 to 4. 

Sources 

1. Sultana et al., 2010. 

2. GEMIS v. 4.9, 2014, processing/straw-EU-pellets-2020. 

3. Pastre, O., Analysis of the technical obstacles related to the production and the 

utilisation of fuel pellets made from agricultural residues, EUBIA, Pellets for Europe, 

2002. 

4. Sikkema et al., 2010. 

5. Giuntoli et al., 2013. 

 

Step 3: Transport 

 

Table 74 Transport distances via a 40 t truck of straw bales to pellet mill 

Transport of straw bales via a 40 t truck over the planned distances (one way) 

  I/O Unit 50 km 100 km 

Distance Input tkm/MJbales 0.0035 0.0070 

Straw bales Input MJ/MJbales 1.0 1.0 

Straw bales Output MJ 1.0 1.0 
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Table 75 Transport distances via a 40 t truck for straw pellets to final destination or port 

Transport of straw pellets via a 40 t truck over the planned distances (one way) 

  I/O Unit 200 km 500 km 

Distance Input MJ/MJstraw pellet 0.0140 0.0349 

Straw pellets Input MJ/MJstraw pellet 1.0 1.0 

Straw pellets Output MJ 1.0 1.0 

 

Table 76 Transport distances via a bulk carrier for straw pellets to final destination 

Maritime transport of straw pellets over the planned distances (one way) 

  I/O Unit 8 000 km 16 500 km 

Distance Input MJ/MJstraw pellet 0.5168 1.0659 

Straw pellets Input MJ/MJstraw pellet 1.0 1.0 

Straw pellets Output MJ 1.0 1.0 

 

Table 77 Transport distances via a freight train for straw pellets to port 

Transport of straw pellets via a train over a distance of 750 km (one way) 

 I/O Unit Amount 

Distance Input MJ/MJstraw pellet 0.0484 

Straw pellets Input MJ/MJstraw pellet 1.0 

Straw pellets Output MJ 1.0 

 

Comments 

 LHV dry (straw) = 17.2 MJ/kg. 

 Moisture (straw bales) = 13.5 %. 

 Moisture (straw pellets) = 10 %. 

Straw bales transportation 

It was suggested during the workshop that, due to the limited scales of projected straw 

pellets production facilities, the distance for transport of bales could be reduced from the 

originally stated 50 km. However, in view of future development with larger-scale plants and 

with the objective of being conservative in the choice of values, the JRC decided to maintain 

the value of 50 km for transportation of straw bales from the field to the processing plant.  

Moreover, Sultana and Kumar (2011) indicate that for a Canadian situation, the optimum 

radius of straw collection could even be as high as 94 km. In another reference, Monforti et 

al. (2013) have suggested an average transport distance of 70 km to supply a CHP straw-

fired power plant of 50 MWth capacity. 

Sources 

1. Sultana, A. and A. Kumar, 2011. 

2. Monforti et al., 2013. 
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D. Bagasse pellets/briquettes (Pathway no 14) 

 
 

Step 1: Utilities 

While bagasse bales are included in Pathway no 12 with other similar residues, the 

production of pellets requires an additional process and thus a different pathway. 

For the purposes of this work, the process for a pellet mill is considered to be the same as 

the one for pellets from fresh woodchips described in Table 67. 

Moreover, no transport of the bagasse bales is considered, because it is assumed that the 

production of pellets is carried out in the sugar mill and thus the associated emissions do 

not need to be allocated to the bagasse. 

 
Table 78 Process for bagasse CHP 

Bagasse CHP 

  I/O Unit Amount Source 

Bagasse Input MJ/MJheat 2.1676 2 

Heat  Output MJt 1.00 2 

Electricity Output MJ/MJheat 0.3621 2 

CH4 emissions - g/MJheat 0.0053 1 

N2O emissions - g/MJheat 0.0027 1 

 

Comments 

 LHV dry (bagasse)9 = 17.0 MJ/kg. 

 Moisture = 50 %. 

                                              
9  See for example: Phyllis database https://www.ecn.nl/phyllis2/Browse/Standard/ECN-Phyllis#bagasse (last 

accessed July 2014) 

Pellet mill (same 

as for fresh 

woodchips)

Transport (pellets 

— truck/ship)

Electricity

Bagasse CHP
Heat

https://www.ecn.nl/phyllis2/Browse/Standard/ECN-Phyllis#bagasse
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 Thermal efficiency (on LHV) = 46.1 %. 

 Electrical efficiency (on LHV) = 16.7 %. 

 The process produces excess electricity which is exported to the grid. 

 The process heat is fully provided by the CHP. 

 Methane and N2O, despite being biogenic, are included in the GHG emissions from the 

process. 

 

Sources 

1. GEMIS v. 4.9, 2014. Bagasse-ST-BR-2010. 

2. Fulmer, 1991. 

 

Step 2: Transport 

Table 79 Transport distances via a 40 t truck for bagasse pellets/briquettes to final destination 

Transport of bagasse briquettes via a 40 t truck over the planned distances (one way) 

  I/O Unit 200 km 700 km 

Distance Input tkm/MJbagasse pellets 0.0141 0.0494 

Bagasse pellets Input MJ/MJbagasse pellets 1.0 1.0 

Bagasse pellets Output MJ 1.0 1.0 

Table 80 Transport distances via a bulk carrier for bagasse pellets/briquettes to final destination 

Maritime transport of bagasse pellets over the planned distances (one way) 

  I/O Unit 8 000 km 10 186 km 

Distance Input tkm/MJbagasse pellets 0.523 0.666 

Bagasse pellets Input MJ/MJbagasse pellets 1.0 1.0 

Bagasse pellets Output MJ 1.0 1.0 

Comments 

 LHV dry (bagasse) = 17.0 MJ/kg. 

 Moisture (bagasse pellets) = 10 %. 

 Bulk density (bagasse pellets) = 0.65 t/m3. 

 Bulk density dry (exit mill)10 = 0.12 t/m3 

 Bulk density dry (bales)11 = 0.17 kg/m3   

                                              
10  See for example: http://www.sugartech.co.za/density/index.php (last accessed July 2014) 
11  See for example: http://www.sulekhab2b.com/viewoffer/sell/381529/biomass-briquettes-ground-nut-and-

sugar-cane.htm (last accessed July 2014) 

http://www.sugartech.co.za/density/index.php
http://www.sulekhab2b.com/viewoffer/sell/381529/biomass-briquettes-ground-nut-and-sugar-cane.htm
http://www.sulekhab2b.com/viewoffer/sell/381529/biomass-briquettes-ground-nut-and-sugar-cane.htm
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E. Miscanthus bales (Pathway eliminated) 

 

Pathway: Miscanthus 

 

Following workshop input and further investigation of the available literature, the JRC has 

come to the conclusion that there are not enough reliable data on commercial operations 

with Miscanthus to produce a meaningful pathway.  

The market for Miscanthus cultivation is not yet developed; trials have been conducted in 

Europe from the 1990s, and more recently in the United States. However, the total cultivated 

area in Europe is estimated to be only in the range of 2 000 ha to 5 000 ha [1]. Also, the 

results of the trials have produced largely scattered data with yields varying dramatically 

depending on soil type, water availability and temperature (Heaton et al., 2010). Moreover, 

the nutrients cycle is not yet completely defined and recommendations do not exist (Cadoux 

et al., 2012). Finally, specialised machinery for harvesting and baling does not yet exist and 

machines originally designed for hay and straw are used, which are not optimal for the 

characteristics of Miscanthus (Nixon and Bullard, 2003). 

By analysing different values for Miscanthus cultivation found in the literature, it was 

possible to locate a large variation in GHG emissions. Without explaining the calculations in 

detail, we may note that from using coherent emission factors between different sets of 

data, values ranging from 0.5 g CO2eq/MJMiscanthus to 8.6 g CO2eq/MJMiscanthus were found [5 – 8]. 

It is thus at present very difficult to assess typical values for Miscanthus cultivation; this 

pathway will likely become important in the near or medium future, at which point the JRC 

will be ready to present a reliable model. 

Sources 

1. See http://miscanthus.de/flachen.htm online (last accessed July 2014). 

2. Heaton et al., 2010. 

3. Cadoux et al., 2012. 

4. Nixon, P. and Bullard, M., 2003. 

5. Elsayed et al., 2003. 

6. Monti et al., 2009. 

7. Blengini et al., 2011. 

8. GEMIS v. 4.7, 2011, Farming\miscanthus-DE-2010. 

  

http://miscanthus.de/flachen.htm


 

 116 

F. Palm kernel meal (Pathway no 16) 

Palm kernel meal is a co-product from the production of palm oil together with palm kernel 

oil and nut shells, that is sometimes imported to be used for energy production. According to 

the RED, the allocation of emissions to the co-products needs to be carried out on the wet 

LHV of the products. 

 

This leads to the following allocation factors, indicated in Table 81. 

 
Table 81 Allocation to co-products of palm oil extraction from FFB 

Component 

Wt. 

fraction 

(kg/kgFFB) 

Moisture Source 

LHV 

wet 

(MJ/kg) 

Outputs in 

wet LHV 

(MJ/kg 

FFB) 

Palm oil 0.200 0 % 1, 6 37 7.393 

Palm kernel meal 0.029 10 % 2,3 16.4 0.481 

Nutshells (used as fuel) 0.074 10 % 4, 5 17.1 0.00 

Palm kernel oil 0.024 0 %  37 0.888 

Total for allocation  8.762 

Sources 

1. Schmidt, 2007. 

2. Chin, 1991, 

3. JRC calculation. 

4. Panapanaan, 2009. 

5. Choo, 2011. 

6. Pramod, 2009. 

 

This leads to the allocated upstream process emissions, as indicated in Table 82. 

 
Table 82 FFB cultivation emissions allocated by energy to all co-products 

 I/O Unit Amount Sources 

FFB Input MJ/MJPKM 1.8079 See process POFA 

Electricity Input MJ/MJPKM 0.000066  

Diesel Input MJ/MJPKM 0.00375  

Palm kernel meal Output MJ 1.00  

Emissions 

CH4 (open pond) Output g/MJPKM 0.8306 1 

CH4 (closed pond) Output g/MJPKM 0.1246 1 
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Comment 

 The methane emissions come from the effluent stream. An additional pathway is 

created where these emissions are avoided. 

Source 

1. Choo, 2011. 

 

For the upstream processes of FFB, see the pathway ‘Palm oil to biodiesel’. 

PKM is then transported by a 40 t truck (see Table 22 for fuel consumption) for 700 km, and 

by a bulk carrier for 16 287 km. 

 
Table 83 Transport of PKM via a 40 t truck over 700 km 

Transport of PKM via a 40 t truck over the planned distances (one way) 

  I/O Unit 700 km 

Distance Input tkm/MJPKM 0.0437 

PKM Input MJ/MJPKM 1.00 

PKM Output MJ 1.00 

 
Table 84 Maritime transport of PKM via a bulk carrier over 16 287 km 

Maritime transport of PKM via a bulk carrier over the planned distances (one way) 

  I/O Unit 16 287 km 

Distance Input tkm/MJPKM 0.7808 

PKM Input MJ/MJPKM 1.00 

PKM Output MJ 1.00 
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Non-CO2 GHG emissions from the combustion of solid biomass fuels. 

 

Table 85: Non-CO2 GHG emissions from the combustion of solid biomass fuels. 

 

Sources: 

1. GEMIS, version 4.9; 2014; wood-chips-forest-heat plant-1 MW-EU-2005 

2. GEMIS, version 4.9; 2014; wood-pellet-wood-industry-heat plant-DE-2010 

3. GEMIS, version 4.9; 2014; straw-pellet-heating-15 kW-DE-2030 

 

  

Wood chips combustion Unit Amount Source 

CH4 g/MJ fuel 0.005 1 

N2O g/MJ fuel 0.001 1 

CO2 eq. g/MJ fuel 0.41 1 

Wood pellets combustion Unit Amount Source 

CH4 g/MJ fuel 0.003 2 

N2O g/MJ fuel 0.0006 2 

CO2 eq. g/MJ fuel 0.25 2 

Agri-residues combustion Unit Amount Source 

CH4 g/MJ fuel 0.002 3 

N2O g/MJ fuel 0.0007 3 

CO2 eq. g/MJ fuel 0.24 3 
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Part Three — Results 
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7. GHG emissions calculation 

methodology and results: typical and 

default values 

7.1 Methodology 

 

The results reported in this part of the document are obtained using the input values 

detailed in the previous sections of the report and applying the simplified LCA methodology 

published in the Commission Communication on sustainability requirements for solid and 

gasesous biomass in electricity, heating and cooling (COM(2010)11), with a number of 

updates explained in the SWD(2014 259..  

A detailed description of the methodology can be found in Annex 1 of COM(2010)11, and 

the updates are reported in SWD(2014)259. The main relevant points of the methodology in 

these two documents  are summarised below: 

1. The methodology follows a simplified attributional life cycle assessment approach and it 

accounts only for direct GHG emissions associated with the production and combustion 

of the bioenergy carriers. Land use emissions and emissions of CO2 from biomass fuel 

combustion are not included in the methodology and in the calculations. 

2. Three main, long-lived GHG are considered: CO2, CH4 and N2O.  

The climate metric utilized is the Global Warming Potential (GWP) at a time horizon of 

100 years. The GWP(100) values chosen are the ones detailed in the IPCC 4th AR (2007) 

and they are equal to 25 for methane and 298 for nitrous oxides. 

3. Allocation of emissions to power and heat produced simultaneously in CHP plants is 

based on exergy. 

4. Anaerobic digestion of feedlot manure is considered as an improved agricultural 

management technique and the avoided emissions of CH4 and N2O from the 

management of the raw manure are considered as a credit to the bioenergy pathway. 

5. Non-CO2, long-lived GHG emissions from the combustion of solid biomass and biogas 

are included in the calculations.  

6. For the calculation of default values for solid biomass pathways, emissions from 

processing, from transport and from the fuel in use are increased by 20% in comparison 

to the typical values. In the case of biogas, considering that: biogas can be used in the 

three energy sectors (transport, heating and cooling and electricity), the impact of 

transport emissions is very limited, and that biogas plant technologies and efficiencies 
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are highly variable, the approach is kept consistent with the one taken for biogas in 

transport in the Renewable Energy Directive and an increment of 40% in emissions from 

processing (including upgrading) is applied to the typical values. 

7. For anaerobic co-digestion of substrate materials with different methane potentials per 

tonne, the mass-balance approach defined in the RED and in the COM(2010) 11, is 

suspended. The formula described in section 5.4 is used to calculate weighted average 

of single-substrate emissions for various mixtures. 

8. Results are presented on a energy basis considering the LHV of the dry fraction of the 

biomass fuel. In the tables below the results are given on the basis of the biomass fuel 

at plant gate (e.g. per MJ of pellet or chips). In order to present results on a final energy 

basis (e.g. per MJ electricity or heat) a standard conversion efficiency is applied. The 

standard electrical efficiency applied is considered to be equal to 25% and the standard 

thermal efficiency is considered to be equal to 85% (Ecofys, 2010). A sensitivity analysis 

of the results to this assumption is presented below. 

9. GHG savings are calculated according to the formula reported in COM(2010) 11 as: 

GHG savings (%)= 
FFC-GHG bioenergy

FFC
∙100 

Where FFC represents the Fossil Fuel Comparator as defined in the COM(2010) 11 and 

SWD(2014) 259 and GHG bioenergy represents the typical or default GHG emissions 

calculated for the bioenergy pathway. The FFC defined in the SWD(2014) 259 are the 

following: 

 FFC electricity = 186 gCO2 eq. / MJel. 

 FFC heat = 80 gCO2 eq. / MJheat 

 FFC natural gas = 72 gCO2 eq. / MJNG 

 FFC cooling12 = 47 gCO2 eq. / MJcooling 

10. Land use emissions and emissions of CO2 from the biomass fuel combustion are not 

included in the methodology and in the results. Furthermore, biogenic carbon removals 

and emissions have not been included. Neither are other indirect impacts on other 

markets (displacement). All values reported are calculated without any land use change 

and associated carbon emissions. 

 

                                              
12  Based on a Seasonal Energy Efficiency Ratio (SEER) of air conditioning units with inverters in Europe equal 

to 4. The definition of SEER and the data on EU current market and future trends in air conditioning units 

(domestic and industrial) can be found in the SWD(2012) 35.  
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For the calculations reported below, the following applies: 

 Emission factors considered for the supply and utilization of fossil fuels and 

chemicals are the ones described in Part One of this document (Table 13). 

 N2O emissions from application of N-fertilizers for the cultivation of maize, poplar 

and eucalyptus are calculated according to the methodology detailed in IPCC 

Guidelines (2006), Vol. 4, Ch. 11.2. They include direct and indirect emissions of 

nitrous oxides. 

 The methodology and values for manure methane and nitrous oxide credits are 

detailed in Section 5.2.1 of this document. 

 Combustion emission factors for solid biomass fuels are reported in Table 85. 

Combustion emission factors for biogas are reported in Table 36 and Table 38. 



 

 123 

7.2 Results 

7.2.1 Typical and default values for solid biomass pathways 

Absolute GHG emissions 

Table 86: Typical and default GHG emission values for forest systems producing wood chips13. 

Values of emissions are provided at plant gate (excl. final conversion efficiency) and based on a MJ 

of wood chips delivered at the plant. No land use emissions are included in these results nor are 

CO2 emissions from the combustion of biomass or other indirect effects. 

W
o
o
d
ch

ip
s 

Forest biomass 

production system 
Transport distance 

TYPICAL 

[gCO2 eq./MJ] 

DEFAULT 

[gCO2 eq./MJ] 

Forest residues 

1 to 500 km 5 6 

500 to 2500 km 7 8 

2500 to 10 000 km 12 14 

Above 10000 km 21 25 

SRC 

(Eucalyptus) 
2500 to 10 000 km 24 26 

SRC 

(Poplar - Fertilized) 

1 to 500 km 8 9 

500 to 2500 km 10 11 

2500 to 10 000 km 15 17 

Above 10000 km 24 28 

SRC 

(Poplar – Not 

Fertilized) 

1 to 500 km 6 7 

500 to 2500 km 8 9 

2500 to 10 000 km 13 15 

Above 10000 km 22 26 

Stemwood 

1 to 500 km 5 6 

500 to 2500 km 7 8 

2500 to 10 000 km 12 14 

Above 10 000 km 21 25 

Wood industry 

residues 

1 to 500 km 4 4 

500 to 2500 km 6 7 

2500 to 10 000 km 10 13 

Above 10000 km 20 24 

  

                                              
13 Specific unrealistic combinations of feedstock and transport distances have been excluded from the table. 
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Table 87: Typical and default GHG emission values for forest systems producing wood pellets or 

briquettes (Part 1)14. Values of emissions are provided at plant gate (excl. final conversion 

efficiency) and based on a MJ of wood pellets delivered at the plant. No land use emissions are 

included in these results nor are CO2 emissions from the combustion of biomass or other indirect 

effects. 

W
o
o
d
 p

e
ll

e
ts

 o
r 

b
ri

q
u
e
tt

e
s 

(P
a
rt

 1
) 

Forest biomass 

production system 
Transport distance 

TYPICAL 

[gCO2 eq./MJ] 

DEFAULT 

[gCO2 eq./MJ] 

Forest 

residues 

case 1 

1 to 500 km 30 36 

500 to 2500 km 30 36 

2500 to 10000 km 32 38 

Above 10000 km 35 42 

case 2a 

1 to 500 km 16 19 

500 to 2500 km 16 19 

2500 to 10000 km 17 21 

Above 10000 km 21 25 

case 3a 

1 to 500 km 6 7 

500 to 2500 km 5 7 

2500 to 10000 km 7 8 

Above 10000 km 11 13 

SRC 

Eucalyptus 

case 1 2500 to 10000 km 42 48 

case 2a 2500 to 10000 km 31 34 

case 3a 2500 to 10000 km 21 22 

SRC Poplar 

(Fertilized) 

case 1 

1 to 500 km 32 38 

500 to 10000 km 34 40 

Above 10000 km 37 44 

case 2a 

1 to 500 km 18 21 

500 to 10000 km 20 23 

Above 10000 km 23 27 

case 3a 

1 to 500 km 8 9 

500 to 10000 km 10 11 

Above 10000 km 13 15 

 

  

                                              
14 Specific unrealistic combinations of feedstock and transport distances have been excluded from the table. 
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Table 88: Typical and default GHG emission values for forest systems producing wood pellets (Part 

2). Values of emissions are provided at plant gate (excl. final conversion efficiency) and based on a 

MJ of wood pellets delivered at the plant. No land use emissions are included in these results nor 

are CO2 emissions from the combustion of biomass or other indirect effects. 

W
o
o
d
 p

e
ll

e
ts

 o
r 

b
ri

q
u
e
tt

e
s 

(P
a
rt

 2
) 

Forest biomass 

production system 
Transport distance 

TYPICAL 

[gCO2 eq./MJ] 

DEFAULT 

[gCO2 eq./MJ] 

SRC Poplar 
(No 

fertilization) 

case 1 
1 to 500 km 31 36 

500 to 10000 km 32 38 
Above 10000 km 36 42 

case 2a 
1 to 500 km 17 19 

500 to 10000 km 18 21 
Above 10000 km 22 25 

case 3a 
1 to 500 km 6 7 

500 to 10000 km 8 9 
Above 10000 km 11 13 

Stemwood 

case 1 

1 to 500 km 30 36 
500 to 2500 km 30 36 

2500 to 10000 km 31 38 
Above 10000 km 35 42 

case 2a 

1 to 500 km 16 19 
500 to 2500 km 16 18 

2500 to 10000 km 17 20 
Above 10000 km 21 25 

case 3a 

1 to 500 km 5 6 
500 to 2500 km 5 6 

2500 to 10000 km 7 8 
Above 10000 km 10 12 

Wood 

industry 

residues 

case 1 

1 to 500 km 18 22 
500 to 2500 km 18 21 

2500 to 10000 km 19 23 
Above 10000 km 23 27 

case 2a 

1 to 500 km 9 11 
500 to 2500 km 9 11 

2500 to 10000 km 11 13 
Above 10000 km 14 17 

case 3a 

1 to 500 km 3 4 
500 to 2500 km 3 4 

2500 to 10000 km 5 6 
Above 10000 km 8 10 

Comments (valid for all tables on solid biomass pathways) 

 Case 1 refers to pathways in which a natural gas boiler is used to provide the process heat 

to the pellet mill. Process electricity is purchased from the grid. 

 Case 2a refers to pathways in which a boiler fuelled with pre-dried wood chips is used to 

provide the process heat to the pellet mill. Process electricity is purchased from the grid. 

 Case 3a refers to pathways in which a CHP, fuelled with pre-dried wood chips, is used to 

provide heat and power to the pellet mill. 

 Transport and moisture schemes are detailed in Table 47 and Table 48.  
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Table 89: Typical and default values for agricultural biomass production systems. Values of 

emissions are provided at plant gate (excl. final conversion efficiency) and based on a MJ of 

biomass delivered at the plant. No land use emissions are included in these results nor are CO2 

emissions from the combustion of biomass or other indirect effects. 

A
g
ri

cu
lt

u
ra

l 
sy

st
e
m

s 

Agriculture biomass 
production system 

Transport distance 
TYPICAL 

[gCO2 eq./MJ] 
DEFAULT 

[gCO2 eq./MJ] 

Agricultural Residues with 
density <0.2 t/m315 

1 to 500 km 4 4 

500 to 2500 km 7 9 

2500 to 10 000 km 14 17 

Above 10000 km 27 32 

Agricultural Residues with 

density > 0.2 t/m316 

1 to 500 km 4 4 

500 to 2500 km 5 6 

2500 to 10 000 km 8 9 

Above 10000 km 14 17 

Straw pellets 

1 to 500 km 8 10 

500 to 10000 km 10 12 

Above 10000 km 14 16 

Bagasse briquettes 
500 to 10 000 km 5 6 

Above 10 000 km 9 10 

Palm Kernel Meal Above 10000 km 55 61 

Palm Kernel Meal (no CH4 

emissions from oil mill) 
Above 10000 km 37 40 

 

 

                                              
15  This group of materials includes agricultural residues with a low bulk density and it comprises materials 

such as straw bales, oat hulls, rice husks and sugar cane bagasse bales (not exhaustive list). 
16  The group of agricultural residues with higher bulk density includes materials such as corn cobs, nut shells, 

soybean hulls, palm kernel shells (not exhaustive list). 



 

 127 

Disaggregated GHG emissions solid biomass 
Table 90: Disaggregated GHG emission values for forest systems producing wood chips. Values are expressed on the basis of MJ wood chips 

delivered. Total emission values can be found in Table 86. 

W
o
o
d
ch

ip
s 

–
 D

is
a
g
g
re

g
a
te

d
 v

a
lu

e
s 

Biomass 

system 
Transport distance 

TYPICAL [gCO2 eq./MJ] DEFAULT [gCO2 eq./MJ] 

Cultivation Processing Transport Comb. emissions Cultivation Processing Transport Comb.emissions 

Forest 

residues 

1 to 500 km 0.0 1.6 3.0 0.4 0.0 1.9 3.6 0.5 

500 to 2500 km 0.0 1.6 4.9 0.4 0.0 1.9 5.9 0.5 

2500 to 10 000 km 0.0 1.6 9.7 0.4 0.0 1.9 11.7 0.5 

Above 10000 km 0.0 1.6 19.0 0.4 0.0 1.9 22.8 0.5 

SRC* 

(Eucalyptus) 
2500 to 10 000 km 13.6 0.0 10.2 0.4 13.6 0.0 12.3 0.5 

SRC 

(Poplar - 

Fertilized) 

1 to 500 km 3.9 0.0 3.5 0.4 3.9 0.0 4.2 0.5 

500 to 2500 km 3.9 0.0 5.4 0.4 3.9 0.0 6.4 0.5 

2500 to 10 000 km 3.9 0.0 10.2 0.4 3.9 0.0 12.3 0.5 

Above 10000 km 3.9 0.0 19.5 0.4 3.9 0.0 23.4 0.5 

SRC 

(Poplar – No 

fertilization) 

1 to 500 km 2.3 0.0 3.5 0.4 2.3 0.0 4.2 0.5 

500 to 2500 km 2.3 0.0 5.4 0.4 2.3 0.0 6.4 0.5 

2500 to 10 000 km 2.3 0.0 10.2 0.4 2.3 0.0 12.3 0.5 

Above 10000 km 2.3 0.0 19.5 0.4 2.3 0.0 23.4 0.5 

Stemwood 

1 to 500 km 1.1 0.3 3.0 0.4 1.1 0.4 3.6 0.5 

500 to 2500 km 1.1 0.3 4.9 0.4 1.1 0.4 5.9 0.5 

2500 to 10 000 km 1.1 0.3 9.7 0.4 1.1 0.4 11.7 0.5 

2500 to 10 000 km 1.1 0.3 19.0 0.4 1.1 0.4 22.8 0.5 

Wood 

industry 

residues 

1 to 500 km 0.0 0.3 3.0 0.4 0.0 0.4 3.6 0.5 

500 to 2500 km 0.0 0.3 4.9 0.4 0.0 0.4 5.9 0.5 

2500 to 10 000 km 0.0 0.3 9.7 0.4 0.0 0.4 11.7 0.5 

Above 10000 km 0.0 0.3 19.0 0.4 0.0 0.4 22.8 0.5 

* A combined harvester+chipper is considered to be used for the harvest of SRC. The disaggregated values for "cultivation" of eucalyptus and poplar thus 

include the production of chipped wood 
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Table 91: Disaggregated GHG emission values for forest systems producing wood pellets or briquettes (Part 1). Values are expressed on the 

basis of MJ wood pellets delivered. Total emission values can be found in Table 87. 

W
o
o
d
 p

e
ll

e
ts

 –
 D

is
a
g
g
re

g
a
te

d
 v

a
lu

e
s 

(P
a
rt

 1
) 

Forest biomass 

system 

Transport 

distance 

TYPICAL [gCO2 eq./MJ] DEFAULT [gCO2 eq./MJ] 

Cultivation Processing Transport 
Combustion 
emissions 

Cultivation Processing Transport 
Combustion 
emissions 

Forest 

residues 

case 1 

1 to 500 km 0.0 27.1 2.8 0.3 0.0 32.5 3.4 0.3 

500 to 2500 km 0.0 27.1 2.7 0.3 0.0 32.5 3.3 0.3 

2500 to 10000 km 0.0 27.1 4.3 0.3 0.0 32.5 5.1 0.3 

Above 10000 km 0.0 27.1 7.8 0.3 0.0 32.5 9.4 0.3 

case 2a 

1 to 500 km 0.0 12.7 3.0 0.3 0.0 15.2 3.6 0.3 

500 to 2500 km 0.0 12.7 2.9 0.3 0.0 15.2 3.4 0.3 

2500 to 10000 km 0.0 12.7 4.4 0.3 0.0 15.2 5.2 0.3 

Above 10000 km 0.0 12.7 8.0 0.3 0.0 15.2 9.7 0.3 

case 3a 

1 to 500 km 0.0 2.3 3.0 0.3 0.0 2.8 3.6 0.3 

500 to 2500 km 0.0 2.3 2.9 0.3 0.0 2.8 3.5 0.3 

2500 to 10000 km 0.0 2.3 4.4 0.3 0.0 2.8 5.3 0.3 

Above 10000 km 0.0 2.3 8.1 0.3 0.0 2.8 9.7 0.3 

SRC 

Eucalyptus 

case 1 2500 to 10000 km 12.1 25.6 4.3 0.3 12.1 30.7 5.1 0.3 

case 2a 2500 to 10000 km 15.4 10.7 4.4 0.3 15.4 12.9 5.2 0.3 

case 3a 2500 to 10000 km 16.1 0.3 4.4 0.3 16.1 0.4 5.3 0.3 

SRC 

Poplar - 

Fertilized 

case 1 

1 to 500 km 3.5 25.6 2.8 0.3 3.5 30.7 3.4 0.3 

500 to 10000 km 3.5 25.6 4.3 0.3 3.5 30.7 5.1 0.3 

Above 10000 km 3.5 25.6 7.8 0.3 3.5 30.7 9.4 0.3 

case 2a 

1 to 500 km 4.4 10.7 3.0 0.3 4.4 12.9 3.6 0.3 

500 to 10000 km 4.4 10.7 4.4 0.3 4.4 12.9 5.2 0.3 

Above 10000 km 4.4 10.7 8.0 0.3 4.4 12.9 9.7 0.3 

case 3a 

1 to 500 km 4.6 0.3 3.0 0.3 4.6 0.4 3.6 0.3 

500 to 10000 km 4.6 0.3 4.4 0.3 4.6 0.4 5.3 0.3 

Above 10000 km 4.6 0.3 8.1 0.3 4.6 0.4 9.7 0.3 
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Table 92: Disaggregated GHG emission values for forest systems producing wood pellets (Part 2). Values are expressed on the basis of MJ 

wood pellets delivered. Total emission values can be found in Table 88. 

W
o
o
d
 p

e
ll

e
ts

 –
 D
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a
g
g
re

g
a
te

d
 v

a
lu

e
s 

(P
a
rt

 2
) 

Forest biomass system 
Transport 

distance 

TYPICAL [gCO2 eq./MJ] DEFAULT [gCO2 eq./MJ] 

Cultivation Processing Transport 
Combustion 
emissions 

Cultivation Processing Transport 
Combustion 
emissions 

SRC 

Poplar – No 

fertilization 

case 1 
1 to 500 km 2.0 25.6 2.8 0.3 2.0 30.7 3.4 0.3 

500 to 10000 km 2.0 25.6 4.3 0.3 2.0 30.7 5.1 0.3 
Above 10000 km 2.0 25.6 7.8 0.3 2.0 30.7 9.4 0.3 

case 2a 
1 to 500 km 2.6 10.7 3.0 0.3 2.6 12.9 3.6 0.3 

500 to 10000 km 2.6 10.7 4.4 0.3 2.6 12.9 5.2 0.3 
Above 10000 km 2.6 10.7 8.0 0.3 2.6 12.9 9.7 0.3 

case 3a 
1 to 500 km 2.7 0.3 3.0 0.3 2.7 0.4 3.6 0.3 

500 to 10000 km 2.7 0.3 4.4 0.3 2.7 0.4 5.3 0.3 
Above 10000 km 2.7 0.3 8.1 0.3 2.7 0.4 9.7 0.3 

Stemwood 

case 1 

1 to 500 km 1.1 25.9 2.8 0.3 1.1 31.1 3.4 0.3 
500 to 2500 km 1.1 25.9 2.7 0.3 1.1 31.1 3.3 0.3 

2500 to 10000 km 1.1 25.9 4.3 0.3 1.1 31.1 5.1 0.3 
Above 10000 km 1.1 25.9 7.8 0.3 1.1 31.1 9.4 0.3 

case 2a 

1 to 500 km 1.3 11.2 3.0 0.3 1.3 13.4 3.6 0.3 
500 to 2500 km 1.3 11.2 2.9 0.3 1.3 13.4 3.4 0.3 

2500 to 10000 km 1.3 11.2 4.4 0.3 1.3 13.4 5.2 0.3 
Above 10000 km 1.3 11.2 8.0 0.3 1.3 13.4 9.7 0.3 

case 3a 

1 to 500 km 1.4 0.8 3.0 0.3 1.4 0.9 3.6 0.3 
500 to 2500 km 1.4 0.8 2.9 0.3 1.4 0.9 3.5 0.3 

2500 to 10000 km 1.4 0.8 4.4 0.3 1.4 0.9 5.3 0.3 
Above 10000 km 1.4 0.8 8.1 0.3 1.4 0.9 9.7 0.3 

Wood 

industry 

residues 

case 1 

1 to 500 km 0.0 15.0 2.7 0.3 0.0 18.0 3.3 0.3 
500 to 2500 km 0.0 15.0 2.6 0.3 0.0 18.0 3.2 0.3 

2500 to 10000 km 0.0 15.0 4.2 0.3 0.0 18.0 5.0 0.3 
Above 10000 km 0.0 15.0 7.6 0.3 0.0 18.0 9.1 0.3 

case 2a 

1 to 500 km 0.0 6.1 2.8 0.3 0.0 7.3 3.3 0.3 
500 to 2500 km 0.0 6.1 2.7 0.3 0.0 7.3 3.2 0.3 

2500 to 10000 km 0.0 6.1 4.2 0.3 0.0 7.3 5.0 0.3 
Above 10000 km 0.0 6.1 7.7 0.3 0.0 7.3 9.2 0.3 

case 3a 

1 to 500 km 0.0 0.2 2.8 0.3 0.0 0.3 3.4 0.3 
500 to 2500 km 0.0 0.2 2.7 0.3 0.0 0.3 3.2 0.3 

2500 to 10000 km 0.0 0.2 4.2 0.3 0.0 0.3 5.0 0.3 
Above 10000 km 0.0 0.2 7.7 0.3 0.0 0.3 9.2 0.3 

 



 

 130 

Table 93: Disaggregated GHG emission values for agricultural biomass production systems. Values are expressed on the basis of MJ biomass 

delivered. Total emission values can be found in Table 89. 
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Agriculture 

biomass 

production 

system 

Transport distance 

TYPICAL [gCO2 eq./MJ] DEFAULT [gCO2 eq./MJ] 

Cultivation Processing Transport 
Combust.ion 
emissions 

Cultivation Processing Transport 
Combustion 
emissions 

Agricultural 

Residues with 

density <0.2 

t/m3 

1 to 500 km 0.0 0.9 2.5 0.2 0.0 1.1 3.1 0.3 

500 to 2500 km 0.0 0.9 6.0 0.2 0.0 1.1 7.2 0.3 

2500 to 10 000 km 0.0 0.9 12.9 0.2 0.0 1.1 15.4 0.3 

Above 10000 km 0.0 0.9 25.6 0.2 0.0 1.1 30.7 0.3 

Agricultural 

Residues with 

density > 0.2 

t/m3 

1 to 500 km 0.0 0.9 2.5 0.2 0.0 1.1 3.1 0.3 

500 to 2500 km 0.0 0.9 3.5 0.2 0.0 1.1 4.2 0.3 

2500 to 10 000 km 0.0 0.9 6.7 0.2 0.0 1.1 8.0 0.3 

Above 10000 km 0.0 0.9 12.8 0.2 0.0 1.1 15.4 0.3 

Straw pellets 

1 to 500 km 0.0 5.1 2.9 0.2 0.0 6.1 3.5 0.3 

500 to 10000 km 0.0 5.1 4.5 0.2 0.0 6.1 5.4 0.3 

Above 10000 km 0.0 5.1 8.2 0.2 0.0 6.1 9.9 0.3 

Bagasse 

briquettes 

500 to 10 000 km 0.0 0.3 4.3 0.4 0.0 0.4 5.1 0.5 

Above 10 000 km 0.0 0.3 7.9 0.4 0.0 0.4 9.4 0.5 

Palm Kernel 

Meal 
Above 10000 km 22.1 21.1 11.1 0.2 22.1 25.4 13.3 0.3 

Palm Kernel 

Meal (no CH4 

emissions 

from oil mill) 

Above 10000 km 22.1 3.5 11.1 0.2 22.1 4.2 13.3 0.3 
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Figure 3: GHG emissions (based on the default values reported in Table 86 and Table 90) for wood chips pathways. The contribution of the 

emissions from various steps in the supply chain is also shown in the figure.  
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Figure 4: GHG emissions (based on the default values reported in Table 87, Table 88, Table 91 and Table 92) for the most relevant wood 

pellets pathways. The contribution of the emissions from various steps in the supply chain is also shown in the figure.  
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Figure 5: GHG emissions (based on default values in Table 89 and Table 93) for the most relevant agricultural pathways. The contribution of 

the emissions from various steps in the supply chain is also shown in the figure. 
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GHG savings17 for solid biomass pathways 
Table 94: GHG savings for forest systems producing wood chips. GHG savings are calculated 

according to the COM(2010) 11 and the SWD(2014) 259. Standard electrical efficiency of 25% and 

standard thermal efficiency of 85% are applied for biomass pathways. GHG savings are calculated 

relative to the FFC reported in SWD(2014) 259 (also listed in section 7.1 of this report). No land 

use emissions are included in these results nor are CO2 emissions from the combustion of biomass 

or other indirect effects. 
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Forest biomass 

production 
system 

Transport distance 

TYPICAL 

[%] 

DEFAULT 

[%] 

Heat Electricity Heat Electricity 

Forest residues 

1 to 500 km 93 89 91 87 

500 to 2500 km 90 85 88 82 

2500 to 10 000 km 83 75 79 70 

Above 10000 km 69 55 63 46 

SRC 
(Eucalyptus) 

2500 to 10 000 km 64 48 61 43 

SRC 
(Poplar - 

Fertilized) 

1 to 500 km 89 83 87 82 

500 to 2500 km 86 79 84 77 

2500 to 10 000 km 79 69 76 64 

Above 10000 km 65 49 59 40 

SRC 

(Poplar – No 

fertilization) 

1 to 500 km 91 87 90 85 

500 to 2500 km 88 83 87 80 

2500 to 10 000 km 81 72 78 68 

Above 10000 km 67 52 62 44 

Stemwood 

1 to 500 km 93 90 92 88 

500 to 2500 km 90 86 88 83 

2500 to 10 000 km 83 75 80 71 

2500 to 10 000 km 69 55 64 47 

Wood industry 
residues 

1 to 500 km 95 92 93 90 

500 to 2500 km 92 88 90 86 

2500 to 10 000 km 85 77 82 73 

Above 10000 km 71 58 65 49 

 

  

                                              
17  The use of 'GHG savings' as a metric to assess climate change mitigation effects of bioenergy pathways 

compared to fossil fuels has been designed and defined by the EU in several legislative documents (RED, 
FQD, COM(2010) 11). While this may have merits of simplicity and clarity for regulatory purposes, it should 
be remembered that: "analyses that report climate-mitigation effects based on Attributional LCA generally 
have assumed away all indirect and scale effects on CO2-eq emission factors and on activity within and 
beyond the targeted sector. Unfortunately, there is no theoretical or empirical basis for treating indirect and 
scale effects as negligible." (Plevin et al., 2013) 
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Table 95: GHG savings for forest systems producing wood pellets or briquettes (Part 1). GHG 

savings are calculated according to the COM(2010) 11 and the SWD(2014) 259. Standard electrical 

efficiency of 25% and thermal efficiency of 85% are applied. GHG savings are calculated relative 

to the FFC reported in SWD(2014) 259 (also listed in section 7.1 of this report). No land use 

emissions are included in these results nor are CO2 emissions from the combustion of biomass or 

other indirect effects. 
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Forest biomass 

production system 

Transport 

distance 

TYPICAL 

[%] 

DEFAULT 

[%] 

Heat Electricity Heat Electricity 

Forest 

residues 

case 1 

1 to 500 km 56 35 47 22 

500 to 2500 km 56 35 47 22 

2500 to 10000 km 54 32 44 18 

Above 10000 km 48 24 38 9 

case 2a 

1 to 500 km 77 66 72 59 

500 to 2500 km 77 66 72 59 

2500 to 10000 km 75 63 69 55 

Above 10000 km 69 55 63 46 

case 3a 

1 to 500 km 92 88 90 86 

500 to 2500 km 92 88 90 86 

2500 to 10000 km 90 85 88 82 

Above 10000 km 84 77 81 72 

SRC 

(Eucalyptus) 

case 1 2500 to 10000 km 38 9 29 -4 

case 2a 2500 to 10000 km 54 33 50 27 

case 3a 500 to 10000 km 69 54 67 52 

SRC 

Poplar 
(Fertilized) 

case 1 

1 to 500 km 53 31 44 18 

500 to 10000 km 51 28 42 15 

Above 10000 km 45 20 36 6 

case 2a 

1 to 500 km 73 60 69 54 

500 to 10000 km 71 57 66 51 

Above 10000 km 66 50 60 41 

case 3a 

1 to 500 km 88 82 87 81 

500 to 10000 km 86 79 84 77 

Above 10000 km 80 71 78 68 
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Table 96: GHG savings for forest systems producing wood pellets or briquettes (Part 2). GHG 

savings are calculated according to the COM(2010) 11 and the SWD(2014) 259. Standard electrical 

efficiency of 25% and thermal efficiency of 85% are applied. GHG savings are calculated relative 

to the FFC reported in SWD(2014) 259 (also listed in section 7.1 of this report). No land use 

emissions are included in these results nor are CO2 emissions from the combustion of biomass or 

other indirect effects. 
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Forest biomass 

production system 

Transport 

distance 

TYPICAL 

[%] 

DEFAULT 

[%] 

Heat Electricity Heat Electricity 

SRC 

Poplar 

No 
fertilization 

case 1 

1 to 500 km 55 34 46 22 

500 to 10000 km 53 31 44 18 

Above 10000 km 48 23 38 9 

case 2a 

1 to 500 km 76 64 72 58 

500 to 10000 km 74 61 69 55 

Above 10000 km 68 54 63 45 

case 3a 

1 to 500 km 91 87 90 85 

500 to 10000 km 89 84 87 81 

Above 10000 km 83 76 81 72 

Stemwood 

case 1 

1 to 500 km 56 35 47 23 

500 to 2500 km 56 36 47 23 

2500 to 10000 km 54 32 45 19 

Above 10000 km 48 25 38 10 

case 2a 

1 to 500 km 77 66 73 60 

500 to 2500 km 77 66 73 60 

2500 to 10000 km 75 63 70 56 

Above 10000 km 69 55 64 47 

case 3a 

1 to 500 km 92 88 91 87 

500 to 2500 km 92 89 91 87 

2500 to 10000 km 90 85 88 83 

Above 10000 km 85 77 82 74 

Wood 

industry 

residues 

case 1 

1 to 500 km 74 61 68 54 

500 to 2500 km 74 62 68 54 

2500 to 10000 km 71 58 66 50 

Above 10000 km 66 51 60 41 

case 2a 

1 to 500 km 87 80 84 77 

500 to 2500 km 87 81 84 77 

2500 to 10000 km 85 77 81 73 

Above 10000 km 79 70 75 64 

case 3a 

1 to 500 km 95 93 94 92 

500 to 2500 km 95 93 94 92 

2500 to 10000 km 93 90 92 88 

Above 10000 km 88 82 86 79 
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Table 97: GHG savings for agricultural biomass systems. GHG savings are calculated according to 

the COM(2010) 11 and the SWD(2014) 259. Standard electrical efficiency of 25% and thermal 

efficiency of 85% are applied. GHG savings are calculated relative to the FFC reported in 

SWD(2014) 259 (also listed in section 7.1 of this report). No land use emissions are included in 

these results nor are CO2 emissions from the combustion of biomass or other indirect effects. 

Negative values indicate that the bioenergy pathway emits more than the fossil comparator. 
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Agriculture biomass 

production system 
Transport distance 

TYPICAL 

[%] 

DEFAULT 

[%] 

Heat Electricity Heat Electricity 

Agricultural 

Residues with 

density <0.2 t/m318 

1 to 500 km 95 92 93 90 

500 to 2500 km 89 85 87 82 

2500 to 10 000 km 79 70 75 64 

Above 10000 km 61 42 53 31 

Agricultural 

Residues with 

density > 0.2 t/m319 

1 to 500 km 95 92 93 90 

500 to 2500 km 93 90 92 88 

2500 to 10 000 km 88 83 86 80 

Above 10000 km 79 70 75 64 

Straw pellets 

1 to 500 km 88 82 85 79 

500 to 10000 km 86 79 83 75 

Above 10000 km 80 71 76 65 

Bagasse briquettes 
500 to 10 000 km 93 89 91 87 

Above 10 000 km 87 81 85 78 

Palm Kernel Meal Above 10000 km 20 -17 10 -31 

Palm Kernel Meal 

(no CH4 emissions 
from oil mill) 

Above 10000 km 46 21 41 14 

 

 

                                              
18 This group of materials includes agricultural residues with a low bulk density and it comprises materials 

such as straw bales, oat hulls, rice husks and sugar cane bagasse bales (not exhaustive list). 
19  The group of agricultural residues with higher bulk density includes materials such as corn cobs, nut shells, 

soybean hulls, palm kernel shells (not exhaustive list). 
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Figure 6: Illustration of GHG savings for the most representative forest based solid biomass pathways (values reported in Table 94 to Table 

97). Values are based on the default GHG emission values. SRC = Short Rotation Coppice. The calculations are based on GHG data from 

eucalyptus cultivation in tropical areas. Stemwood (NG) = pellets produced using natural gas as process fuel, all the other pathways are 

based on wood as process fuel (case 2a). 
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7.2.2 Typical and default values for biogas pathways 

Absolute GHG emissions for biogas pathways 

Table 98: Typical and default GHG emission values for non-upgraded biogas Values of emissions are 

provided at plant gate (excl. final conversion efficiency) and based on a MJ of biogas produced. No 

land use emissions are included in these results nor are CO2 emissions from the combustion of 

biomass or other indirect effects. Negative values indicate bioenergy pathways that save GHG 

emissions compared to the alternative in which the biomass is not used for bioenergy production (i.e. 

credits for improved manure management higher than the biogas supply chain emissions). 
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Biogas production system Technological option 
TYPICAL 

[gCO2 eq,/MJ] 

DEFAULT 

[gCO2 eq,/MJ] 

Wet 

manure20 

case 1 
Open digestate21 -28 3 

Close digestate22 -88 -84 

case 2 
Open digestate -22 12 

Close digestate -82 -76 

case 3 
Open digestate -26 12 

Close digestate -92 -86 

Maize whole 

plant23 

case 1 
Open digestate 38 47 

Close digestate 24 28 

case 2 
Open digestate 46 57 

Close digestate 32 38 

case 3 
Open digestate 50 63 

Close digestate 34 41 

Biowaste 

case 1 
Open digestate 31 44 

Close digestate 9 13 

case 2 
Open digestate 40 55 

Close digestate 18 24 

case 3 
Open digestate 43 60 

Close digestate 18 26 

                                              
20  The values for biogas production from manure include negative emissions for emissions saved from raw 

manure management. The value of esca considered is equal to -45 gCO2eq./MJ manure used in anaerobic 
digestion (see section 5.2.1 for more details). 

21  Open storage of digestate accounts for additional emissions of methane and N2O. The magnitude of these 
emissions changes with ambient conditions, substrate types and the digestion efficiency (see chapter 5 for 
more details).  

22  Close storage means that the digestate resulting from the digestion process is stored in a gas-tight tank 
and the additional biogas released during storage is considered to be recovered for production of additional 
electricity or biomethane. No emissions of GHG are included in this process. 

23  Maize whole plant should be interpreted as maize harvested as fodder and ensiled for preservation. 
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Comments 

 Case 1 refers to pathways in which power and heat required in the process are 

supplied by the CHP engine itself. 

 Case 2 refers to pathways in which the electricity required in the process is taken from 

the grid and the process heat is supplied by the CHP engine itself. In some Member 

States, operators are not allowed to claim the gross production for subsidies and Case 

1 is the more likely configuration. 

 Case 3 refers to pathways in which the electricity required in the process is taken from 

the grid and the process heat is supplied by a biogas boiler. This case applies to some 

installations in which the CHP engine is not on-site and biogas is sold (but not 

upgraded to biomethane).  
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Table 99: Typical and default GHG emission values for biogas upgraded to biomethane and injected 

into the natural gas grid. Values of emissions are provided at the grid outlet (excl. final conversion 

efficiency, the grid is considered to be neutral to the GHG emissions) and based on a MJ of 

biomethane produced. Negative values indicate bioenergy pathways that save GHG emissions 

compared to the alternative in which the biomass is not used for bioenergy production (i.e. credits 

for improved manure management higher than the biogas supply chain emissions). 
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Biomethane 

production 

system 

Technological option 
TYPICAL 

[gCO2 eq./MJ] 

DEFAULT 

[gCO2 eq./MJ] 

Wet manure 

Open digestate 
no off-gas combustion24 -17 26 

off-gas combustion25 -32 5 

Close digestate 
no off-gas combustion -85 -75 

off-gas combustion -100 -96 

Maize whole 

plant 

Open digestate 
no off-gas combustion 61 79 

off-gas combustion 46 58 

Close digestate 
no off-gas combustion 45 56 

off-gas combustion 30 35 

Biowaste 

Open digestate 
no off-gas combustion 54 76 

off-gas combustion 39 55 

Close digestate 
no off-gas combustion 29 40 

off-gas combustion 14 19 

 

 

                                              
24  This category includes the following categories of technologies for biogas upgrade to biomethane: Pressure 

Swing Absorption (PSA), Pressure Water Scrubbing (PWS), Membranes, Cryogenic, and Organic Physical 
Scrubbing (OPS). It includes an emission of 0.03 MJCH4/MJbiomethane for the emission of methane in the 
off-gases. 

25  This category includes the following categories of technologies for biogas upgrade to biomethane: Pressure 
Water Scrubbing (PWS) when water is recycled, Pressure Swing Absorption (PSA), Chemical Scrubbing, Organic 
Physical Scrubbing (OPS), Membranes and Cryogenic upgrading. No methane emissions are considered for this 
category (the methane in the off gas is combusted, if any). 
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Disaggregated values for biogas pathways 
 

Table 100: Disaggregated values for biogas for electricity. Values are expressed on the basis of the biogas produced. Total emission 

values can be found in Table 98. 
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Production system Technology 
TYPICAL [gCO2 eq./MJ] DEFAULT [gCO2 eq./MJ] 

Cultivation Processing Enginea Transport Credits Cultivation Processing Enging Transport Credits 

Wet 

manure 

case 1 
Open digestate 0.0 69.6 8.9 0.8 -107.3 0.0 97.4 12.5 0.8 -107.3 

Close digestate 0.0 0.0 8.9 0.7 -97.6 0.0 0.0 12.5 0.7 -97.6 

case 2 
Open digestate 0.0 75.8 8.9 0.8 -107.3 0.0 106.2 12.5 0.8 -107.3 

Close digestate 0.0 5.9 8.9 0.7 -97.6 0.0 8.2 12.5 0.7 -97.6 

case 3 
Open digestate 0.0 85.1 8.9 0.9 -120.7 0.0 119.1 12.5 0.9 -120.7 

Close digestate 0.0 6.4 8.9 0.8 -108.5 0.0 8.9 12.5 0.8 -108.5 

Maize 

whole 

plant 

case 1 
Open digestate 15.8 13.5 8.9 0.0b - 15.8 18.9 12.5 0.0 - 

Close digestate 15.5 0.0 8.9 0.0 - 15.5 0.0 12.5 0.0 - 

case 2 
Open digestate 15.8 20.8 8.9 0.0 - 15.8 29.1 12.5 0.0 - 

Close digestate 15.5 7.2 8.9 0.0 - 15.5 10.1 12.5 0.0 - 

case 3 
Open digestate 17.8 23.2 8.9 0.0 - 17.8 32.5 12.5 0.0 - 

Close digestate 17.4 7.9 8.9 0.0 - 17.4 11.0 12.5 0.0 - 

Biowaste 

case 1 
Open digestate 0.0 21.8 8.9 0.5 - 0.0 30.6 12.5 0.5 - 

Close digestate 0.0 0.0 8.9 0.5 - 0.0 0.0 12.5 0.5 - 

case 2 
Open digestate 0.0 30.2 8.9 0.5 - 0.0 42.3 12.5 0.5 - 

Close digestate 0.0 8.2 8.9 0.5 - 0.0 11.5 12.5 0.5 - 

case 3 
Open digestate 0.0 33.8 8.9 0.5 - 0.0 47.3 12.5 0.5 - 

Close digestate 0.0 9.0 8.9 0.5 - 0.0 12.6 12.5 0.5 - 
a For actual values calculations, the heat and electricity from the CHP engine used in the biogas plant can be considered free of emissions at consumption 
(e.g. digester); however all the emissions should be included in the CHP / combustion emissions category 

b Transport of agricultural raw materials to the transformation plant is, according to the methodology in COM(2010) 11, included in the "cultivation" value. 
The value for transport of maize silage accounts for 0.4 gCO2 eq./MJ biogas. 



 

 143 

Table 101: Disaggregated values for biomethane injected into the grid. Values are expressed on the basis of the biogas produced. Total 

emission values can be found in Table 99. 
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Raw 

material 
Technological option 

TYPICAL [gCO2 eq./MJ] DEFAULT [gCO2 eq./MJ] 

Cultivation Processing Upgrading Transport Credits Cultivation Processing Upgrading Transport Credits 

Wet 

manure 

Open 
digestate 

no off-gas 
combustion 

0.0 85.6 21.3 1.0 -124.4 0.0 119.8 29.8 1.0 -124.4 

off-gas 
combustion 

0.0 85.6 6.3 1.0 -124.4 0.0 119.8 8.8 1.0 -124.4 

Close 
digestate 

no off-gas 
combustion 

0.0 4.4 21.3 0.9 -111.9 0.0 6.2 29.8 0.9 -111.9 

off-gas 
combustion 

0.0 4.4 6.3 0.9 -111.9 0.0 6.2 8.8 0.9 -111.9 

Maize 

whole plant 

Open 
digestate 

no off-gas 
combustion 

18.4 21.8 21.3 0.0 - 18.4 30.5 29.8 0.0 - 

off-gas 
combustion 

18.4 21.8 6.3 0.0 - 18.4 30.5 8.8 0.0 - 

Close 
digestate 

no off-gas 
combustion 

17.9 6.0 21.3 0.0 - 17.9 8.3 29.8 0.0 - 

off-gas 
combustion 

17.9 6.0 6.3 0.0 - 17.9 8.3 8.8 0.0 - 

Biowaste 

Open 
digestate 

no off-gas 
combustion 

0.0 32.6 21.3 0.5 - 0.0 45.7 29.8 0.5 - 

off-gas 
combustion 

0.0 32.6 6.3 0.5 - 0.0 45.7 8.8 0.5 - 

Close 
digestate 

no off-gas 
combustion 

0.0 7.1 21.3 0.5 - 0.0 10.0 29.8 0.5 - 

off-gas 
combustion 

0.0 7.1 6.3 0.5 - 0.0 10.0 8.8 0.5 - 
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Figure 7: Default GHG emission values for electricity production from non-upgraded biogas. The figure refers to Case 1. Substrate 

characteristics are the ones detailed in Part Three of this document.  
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Figure 8: Default GHG emissions values for the production of upgraded biomethane. Substrate characteristics are the ones detailed in Part 

Three of this document. 
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GHG savings for biogas pathways 

 

Table 102: GHG savings for electricity produced from non-upgraded biogas. No land use emissions 

are included in these results nor are CO2 emissions from the combustion of biomass or other 

indirect effects. Values higher than 100% indicate pathways in which the credits for improved 

agricultural management more than offset the supply chain emissions. 
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Biogas 

production 

system 

Technological option 
TYPICAL 

[%] 

DEFAULT 

[%] 

Wet manure 

case 1 
Open digestate 146 94 

Close digestate 243 237 

case 2 
Open digestate 132 82 

Close digestate 222 214 

case 3 
Open digestate 138 82 

Close digestate 238 229 

Maize whole 

plant 

case 1 
Open digestate 37 22 

Close digestate 60 54 

case 2 
Open digestate 32 14 

Close digestate 53 43 

case 3 
Open digestate 25 6 

Close digestate 49 39 

Biowaste 

case 1 
Open digestate 48 27 

Close digestate 84 78 

case 2 
Open digestate 41 18 

Close digestate 74 64 

case 3 
Open digestate 35 10 

Close digestate 72 62 
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Table 103: GHG savings (compared to fossil natural gas) for upgraded biogas injected into the grid. 

No land use emissions are included in these results nor are CO2 emissions from the combustion of 

biomass or other indirect effects. Values higher than 100% indicate pathways in which the credits 

for improved agricultural management more than offset the supply chain emissions. Negative 

values indicate pathways that emit more than the fossil fuel comparator. 

B
io

m
e
th

a
n
e
 –

 G
H

G
 s

a
v
in

g
s 

Biomethane 

production 
system 

Technological option 
TYPICAL 

[gCO2 eq./MJ] 

DEFAULT 

[gCO2 eq./MJ] 

Wet manure 

Open digestate 
no off-gas combustion 123 64 

off-gas combustion 144 93 

Close digestate 
no off-gas combustion 219 204 

off-gas combustion 239 233 

Maize whole 

plant 

Open digestate 
no off-gas combustion 15 -9 

off-gas combustion 36 20 

Close digestate 
no off-gas combustion 37 22 

off-gas combustion 58 51 

Biowaste 

Open digestate 
no off-gas combustion 24 -6 

off-gas combustion 45 24 

Close digestate 
no off-gas combustion 60 44 

off-gas combustion 81 73 
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Figure 9: Illustration of GHG savings for the most representative biogas and biomethane pathways (values reported in Table 102 and Table 

103). Values for biogas – electricity represent the Case 1. Values are based on default GHG emission values. Values higher than 100% 

represent systems in which credits from improved agricultural management more than offset any supply chain emission. Values lower than 

0% indicate systems which emit larger amounts of GHG than the fossil fuel comparator. For illustrative purposes, values obtained for the 

co-digestion of a mixture of 70% (wet mass) manure and 30% (wet mass) maize are also included. 
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7.3 Sensitivity 

7.3.1 Co-digestion of multiple substrates 

 

In section 5.4 a methodology for the assessment of the GHG emissions for biogas plants 

running on more than 1 feedstock was presented. Applying the formula described to the 

results for a single biogas pathway, (those presented in the previous section 7.2.2), it is 

possible to calculate the default and typical GHG emissions, (and therefore the GHG savings 

according the methodology explained in section 7.10) of biogas plants running on more than 

one substrate. Figure 10 and Figure 11 present an example of the results obtained for an 

increasing share of maize co-digested with manure. 

The calculation of GHG savings for a biogas plant, rather than for a single substrate, would 

represent a suspension of the mass balance rule adopted for biofuels pathways in the RED. 

The codigestsion calculation methodology presented here still follows an 'attributional'-LCA 

approach, but the resulting GHG savings are attributes of the biogas installations, rather 

than of the single substrates. 

 

 
Figure 10: Default GHG emission values for non-upgraded biogas to electricity for various mixtures 

of substrates (maize silage and wet manure). The columns represent results obtained with 

increasing shares of maize silage in the mix, calculated as wet mass (@35% moisture for maize 

and 90% moisture for manure). 
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Figure 11: Default GHG emission values for biomethane injected into the grid for various mixtures 

of substrates (maize silage and wet manure). The columns represent results obtained with 

increasing shares of maize whole plant in the mix, calculated as wet mass (@35% moisture for 

maize and 90% moisture for manure). 
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Figure 12: Representation of the GHG savings achieved by combination (via the formula described 

in section 5.4) of any mixture of the three substrates considered. Two examples for non-upgraded 

biogas pathways to electricity (referring to the values in Table 102 for "Case 1") and two examples 

for upgraded biomethane (referring to the values in Table 103) are reported. 
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7.3.2 Co-generation of power, (useful) heat and cooling. 

As mentioned in section 7.2, the GHG emission values presented in Table 86 to Table 99 are 

calculated at plant gate (not considering the final energy conversion). Furthermore, the GHG 

savings (as presented in Table 94 to Table 103) refer only to conversion to 100% electricity 

or heat. 

However, provided that a demand and infrastructure for heat distribution exist, there is large 

potential to increase the total energy efficiency of power plants by exploiting the available 

waste heat in domestic or industrial applications. An efficient system integration could 

potentially provide simultaneously power, heat (in the form of hot water or steam) and 

cooling (in the form of refrigerated water). 

The methodology presented in the COM(2010) 11 recommends, in case of a co-generating 

plant, to allocate the total GHG emissions on the basis of the exergy content of heat and 

electricity. Any user can thus, applying the formula defined in the Annex 1 point 1b of the 

COM(2010) 11, obtain the allocated emissions (and associated GHG savings) to electricity, 

heat and cooling from the values provided in this report. 

Figure 13 shows the influence of the production of various quantities of useful heat 

produced at different temperatures on the final GHG emissions (and GHG savings, for 

illustrative purposes) of biogas-electricity pathways using maize as substrate. The results 

should be considered illustrative since the analysis of the impacts of the amount and 

temperature level of co-generated heat is more complicated than the simple numerical 

analysis shown in Figure 13. This is due to the fact that the co-generation of heat is not 

always a neutral process (as assumed in this example) in respect to the power cycle. For 

example, the supply of high temperature steam to an industrial user will certainly decrease 

the power produced by a Rankine cycle. In the case of the use of "waste heat" to supply hot 

water to domestic users (the 80°C case in the figure) the overall electrical efficiency of the 

cycle will be less negatively affected.  

However, still several interesting general trends can be individuated.  

Firstly, the co-generation of heat increases, in any case, the GHG savings associated to the 

electricity generated, in some cases even doubling them. 

Secondly, a trade-off appears when considering the temperature of heat utilization: in this 

case an increase in the temperature (and consequently of exergy content) of the heat 

exported is associated to a significant decrease in the GHG savings achieved., while, 

consequently, the savings associated with electricity increase. Naturally, the temperature 

level of the exported heat is driven by the characteristics of available demand and from 

other process constraints, however it is important to keep in mind that the GHG savings for 

both products, power and heat, will be influenced and determined by plant configuration and 

that the optimal solution may vary (e.g. depending on the specific subsidies, eventual GHG 

savings thresholds etc…).  
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Thirdly, a win-win case is found when the amount of heat utilized increases26: in this case 

both the GHG savings for electricity and for heat increase making this an intrinsic incentive 

to utilize as much heat as possible. 

 

 
Figure 13: Illustration of the impact of co-generation of various amounts of heat on the GHG 

savings from electricity generated from biogas from maize whole plant (case 1). The diamond 

symbols represent the GHG savings for a system producing only power and they correspond to the 

values reported in Table 102. Three levels of temperature for the exported heat are reported: hot 

water for domestic purposes (80°C); the temperature threshold indicated in the COM(2010) 11 

(150°C); steam for industrial uses (250°C). The electrical efficiency of the engine is maintained 

constant at 32.5% (net efficiency; as explained in section 5.1), a thermal recovery efficiency of 

90% of the available heat is considered. The columns represent the results for two levels of heat 

utilized (over the recoverable heat): 50% and 100%. The graph should be considered only as a 

numerical example applying the methodology in COM(2010) 11. In fact, an increase in amount and 

temperature of exported heat may impact negatively also the electrical efficiency of the 

engine/cycle; this effect is not considered in these calculations.  

 

                                              
26  "Useful heat" is defined here as the heat generated in a co-generation process to satisfy an economical 

justifiable demand for heat. 
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Not many projects at significant scale exist for co-generation of power and cooling or even 

tri-generation of power, heat and cooling. 

However, most of the concepts for co-generation of cold water from biomass power plants 

rely on the use of the waste heat from the process to supply the necessary thermal energy 

to a decentralized absorption chiller27. Therefore, even the production of useful cooling 

basically relies on the use of the waste heat from the power cycle. The heat can then be 

distributed in the form of steam or hot water via network of pipelines and can then be used 

to supply domestic heat, domestic cooling or both. 

For this reason, in an hypothetical tri-generative system, the upstream emissions should be 

allocated among the products as illustrated in Figure 14: emissions allocated on the basis of 

the exergy content of power and heat at the CHP outlet (as defined in the COM(2010) 11); 

further downstream, the emissions previously allocated to the heat are allocated, on the 

basis of the energy content of the heat used, between the final useful heating and cooling. 

  
Figure 14: Schematic of allocation of upstream GHG emissions in a tri-generative system 

(producing power, useful heat and useful cooling via an absorption chiller). The therminology 

reflect the one used in the COM(2010) 11. E represents the total upstream GHG emissions on the 

basis of the energy content of the energy carrier (e.g. pellets, chips etc…); ECi represents the GHG 

emissions of a final commodity: electricity, heat or cooling. FFCi represents the fossil fuel 

comparators. C represents the Carnot factor associated to the produced heat, as defined in the 

COM(2010) 11. ηi represents the electrical and thermal (for heating and for cooling) conversion 

efficiencies. All efficiencies should be interpreted as annual output over annual input as defined in 

COM(2010) 11 (e.g. ηEl. = yearly quantity of electricity produced / yearly amount of fuel energy 

input; ηCool = yearly quantity of cooling delivered / yearly amount of heat input). 

  

                                              
27 See for example http://www.polycity.net/en/downloads-supply.html  
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7.3.3 Efficiency of final conversion 

 

When reporting the GHG emissions associated to a specific pathway the choice of the 

functional unit to which such emissions are referred to is important. 

For example, the values reported in Table 86 to Table 89, are based on a MJ of bioenergy 

carrier at plant gate (e.g. MJ of wood chips, pellets, bales etc…). These values, thus, do not 

account for the final energy conversion efficiency and the emissions associated with the 

combustion of the biofuel. 

However, when a comparison needs to be reported (e.g. GHG savings compared to a fossil 

source), it may not always be possible to clearly identify a meaningful comparators. 

In the case of liquid biofuels, regulated in the RED, comparing the biofuels at the pump with 

fossil diesel or gasoline at the pump avoids including the large variability of final conversion 

to mechanical power in automotive engines and instead focuses on the supply chain 

emissions. The same is valid for biomethane injected into the natural gas grid. 

When solid biomass is used for power and heat generation, though, it was stated in the 

COM(2010) 11 that the comparison should have been with appropriate fossil fuel 

comparators on the basis of the final energy (i.e. electricity or heat). So, in order to convert 

the GHG emission values from a "plant-gate" basis to a "final-energy" basis, for indicative 

purposes two standard conversion efficiencies were used (see section 7.1 for more details). 

However, the choice of the value for a standard conversion efficiency can have important 

consequences; for example, in case of a GHG savings threshold, pathways that may be 

below this value with a determined efficiency may well be above it when a more efficient 

plant is considered.  

The value chosen as a representative electrical efficiency for bioenergy plants is equal to 

25%. This may be a representative value for small and medium-scale plants running on 

bioenergy feedstocks only. However, more efficient and larger-scale installations may reach 

higher efficiencies even running on biomass only (30-35%) and when considering the share 

of biomass that is co-fired with coal, the plant efficiency can be above 40%. 

For this purpose, Figure 15 presents the GHG savings obtained for some of the most 

representative solid biomass pathways in case of final conversion efficiencies of 25% and 

40%. 

As expected, the GHG saving values increase for all the pathways when the final efficiency 

increases. Most importantly, the effect is more marked for the pathways for which the 

supply emissions are higher. In some cases the resulting GHG savings are more than 

doubled.  

Ultimately, the sensitivity to this parameter will need to be carefully considered in case of 

regulatory efforts based on setting GHG savings thresholds. 
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Figure 15: GHG savings for the most representative forest based solid biomass pathways (same 

pathways and specifications apply as in Figure 6). The columns represent two alternative 

efficiencies of energy conversion to power: the blue columns are obtained applying the standard 

efficiency of 25%, the checkered bars consider a final conversion equal to 40%. 
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7.3.4 Choice of value for the EU electricity mix: Marginal vs. Average 

Section 2.1 introduced the emission factors associated to the supply and consumption of 

electricity, fossil fuels and chemicals that have been used in this report. As explained earlier, 

a marginal approach was endorsed in the SWD(2014) 259. 

In order to estimate the influence of this choice on total GHG emissions, calculations were 

performed for certain pathways utilizing the average EU-mix emission factors used in the 

JEC-WTT v.4a. The results are illustrated in Figure 16. 

For some pathways where no or limited power from the grid is used the differences are 

minimal or non-existent. For example the woodchips pathways, the pellets pathways utilizing 

a CHP (case 3a) and the biogas pathways that use their own electricity (case 1) are basically 

unchanged. 

In general, total typical GHG emissions using the average values are between 7% and 19% 

lower than the values obtained using marginal factors, with the largest differences shown 

for the pathways whose main contribution is actually constituted by processing emissions 

(e.g. forest residues pellets and pellets from wood industry residues). The emissions 

associated only with processing, in fact, are found to decrease between 8% and 28%. 

 
 

Figure 16: Analysis of the influence of the choice of emission factor for the EU electricity mix 

supply on the default GHG emission values for some of the most relevant (affected) pathways both 

for solid biomass and for biomethane. All pellets pathways are considered for the Case 2a and for 

a transport distance of 500 km. The pathway for SRC (Eucalyptus) considers transport from 

tropical regions. The values indicated as "Marginal" represent the emissions as indicated in Table 
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95 and Table 99. The values indicated as "Average" use the the average EU mix emissions and 

average EU mix natural gas supply as indicated in the JEC WTT 4a. Chemicals are also updated 

accordingly, while diesel and HFO are kept constant. 

7.4 Conclusions 

 

The input values reported in this report can be directly used by stakeholders to better 

understand the default emissions reported in SWD (2014) 259 and the results of the JRC 

calculations. Furthermore, they can be used by private stakeholders to evaluate GHG 

emissions of specific bioenergy pathways and also by regulatory bodies as a basis for policy 

implementation. 

The results calculated show that biogas and biomethane produced from wet manure 

benefits greatly from the emission credits due to avoided GHG emissions from the 

alternative manure management. Consequently, GHG savings of above 100% are possible in 

many plant configurations. 

Emission savings associated with biogas and biomethane produced from maize whole crop 

span from negative values (emissions higher than fossil reference) up to more than 50%. 

This variation is strongly dependent on the technology adopted. However, when a biogas 

plant is analyzed in its entirety and the emissions are averaged among multiple substrates 

(e.g. co-digestion), technological choices are still the main factor but the use of manure in 

combination with maize is essential to achieve GHG savings higher than 70%. 

Furthermore, the use of a gas-tight tank for the storage of the residual digestate is 

fundamental in most of the cases to achieve meaningful GHG savings.  

GHG savings for solid biomass pathways are in general above 60% both for power and heat 

produced. Some pathways are able to achieve savings above 70%. Transport distances, 

cultivation inputs and process utilities supply are the parameters which have the strongest 

influence on the final result. Furthermore, the GHG savings presented (especially the ones 

relative to power production) are subject to the choice of final energy conversion efficiency. 

A higher conversion efficiency, which for example can be achieved in co-firing application in 

existing power plants, would allow the majority of pathways to exceed 70% GHG savings. 
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8. Consultation with experts and 

stakeholders 

8.1 Main outcomes of the discussions during the Expert 

Consultation of November 2011, Ispra (IT). 

General issues 

The main issues raised at the workshop are described below (JRC responses are shown in 

italic font). 

- Shipping emissions: the JRC considered that the return journey of the means of 

transport was empty. It was argued that the return trip is often used to transport other 

goods. While this may apply to container ships, it is not the case for chemical tankers 

or grain carriers: these are specialist ships, which will not easily find a suitable export 

commodity from the EU for the return journey.  

Updated ship data based on International Maritime Organization (IMO) data have been 

used for crop, vegetable oil and ethanol shipping. Sugar cane ethanol, palm oil and 

soya figures have also been adjusted. 

- The JRC is using the Öko Institute’s (28) Globales Emissions-Modell Integrierter 

Systeme (GEMIS) database v. 4.5 and v. 4.6 as a source for many input data. More 

updated versions are now available (4.7 was released in September 2011 and 4.8 in 

December 2011 and 4.9 in March 2014).  

New GEMIS 4.9 data have been taken into account, and been updated in the relevant 

pathways. 

- Bonn University’s Common Agricultural Policy Regional Impact Analysis (CAPRI) 

database provides a number of relevant input data for EU cultivation processes, and 

particularly on diesel use, that may be useful for supplementing the JRC data set. 

CAPRI data on diesel use in cultivation, drying and pesticide use have been included in 

many of the pathways. 

- It was proposed that the JRC create and make available a specific database for 

emissions deriving from the production of fertilizers in use (not only ammonium nitrate 

and urea), using International Fertilizer Association (IFA) data. 

 

- The JRC was asked to clarify how the LHV data for feedstocks (e.g. wood, and dried 

distillers' grains with solubles (DDGS)) are calculated. 

                                              
(28) See http://www.oeko.de/home/dok/546.php online. 

http://www.oeko.de/home/dok/546.php
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Tables of LHV values are included in the appendix of this report. 

 

Comments on biogas pathways 

- Transport distances of wet manure and silage maize must be checked, and if 

necessary, updated 

The JRC has checked the distances and the updates are included in this report. 

- A new pathway on 'Biogas from grass' should be added to the list; this could be 

relevant as grass is increasingly used in co-digestion.  

The JRC will consider including this pathway. Supporting data might be provided by the 

University of Cork. 

- Data for the digestion process need to be verified and improved. In particular, they 

should be differentiated by feedstock. 

The JRC has taken this into consideration and the updates are included in this report. 

- Concerns were raised about the directives not considering emissions from the fuel in 

use; this would affect the emissions of methane from biogas engines, in particular. The 

JRC has already raised this issue in a note recently sent to DG Energy. 

This has been updated and is included in this report.  

 

Comments on biomass pathways 

 The Swedish Ministry of Energy commented that the consumption of electricity in the 

pellet mill used by the JRC appears to be too high, and offered to provide data from 

Swedish industry.  

The value for electricity consumption has been revised according to new information 

received 

 It was also suggested that the need and use of additives in pellets be considered. 

However, for the current market of pellets from wood, this is unlikely to be necessary. 

JRC agrees with the experts that at present, this is not a common practice in the 

industrial pellet market. 

 Eucalyptus pathway: JRC values for yields and the N-fertilizer input need to be checked 

against additional literature data. 

JRC has updated the data for Eucalyptus cultivation based on new available literature. 

 Diesel consumption for stemwood logging: the JRC used data from Sweden, but it was 

argued that the numbers could be higher for operations in Germany or other parts of 

the EU. Additional data (e.g. reports from the University of Hamburg) may be provided 

to the JRC.  

JRC has checked additional literature against the values proposed during the meeting 

but it has come to the conclusion that the values chosen are appropriate within the 

required precision on a EU-wide scale. 
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 Charcoal use is more relevant for technology than for power and heat. The current 

data on charcoal production may reflect small-scale non-industrial production, but 

more efficient processes would be used if the fuel were to be exported for energy 

purposes. It was thus argued that, since this pathway is not used for power and heat in 

Europe, it should not be considered. 

JRC has decided not to consider a pathway for charcoal production among the 

pathways for power and heat production. 

 It was suggested that a pathway be constructed for torrefied biomass — in particular, 

pelletised torrefied biomass. The JRC will consider this. 

JRC will monitor technological development in the area of torrefied biomass and will 

build a pathway when reliable, i.e. at least when demonstration-scale data will be 

available. 

 Data on straw pellet production are based on GEMIS and relate to small-scale potential 

use, not commercial or real operations. A comment was made proposing the 

shortening of transport distances of straw bales (to pellet mills). The JRC will evaluate 

this issue if relevant data are made available. 

JRC has evaluated various other sources for agri-residues pellets production and has 

updated the input data. Regarding transport range of straw bales to pellet mill, various 

sources have been analyzed and the current choice has been found in line with the 

data reported by various authors and thus it has been maintained. 

 Miscanthus: GEMIS will remove its Miscanthus data from version 4.8 because these 

were 'potential' values, rather than 'real' values. The data will be updated once the 

literature sources are updated.  

JRC has evaluated several sources and judged that the data available in the literature 

are not reliable enough to be used to define a default value with legal value. The 

pathway will be updated once data from larger-scale plantations will be available. 

8.2 Main comments from the stakeholders meeting of May 2013, 

Brussels (BE). 

Comments on biogas pathways 

 Methane emissions from storage of digestate 

JRC has analysed additional studies (e.g. Weiland, 2009 and Gioelli et al., 2011) which 

have confirmed a few points: 

 Many parameters come into play, making it very difficult to find any significant 

correlation between digestate emissions and other process parameters.  

 For example, the ambient temperature has a minimal influence on slurry 

temperature. Due to the constant supply of warm digestate from the reactor, the 
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storage tank temperature rarely falls below 20°C, even with ambient temperature 

close to 0°C (Gioelli et al., 2011; Hansen et al., 2006). 

 The hydraulic retention time of the process has a significant influence on volatile 

solids reduction (and with the share of energy crops in the substrate) but it is difficult 

to find a correlation with residual digestate methane potential (Weiland, 2009). 

 Measurement errors or incoherencies should not be forgotten. It is possible to find 

reported values for VS in input, methane production, share of methane and CO2 in 

biogas and VS reduction. The system is thus over-defined and with the first four of 

these values it is possible, for example, via a simple carbon balance, to find the VS 

reduction. Or vice-versa, calculate the methane yield. However, these numbers are 

rarely found to be coherent in literature. 

 For the reasons above, we do not think it is appropriate to compare the values in the 

form of "% of methane produced" since this indicator aggregates at least two specific 

data: residual methane potential of the digestate and methane productivity of the 

plant. 

 Therefore, we have re-elaborated the data for digestate emissions taking as starting 

point the residual methane potential of digestates. Applying a carbon balance 

with a fixed methane productivity, we have then calculated VS reduction and final 

methane emissions from digestate. These can then be related to the total production 

of biogas. 

The values chosen are detailed in the table: 

 Maize silage Manure Biowaste 

Methane yield [Nl29 

CH4/kg VS] 
345 200 438 

CH4 share in 

biogas30 [%vol.] 
53 51 60 

VS reduction [%]31 75 43 75.5 

Digestate residual 

potential [l CH4/kg 

VS residual] 

30 35 44 

Share of CH4 from 

storage over total 

CH4 produced [%] 

2.2 10.0 2.5 

                                              
29 Nm3 at 0°C and 1 atm. 
30 For simplicity, the rest of the biogas is assumed to be composed only by CO2 
31 Calculated via a carbon balance considering 0.49 gC/kgVS for manure, 0.47 gC/kgVS for maize and 0.52 

gC/kgVS for Biowastes 
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 Emissions of N2O from the digestates are based on the IPCC and EEA guidelines 

based on the following assumptions: 

 Maize silage Manure Biowaste 

Total N content [kg 

N/dry kg] 
1.1% 3.6% 3.4% 

Total ammoniacal N 

(TAN) [kg N-NH4/kg 

N] 

50% 60%  

N losses in digestion 6% 6% 6% 

N2O direct 

emissions [kg N-

N2O/kg N] 

(IPCC,2006) 

0.5% 0.5% 0.5% 

N volatilization to 

NH3 and NO [kg N-

NH3+kg N-NO/kg 

TAN] (EEA, 2013) 

20%+0.01% 20%+0.01% 40%32 

 

 Manure-to-biogas: methane credits 

The GHG methodology set in the 2010 Biomass Report includes certain emission savings 

from carbon accumulation via improved agriculture management. For the SWD 259, the 

JRC was asked to include in this category also the avoided methane and nitrous oxide 

emissions resulting from improved manure management via anaerobic digestion.  

However, JRC has reworked methane and N2O emissions from digestate storage for all 

the pathways. We have also decided to recalculate the manure avoided emissions based 

on IPCC guidelines. 

Based on the IPCC Guidelines, the ratio between the methane emissions due to slurry 

storage and the emissions due to digestate storage is simply given by the reduction of 

volatile solids during digestion (methane yield and methane conversion factor are 

suggested to be kept the same between the two situations). This implies that with the 

specific conditions assumed in our calculations (VS reduction = 43%) the credits would 

be equal to 1/0.57 = 1.76 times the emissions from digestate storage. 

                                              
32 For biowastes the value of volatilization from IPCC (for liquid slurry) is used 
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Considering that the methane emissions from digestate are equal to 10.0% of the 

produced methane, thus, the credits would be equal to 17.5% of the methane 

produced = 0.175 MJCH4/MJ biogas = 3.5 gCH4/MJ biogas = 1.5 g CH4/MJ 

manure = -37 g CO2 eq./MJ manure. 

Concerning N2O emissions, instead, considering that the proportion of ammoniacal 

nitrogen in the digestate is supposed to increase and that the total N is decreased due 

to losses in the digester, we assume that the net emissions from raw slurry and 

digestate are equal and thus the credit would simply balance out the N2O emissions 

assigned to digestate storage. Numerically this would be equal to 0.066 gN2O/MJ 

biogas = 19.8 g CO2 eq./MJ biogas = -8 g CO2 eq./MJ manure.  

 Digestate fertilizing potential, fertilizer credits and maize whole crop nitrogen 

fertilization balance. 

An extensive nitrogen balance for the cultivation of maize whole crop is added in section 

6.1.1 

 Biogas plants useful heat production and utilisation. 

JRC has not inserted the exported heat as a structural part of the default values (thus 

allocating part of the emissions to heat and part to electricity) because while waste heat 

is generally used for the heating of the digester (included in the JRC values), export of 

such heat to other users is still scarce and it depends mostly on the presence of a 

district heating network and on the presence of a sufficient demand. 

However, because of the structure of the methodology (as it was defined already for the 

COM(2010) 11 document), operators can, without declaring the whole actual value, 

apply their own final conversion efficiencies to the values presented as default (which 

are presented on the basis of the energy carrier, e.g. 1 MJ of pellet, 1 MJ biogas etc…). In 

addition to this, in case of a CHP producing useful heat and electricity, operators can 

apply the allocation formula given in the methodology. The formula itself provides a lot 

of flexibility so that with a relatively simple calculation any possible situation can be 

reproduced. 

 

Comments on solid biomass pathways 

 Torrefied pellets patyhways. 

JRC also recognizes the (future) relevance of torrefied pellets especially for import 

routes. In this sense, in fact, JRC hopes to be able to have a pathway based on current, 

real, process data soon. Nonetheless, the perspectives for full-commercialization are 

around 5 years and thus even with very good data on the current technology status, this 
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is far from the general, average validity that a 'default value' should have. For this 

reason we believe that it is too early to provide a default value for torrefied pellets. 

 Trucks fuel consumption and payload. 

We have found in the literature values for diesel consumption for large trucks in the 

range of 0.21-0.26 l/km for empty cargo and between 0.29 – 0.35 l/km for full cargo. 

When combined, we obtain the value indicated in the report. 

However, we have looked into the data provided by the EEA/EMEP inventory guidebook 

2013. Based on the values for Tier 2 fuel consumption and N2O emissions and Tier 3 

CH4 emissions and based on the fleet composition obtained from the database COPERT, 

we have modified our fuel consumption to: 

• Weighted average (over distance per truck type) for fuel consumption: 30.53 l/100 

km (including empty return trip) 

Longer and Heavier Vehicles (LHVs)(up to 60 tonnes of total weight) are allowed in 

Finland and Sweden with some trials in The Netherlands and Germany. However, these 

trucks are not allowed within the Directive 96/53/EC and are also not included in the 

new Commission proposal for the amendment of such directive (COM(2013) 195 from 

April 2013). LHVs are allowed to circulate in single MS and also to cross one border if 

the two MS allow it. However, this is not the standard in EU and thus it cannot be 

included among the default values. Operators in countries that allow LHV can declare an 

actual value for the transport step. 

 

 Shipping fuel consumption. 

We have now introduced a new category of bulk carrier, SUPRAMAX, with a DWT of 

57000 tonnes and calculated a new specific fuel consumption from the IMO data equal 

to 1.09 gHFO/tkm (FULLY LOADED, one-way). This new category will be used for all trans-

oceanic shipping while the smaller HANDYSIZE carriers will be used for shorter distances 

(e.g. import from Baltics and Russia).  

Furthermore, most of the SUPRAMAX carriers are designed with a stowage ration of 

about 0.75, which means that also the density of pellets (ca. 650 kg/m3) is not enough to 

guarantee a weight-limited cargo but it will be volume-limited. Considering the data 

received from stakeholders regarding cargo manifests of two of their bulk carriers, it is 

possible to estimate the average distance that the carriers have travelled with an empty 

cargo (under ballast) during their lifetime. This results in a percentage over the total 

distance covered of 22% and 31% for the two carriers. These data can be used to assign 

to each cargo a share of the total empty travel of the cargo.  

In this way the total consumption can be assigned as follows: 
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Where, FC@Cargo is the fuel consumption at cargo load in the outward journey, FC@Ballast is 

the fuel consumption under ballast and CF is the Capacity factor defined as the share of 

distance travelled by the ship under ballast over total distance travelled. Cargo is the 

cargo loaded in the outward journey.  

By using this formula it is possible to assign to the pellet cargo only a share of the 

empty trips of the carrier as well as it would be assigned to all other cargos.  

The complex issue is to choose a relevant CF: according to the GDF Suez data, this 

should be between 22 – 31%; according to other stakeholders this value is about 30%; 

according to the average values provided by IMO, this value is about 45%. Based on 

these considerations we have opted for a value of 30% for the Capacity Factor. 

This leads to the following update fuel consumption for shipping of pellets and wood 

chips by bulk carriers: 

 Pellets shipped by Supramax (@ 650kg/m3) = 1.62 gHFO/tkm (incl. empty fraction) 

 Chips shipped by Supramax (@ 220 kg/m3) = 3.76 gHFO/tkm (incl. empty fraction) 

 Chips shipped by Handysize (@ 220 kg/m3) = 5.95 gHFO/tkm (incl. empty fraction) 

 

 Pelleting process heat and power consumption. 

The data on heat supply in pellet mills received from stakeholders indicate that US and 

Canadian mills are actually using their own pellets to supply heat to the process, while in 

European mills it appears that mostly fresh chips/bark are used. Furthermore, it is 

interesting to see that actually some CHP plants are already registered to be operating 

in mills. The Wood Pellet Association of Canada confirmed to JRC that the pellet mills in 

Canada use either planer shavings or sawdust/chips as feedstocks for drying. The Wood 

Pellet Association of Canada claims that around 15% of the feedstock is used for drying 

and 85% is used for pellet making. This is lower than JRC number (28% is used for chips 

boiler) but that is because JRC considers fresh wood chips to have 50% moisture, while 

the particular situation of Canada (using Mountain Pine Beetle killed stems and wood 

that has already been air dried in the forest) allows them to have feedstocks at 35% 

moisture content at the mill gate. 

JRC values for power consumption in pellet mills are confirmed to be within the ranges 

of values recorded by stakeholders. Some of the values presented in the literature which 

appear to be much lower than the one used by JRC need to be carefully assessed since 
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many times values referring only to the power consumption for the pelletization press 

and not to the whole plant are reported. 
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Annex 1. Fuel/feedstock 

properties 

 
Table A. 1: Fossil fuels properties as utilized in this report 

Fossil Fuel Property Value Unit 

Crude 

LHV (mass) 42 MJ/kg 

LHV (volume) 34 MJ/l 

Density 0.820 kg/l 

Diesel 

LHV (mass) 43.1 MJ/kg 

LHV (volume) 36 MJ/l 

Density 0.832 kg/l 

DME 

LHV (mass) 28.4 MJ/kg 

LHV (volume) 19 MJ/l 

Density 0.670 kg/l 

Ethanol 

LHV (mass) 26.8 MJ/kg 

LHV (volume) 21 MJ/l 

Density 0.794 kg/l 

FT - diesel 

LHV (mass) 44 MJ/kg 

LHV (volume) 34 MJ/l 

Density 0.785 kg/l 

Gasoline 

LHV (mass) 43.2 MJ/kg 

LHV (volume) 32 MJ/l 

Density 0.745 kg/l 

Methane 

LHV (mass) 50 MJ/kg 

Density (STP) 0.717 kg/Nm3 

Density (NTP) 0.668 kg/m3 

LHV (vol.) 35.9 MJ/Nm3 

Methanol 

LHV (mass) 19.9 MJ/kg 

LHV (volume) 16 MJ/l 

Density 0.793 kg/l 
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Table A. 2: Material properties for biomass materials and energy carriers. Part 1: Feedstocks and 

bioenergy carriers for gaseous pathways. 

Material Property Value Unit 

Biogas (from maize 

digestion) 

Methane content (vol.) 53 % m3 CH4/m3 biogas 

CO2 (vol.) 47 % m3 CO2/m3 biogas 

LHV (vol.) 19.0 MJ/Nm3 

Density (NTP) 1.31 kg/Nm3 

LHV (mass) 14.5 MJ/kg 

Maize kernels 

LHV dry 17 MJ/kg dry 

Moisture 35 % kg water/kg total 

LHV wet (RED) 10.4 MJ/kg wet 

Yield share 46 % kg kernels/kg whole plant 

Corn stover 

LHV dry 16.5 MJ/kg dry 

Moisture 75 % kg water/kg total 

LHV wet (RED) 2.3 MJ/kg wet 

Yield share 54 % kg stover/kg whole plant 

Maize whole crop 

LHV dry 16.9 MJ/kg dry 

Moisture 65 % kg water/kg total 

LHV wet (RED) 4.3 MJ/kg wet 

Yield 40.8 wet tonne (@ 65%)/ha 

N content 0.37% kg N/kg wet tonne 

VS 96% kg VS/kg TS 

Wet manure 

LHV dry 12 MJ/kg dry 

Moisture 90 % kg water/kg total 

LHV wet (RED) -0.3 MJ/kg wet 

VS 70 % kg VS/kg TS 

N content 3.6 % kg N/kg TS 

Biogas (from manure 

digestion) 

Methane content (vol.) 51 % m3 CH4/m3 biogas 

CO2 (vol.) 49 % m3 CO2/m3 biogas 

LHV (vol.) 18.3 MJ/Nm3 

Density (NTP) 1.33 kg/Nm3 

LHV (mass) 13.7 MJ/kg 

Biowaste 

LHV dry 20.7 MJ/kg dry 

Moisture 76 % kg water/kg total 

LHV wet (RED) 3.0 MJ/kg wet 

VS 91.4 % kg VS/kg TS 

N content 3.4 % kg N/kg TS 

Biogas (from biowaste 

digestion) 

Methane content (vol.) 60 % m3 CH4/m3 biogas 

CO2 (vol.) 40 % m3 CO2/m3 biogas 

LHV (vol.) 21.5 MJ/Nm3 

Density (NTP) 1.22 kg/Nm3 

LHV (mass) 17.6 MJ/kg 
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Biomethane 

Methane content (vol.) 97 % m3 CH4/m3 biogas 

CO2 (vol.) 3 % m3 CO2/m3 biogas 

LHV (vol.) 34.8 MJ/Nm3 

Density (NTP) 0.75 kg/Nm3 

LHV (mass) 46.1 MJ/kg 

 

Table A. 3: Material properties for biomass materials and energy carriers. Part 2: Feedstocks and 

bioenergy carriers for woody biomass pathways. 

Material Property Value Unit 

Woodchips 

(general) 

LHV dry 19 MJ/kg dry 

Moisture (after seasoning) 30 % kg water/kg total 

LHV wet (RED) 12.6 MJ/kg wet 

Bulk density dry 155 kg/m3 

Wood pellets 

(general) 

LHV dry 19 MJ/kg dry 

Moisture 10 % kg water/kg total 

LHV wet (RED) 16.9 MJ/kg wet 

Bulk density dry 650 kg/m3 

Sawdust (wet) 

LHV dry 19 MJ/kg dry 

Moisture 50 % kg water/kg total 

LHV wet (RED) 8.3 MJ/kg wet 

Share at pellet mill 60 % 
kg sawdust wet/sawdust 

pool 

Sawdust (dry) 

LHV dry 19 MJ/kg dry 

Moisture 10 % kg water/kg total 

LHV wet (RED) 16.9 MJ/kg wet 

Share at pellet mill 40 % 
kg sawdust wet/sawdust 

pool 

Eucalyptus 

LHV dry 19 MJ/kg dry 

Moisture wood chips (fresh) 50 % kg water/kg total 

LHV wet (RED) 8.3 MJ/kg wet 

Yield 12.9 dry tonne/ha year 

Poplar 

LHV dry 19 MJ/kg dry 

Moisture wood chips (fresh) 50 % kg water/kg total 

LHV wet (RED) 8.3 MJ/kg wet 

Yield (No fertilization) 10 dry tonne/ha year 

Yield (fertilized) 14 dry tonne/ha year 

Stemwood (pine) 

LHV dry 19 MJ/kg dry 

Moisture 50 % kg water/kg total 

LHV wet (RED) 8.3 MJ/kg wet 
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Table A. 4: Material properties for biomass materials and energy carriers. Part 3: Feedstocks and 

bioenergy carriers for agricultural biomass pathways. 

Material Property Value Unit 

Straw 

LHV dry 17.2 MJ/kg dry 

Moisture 13.5 % kg water/kg total 

LHV wet (RED) 14.3 MJ/kg wet 

Bulk density dry (chopped) 50 kg/m3 

Bulk density dry (bales) 125 kg/m3 

Bulk density dry (pellets) 600 kg/m3 

Bagasse 

LHV dry 17.0 MJ/kg dry 

Moisture (pellets) 10 % kg water/kg total 

LHV wet (RED) 15.1 MJ/kg wet 

Bulk density dry (exit mill) 120 kg/m3 

Bulk density dry (bales) 165 kg/m3 

Bulk density dry (pellets) 650 kg/m3 

Agri residues 

with density 

<200 kg/m3 

(husks, straw 

bales, bagasse 

bales, oat hulls) 

LHV dry 18 MJ/kg dry 

Moisture 13 % kg water/kg total 

LHV wet (RED) 15.3 MJ/kg wet 

Bulk density dry 125 kg/m3 

Agriresidues 

with 

density >200 

kg/m3 (corn 

cobs, nut shells, 

soybean hulls, 

coconut shells) 

LHV dry 18 MJ/kg dry 

Moisture 13 % kg water/kg total 

LHV wet (RED) 15.3 MJ/kg wet 

Bulk density dry 300 kg/m3 

Palm kernel 

meal 

LHV dry 18.5 MJ/kg dry 

Moisture 10 % kg water/kg total 

LHV wet (RED) 16.4 MJ/kg wet 

Bulk density dry 570 kg/m3 
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Annex 2: Stakeholder comments 

on Biogas pathways 

This annex contains all the questions/comments received by various stakeholders, and the 

relative JRC answers/rebuttal, relative to biogas and biomethane pathways, following the 

presentation of the first draft of input data proposed by the JRC to calculate GHG savings 

from solid biomass and biogas pathways (Brussels, May 2013 and following bilateral 

discussions). 

The questions/comments are grouped by topic. 

II.1 Methane emissions from storage of digestate 

Q1) Methane emissions from storage of digestate: Methane emissions from storage of 

digestate in open or closed tanks vary substantially based on a number of factors 

including type of feedstock, pH, degree of digestion and most importantly 

temperature. Sweden and other north European countries have a much cooler 

climate and hence the data presented in the JRC draft report corresponds poorly 

with our actual emission data from existing biogas plants here in Sweden. 

 

JRC: We recommend to calculate “actual emisisons” if “actual data” are available. On the 

other hand, the data proposed here are representative for “local” conditions (Sweden) and 

may not be valid for an EU perspective to make and EU average.  However, we would, we 

would appreciate to receive  these data or a reference to them. 

 

Q2) The figures presented in the draft report regarding methane emissions from storage 

of digestate are very high, e.g. 3.5% from digested crops (maize) (Table 295) and 

5% from digested manure (Table 301). Contrary, new research shows that 

emissions of methane from storage of digestate are on average 1% for both these 

systems (digested crops and digested manure stored in open tanks). The reason is 

that Sweden has a very efficient biogas system (with "post-digestion" reactors), 

which means that the methane production potential is low in the digestate resulting 

in low methane emissions. For Swedish conditions, and based on current biogas 

systems, emission data of around 1% is more reasonable and relevant. 

 

JRC: We recommend to calculate “actual emisisons” if “actual data” are available.  On the 

other hand, the data proposed here are representative for “local” conditions (Sweden) and 
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may not be valid for an EU perspective to make and EU average.  However, we would, we 

would appreciate to receive  these data or a reference to them. 

RebuttaI): Swedish data should be taken into account when calculating the EU average. 

JRC: Indeed data from Sweden are taken into consideration for the calculations. However, 

while the data for 1% emissions fits in the low-range of emissions measured/calculated, it is 

possible also to find values for badly managed operations, in higher-T regions (e.g. Italy) 

where emissions from digestate storage can reach 10-12%. Our values stem from some of 

the very few empirical data available on the matter. The data were collected in Germany 

which admittedly has a higher average Temperature than Sweden but surely lower than 

other important biogas producing MS such as Italy. Our values take the temperature 

variations into account by averaging emissions in summer and winter conditions. 

Regarding relative share and importance of biogas producers in EU-27, the picture painted 

by Eur'observer (albeit two years in a dynamic field like biogas are a rather long-time) 

indicates that Italy and Germany are definitely the major players regarding agricultural 

biogas production. 
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We have re-elaborated our numbers regarding methane and N2O emissions from digestate 

storage.  

We have analysed additional studies (e.g. Weiland, 2009 and Gioelli et al., 2011) which have 

confirmed a few points: 

 Many parameters come into play, making it very difficult to find any significant 

correlation between digestate emissions and other process parameters.  

 For example, the ambient temperature has a minimal influence on slurry 

temperature. Due to the constant supply of warm digestate from the reactor, the 

storage tank temperature rarely falls below 20°C, even with ambient temperature 

close to 0°C (Gioelli et al., 2011; Hansen et al., 2006). 

 The hydraulic retention time of the process has a significant influence on volatile 

solids reduction (and with the share of energy crops in the substrate) but it is difficult 

to find a correlation with residual digestate methane potential (Weiland, 2009). 

 Measurements errors or incoherencies should not be forgotten. It is possible to report 

the amount of Volatile Solids (VS) in input, methane production, share of methane 

and CO2 in biogas and VS reduction. The system is thus over-defined and with the 

first four of these values it is possible, for example, via a simple carbon balance, to 

find the VS reduction. Or vice-versa, calculate the methane yield. However, these 

numbers are rarely coherent in literature. 

 For the reasons above, we do not think it is appropriate to compare the values in the 

form of "% of methane produced" since this indicator aggregates at least two specific 

data: residual methane potential of the digestate and methane productivity of the 

plant. 

 Therefore, we have re-elaborated the data for digestate emissions taking as starting 

point the residual methane potential of digestates. Applying a carbon balance 

with a fixed methane productivity, we have then calculated VS reduction and final 

methane emissions from digestate. These can then be related to the total production 

of biogas. 
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 The values chosen are detailed in the table: 

 

 Maize silage Manure Biowaste 

Methane yield [Nl33 

CH4/kg VS] 
345 200 438 

CH4 share in 

biogas34 [%vol.] 
53 51 60 

VS reduction [%]35 75 43 75.5 

Digestate residual 

potential [l CH4/kg 

VS residual] 

30 35 44 

Share of CH4 from 

storage over total 

CH4 produced [%] 

2.2 10.0 2.5 

 

 Emissions of N2O from the digestates are based on the IPCC and EEA guidelines 

based on the following assumptions: 

 Maize silage Manure Biowaste 

Total N content [kg 

N/dry kg] 
1.1% 3.6% 3.4% 

Total ammoniacal N 

(TAN) [kg N-NH4/kg 

N] 

50% 60%  

N losses in digestion 6% 6% 6% 

N2O direct 

emissions [kg N-

N2O/kg N] 

(IPCC,2006) 

0.5% 0.5% 0.5% 

N volatilization to 

NH3 and NO [kg N-

NH3+kg N-NO/kg 

TAN] (EEA, 2013) 

20%+0.01% 20%+0.01% 40%36 

                                              
33

 Nm3 at 0°C and 1 atm. 
34

 For simplicity, the rest of the biogas is assumed to be composed only by CO2 
35

 Calculated via a carbon balance considering 0.49 gC/kgVS for manure, 0.47 gC/kgVS for maize and 0.52 

gC/kgVS for Biowastes 
36

 For biowastes the value of volatilization from IPCC (for liquid slurry) is used 
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Q3)  Regarding biogas storage emissions: Based on current systems, emissions of 

around 1% is more reasonable and relevant. Emissions equivalent to 5% is not 

relevant for normal Swedish conditions. 

 

JRC: Digestate storage emissions are calculated according to data available in literature for 

central Europe. We recommend to calculate “actual emisisons” if “actual data” are available.. 

On the other hand they would not represent the EU average. We would, however, really 

appreciate if a reference for the emissions mentioned above could be provided.  

See also answer nr. 2. 

 

II.2 Manure-to-biogas: methane credits 

Q4) Manure credits:  

Regarding the calculation of indirect GHG savings resulting from anaerobic digestion 

of manure due to lower methane emissions in comparison to conventional manure 

management and storage the JRC chooses data from the lower range corresponding 

to "15%" reduction (p. 287). JRC has thus applied the precautionary principle in order 

not to overestimate the benefits with biogas. If JRC shall be consistent they should 

also apply the precautionary principle on “the other side” and not overestimate 

negative emissions when there is a lot of uncertainty (e.g. biogenic N2O, methane 

emissions, etc.). When converted into g CH4/MJ, the JRC’s estimates (15%) 

corresponds to 1.1g CH4/MJ, which is low compared to the estimates we normally 

expect based on a compilation of various measurements (Swedish and Danish). 

 

JRC: The GHG methodology set in the 2010 Biomass Report includes certain emission 

savings from carbon accumulation via improved agriculture management. For the SWD 

(2014) 259, JRC was asked to include in this category also the avoided methane and nitrous 

oxide emissions resulting from improved manure management via anaerobic digestion. As 

explained in answer nr. 2, we have reworked methane and N2O emissions from digestate 

storage for all the pathways. We have also decided to recalculate the manure avoided 

emissions based on IPCC guidelines. 

Based on the IPCC Guidelines, the ratio between the methane emissions due to slurry 

storage and the emissions due to digestate storage is simply given by the reduction of 

volatile solids during digestion (methane yield and methane conversion factor are suggested 

to be kept the same between the two situations). This implies that with the specific 

conditions assumed in our calculations (VS reduction = 43%, see answer nr. 2) the credits 

would be equal to 1/0.57 = 1.76 times the emissions from digestate storage. 
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Considering that the methane emissions from digestate are equal to 10.1% of the produced 

methane, thus, the credits would be equal to 17.5% of the methane produced = 0.175 

MJCH4/MJ biogas = 3.5 gCH4/MJ biogas = 1.7 g CH4/MJ manure. 

Concerning N2O emissions, instead, considering that the proportion of ammoniacal nitrogen 

in the digestate is supposed to increase and that the total N is decreased due to losses in 

the digester, we assume that the net emissions from raw slurry and digestate are equal and 

thus the credit would simply balance out the N2O emissions assigned to digestate storage. 

Numerically this would be equal to 0.043 gN2O/MJ biogas = 12.8 g CO2 eq./MJ biogas.  

Q5)  It is important to consider also the avoided emissions owing to biogas production 

when greenhouse gas emissions for biogas are calculated. When digestate is spread 

on fields, instead of raw manure, methane emissions can be reduced and odours 

mitigated. In addition, storage of manure in properly covered tanks – which is 

standard today - also significantly prevents methane emissions. We therefore 

welcome the draft update of the Annex V that considers the avoided methane 

emissions by giving a credit for it.  

 

JRC: As explained in previous question, the GHG methodology set in the 2010 Biomass 

Report includes certain emission savings from carbon accumulation via improved agriculture 

management. For the SWD(2014) 259, the JRC was asked to include in this category also 

the avoided methane and nitrous oxide emissions resulting from improved manure 

management via anaerobic digestion.  

It should be noted that, covered manure storage is not standard, and for sure gas tight 

coverage of manure tanks is rare (if any). Moreover, it is important to stress that if (and 

when) raw manure gas-tight storage were to become a standard procedure in agriculture 

(independently from thepresence of a biogas digester) then the "manure methane credits" for 

biogas would actually cease to exist! In fact, these credits are not an intrinsic property of the 

biogas pathway but the result of a common, although less than optimal, agricultural practice 

(of storing raw manure/slurry in open tanks)! 

 

Q6)  We think that methane credits should be taken into account that result from the 

anaerobic digestion of manure in a biogas plant and the avoidance of methane 

emissions associated with the storage of manure for fertiliser use.  

 

JRC: See answers above: they are included in the updated methodology. 
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II.3 Digestate fertilizing potential, fertilizer credits and maize whole crop 

nitrogen fertilization balance. 

Q7) Instead of by-products like distillers grain from EtOH production or rape seed cake 

from Biodiesel that can be utilised in dairy cattle diets, biogas production generates 

digestate with a high fertiliser value. Use of local feedstock for biogas and 

digestate production for fertilising purposes closes the nutrient cycle in regional 

ecosystems and saves the CO2 emissions that would be released during the 

production of mineral fertiliser. Thus, this positive fertilising effect of the digestate 

should be taken into account based on its nutrient content. The current methodology 

for biofuels does not account for that; there are no credits for the fertilising effect 

of digestate since only mineral fertilisation is included. Therefore, we very much 

welcome the draft update of the Annex V that considers the fertilising effect of 

digestate. However, we cannot agree with some of the given figures:  

On page 277 it is written that 63.6 kg N from synthetic fertiliser and 250 kg N from 

digestate are applied per hectare when 40.9t maize is harvested per hectare. The 

amount of fertiliser does not seem to coincide with the harvest. If the nutrient 

removal during growth is counted, only around 170 kg N per hectare can be 

obtained from the digestate when 40.9t maize is harvested. The assumed amount 

of fertiliser applied of totally 313.6kg is far beyond the need of the plants, not 

realistic, and would also be in conflict with the fertiliser regulation. In addition, with 

this amount, field N2O emissions double, giving biogas much higher overall 

emissions than justified. We therefore suggest that the amount of applied fertiliser 

will be adjusted so that depending on the harvest, only the nutrients that are 

removed during growth are replaced with an optional, additional amount of 

maximum 20% of synthetic fertiliser.  

Additional comments: Indeed, on P. 277 it is stated that N2O emissions are calculated 

from 63.6 kg N/ha of synthetic fertiliser and 250 kg N/ha from digestate (my emphasis). 

The question is whether a total N input of 313.6 kg N/ha was considered to be the basis 

for the calculation of N2O emissions. This would indeed correspond to illegal over-

fertilisation. Where do the 250 kg N/ha come from? 

Additional comments:  According to information from Prof. Taube (Institute of Crop 

Science and Plant Breeding, Univ. Kiel), first this percentage (share of ammoniacal 

nitrogen in digestate, note of authors) is slightly higher, but more importantly, the 

remaining N is made available to the plants over longer periods of time. Altogether, it is 

only necessary to add some 30-50 kg of additional artificial fertiliser if all of the 

digestate is used Please refer to ftaube@email.uni-kiel.de for exact values.This seems to 

be supported by Clare Lukehurst from  IEA Task 37. 

mailto:ftaube@email.uni-kiel.de
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JRC) About the figures: we have already noticed the overestimated use of digestate fertiliser 

(250 kgN/ha).  

The amount of synthetic fertilizers applied  is the EU-27 average resulting from the values 

provided to us from Fertilizers Europe (the European fertilisers manufacturers association) for 

the category "Silage Maize"37. This value clearly already accounts for the application of organic 

fertilizers: in fact, the value indicated for fodder maize is considerably lower than the amount 

indicated by the same source, for maize grain. For example, considering the application of 

fertilizers in Italy, Fertilizers Europe indicates a value of synthetic-N use equal to 182 kg 

N/ha for grain maize and only 80 kg N/ha for fodder maize. 

Therefore, we consider that the values for fodder maize fertilization already include the 

recycling of the nutrients via manures or digestates (See pg 277).  

However, the value of synthetic-N applied has been slightly modified (as well as the average 

yield of maize for fodder) to 63.24 kN/ha according to slightly updated FAOSTAT statistics 

that the JRC received at the end of 2013. 

For manure, on the other hand, we assume that the fertilizer potential is the same as 

digestate, therefore credits shall not be given. 

 

The detailed nitrogen balance for maize fodder to biogas would look like this: 

 

Maize whole crop nitrogen fertilization 
 

Maize composition: Nitrogen removal and needs 

Based on an average maize composition (see e.g. Phyllis, https://www.ecn.nl/phyllis2/ ), the N 

content of fresh maize is around 0.37%F.M. 

Based on this number, the removal of N by the crop is equal to: 40.8 * 0.0037 = 150.8 kg 

N/ha. 

IPCC prescribes that below ground residues (BG) for maize amount to 22% of the total above 

ground (AG) biomass (on a dry basis). We consider a loss of AG material at harvest equal to 

1 t dry/ha with a N content equal to 0.6% (IPCC, 2006). Furthermore, the N content in the BG 

                                              
37

 Mr. Christian Pallière, pers. comm., 2014: "Our Forecast is an expert based approach (attached a brief 

document on explanations/references for use, and the EEA report which has compared with other model based 

system), it is therefore our national experts who locally make investigation for each crop, visiting generally the 

crop institutes and the main agriculture universities when it comes for application rates, the same organizations 

plus the national administration which are reporting statistics when it comes to acreages. They report the 

outcomes of these several contacts. These data have been provided to several specialist (Wageningen university, 

UN ECE Task Force on reactive Nitrogen)". 

https://www.ecn.nl/phyllis2/
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is taken from IPCC and it is slightly higher than for AGR, it is equal to 0.7% on a dry matter 

basis.  

Thus, the N content in the BG residues is equal to: ((40.8*0.35)+1)*0.22)*0.007 = 23.5 kg N 

/ ha. 

The N content in the AG residues is equal to: (1*0.6) = 6 kg N/ha. 

The total N demand for the crop is thus equal to 180.3 kgN/ha. 

After harvest, the crop is ensiled for preservation, encountering dry matter losses. 

Based on a collection of data we have assumed a dry matter loss of 10% (Kohler, 2013; 

Herrmann, 2011; Styles, 2014). However, we assume no significant losses of N (it is possible 

that a little organic N is mineralized to ammoniacal N during the processes but eventual 

leachate is assumed to be recirculated to the digester). The N content after ensiling thus 

remains the same at 150.8 kg N/ha.  

 

Nitrogen losses 

N losses of about 6% are considered to happen during digestion (Schievano, 2011; Battini, 

2014). This leaves around 141.7 kgN/ha in the digestate sent to storage. 

During the storage period, direct emissions of N2O and volatilization losses to NH3 and NOx 

are expected. 

The IPCC Guidelines were originally designed for manure management and thus may not be 

directly applicable to energy crops digestates. However, this could work as a first 

assumption. 

IPCC recommends a value of 0.005 N-N2O/Nslurry (IPCC, 2006, Vol.10, Table 10.21). 

Furthermore, the latest EMEP/EEA guidelines (EEA, 2013, Vol. 3.B, Table 3.7), indicate (for 

dairy slurry) emissions of N-NH3 as 20% of Total Ammoniacal Nitrogen (TAN), 0.01% of TAN 

as N-NO and 0.3% of TAN as N2. 

Considering a TAN level of 60% in the maize digestate, this would lead to a total loss of 

digestate – N equal to: 0.2*0.6 + 0.0001 * 0.6 + 0.003 * 0.6 + 0.005 = 12.7 % of 

digestate-N. (High Volatile Scenario) 

Therefore, the N available for field spreading in the digestate (in the high volatile scenario) is 

equal to: 123.8 kgN/ha. 

However, this could be considered as an upper limit, other values around 2-3% of total 

losses have been reported [e.g. Corrè, 2010]. (Low volatile scenario) 

In this second case the N available for spreading would be equal to: 141.7 * 0.97 = 137.5 

kgN/ha. 

From the IPCC guidelines, at the moment of field spreading, 20% of available N from organic 

fertilizer, is volatilized as NH3 and NO and 30% is leached. In addition to the 1% N that is 

emitted directly as N2O. (High volatile scenario) 
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This would mean additional N losses on the field equal to 51% of applied N. This would 

leave 60.6 kg N/ha. (High volatile scenario) 

Alternatively, Battini et al., 2014 reports the following losses from field spreading of 

digestate: 1% to N-N2O, 0.55% to N-NO, 5% to N-NH3 and about 30% of leaching. This 

leads to total losses of 36.55% of the applied N. 

This would leave available: 137.5 * 0.6345 = 87.2 kgN/ha (low volatile scenario). 

 

Nitrogen fertilization balance 

Considering all associated N losses, thus, it appears that effectively only 60.6 kgN/ha or 

87.2 kgN/ha are available on the field. Of this amount, a fraction will be directly available 

while the rest of the organic N will be released in time. Anyway, we assume that this entire N 

is available for the plant (in the present or future rotations).  

Additional to this amount, we consider the application of 63.2 kgN/ha of mineral-N fertilizer. 

This number is the EU-27 average resulting from the values provided to us from Fertilizers 

Europe for the category "Silage Maize"38.  

Our assumption in this case is that the fertilizing power of raw slurry and manure is the 

same as for digestate in the long-term. This is still debated and long-term trials are currently 

under way (Fouda et al., 2013; Gutser et al., 2005; Lukehurst et al., 2010; Schröder et al., 

2007; Smith et al., 2010), however, we think this assumption is valid for the level of 

accuracy required in this study. 

Nitrogen losses from mineral fertilization are considered by the IPCC guidelines, to be equal 

to 1% as N-N2O, 10% as volatilization to N-NH3 and N-NO and 30% as leached. (High 

volatile scenario) 

This would leave 37.3 kgN/ha available for plant absorption (High volatile scenario). 

So, considering 100% efficiency of the remaining N, the apported N by organic and mineral 

fertilization would be equal to 97.9 kgN/ha. 

Alternatively, nitrogen losses from mineral fertilization are considered to be equal to 0.6% as 

N-N2O (Battini et al., 2014), 5.6% as volatilization to N-NH3(EEA, 2013, 3.D – average value 

based on share of sold fertilizers in Europe), 0.9% N-NO (Battini et al., 2014) and 30% as 

leached (Battini et al., 2014). (Low volatile scenario) 

This would leave 39.8 kgN/ha available for plant absorption (Low volatile scenario). 

                                              
38 Mr. Christian Pallière, pers. Comm., 2014: "Our Forecast is an expert based approach (attached a brief document on 

explanations/references for use, and the EEA report which has compared with other model based system), it is therefore our national 

experts who locally make investigation for each crop, visiting generally the crop institutes and the main agriculture universities when it 

comes for application rates, the same organizations plus the national administration which are reporting statistics when it comes to 

acreages. They report the outcomes of these several contacts. These data have been provided to several specialist (Wageningen university, 

UN ECE Task Force on reactive Nitrogen)". 
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So, considering 100% efficiency of the remaining N, the apported N by organic and mineral 

fertilization would be equal to 127.0 kgN/ha (Low volatile scenario). 

The IPCC indicates that the N remaining in the crop residues is equal, for our condition, to 

about 29.5 kgN/ha. Of this, the IPCC prescribes that 1% N-N2O and 30% is leached away. 

So, the available N from residues is equal to: 29.5*(1– 0.31) = 20.4 kgN/ha 

 

The final N balance would indicate thus (see also Table A. 5 for all the relevant data): 

High Volatile Scenario: 

 Plant needs = -180.3 kgN/ha; 

 Mineral N (available on field) = +37.3 kgN/ha; 

 Digestate N (available on field) = +60.6 kgN/ha; 

 AG+BG residues N (available on field) = +20.4 kgN/ha; 

 N to close balance = 62.0 kgN/ha (of which about/up to 20 kg may be from 

atmospheric deposition) 

 

Low volatile scenario: 

 Plant needs = -180.3 kgN/ha; 

 Mineral N (available on field) = +39.8 kgN/ha; 

 Digestate N (available on field) = +87.2 kgN/ha; 

 AG + BG residues N (available on field) = +20.4 kgN/ha; 

 N to close balance = 32.9 kgN/ha (of which about/up to 20 kg may be from 

atmospheric deposition) 
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Table A. 5: Summary of input data, assumptions and nitrogen balance for the cultivation of Maize whole crop. 

 

High volatile scenario Low volatile scenario 
Value Unit Source Value Unit Source 

Yield (AG removal) 40.8 t F.M./ha EUROSTAT 40.8 t F.M./ha EUROSTAT 

TS 35% % F.M. JRC 35% % F.M. JRC 

BG residues (kg dry/kg dry AG) 22% % AG dry IPCC 22% % AG dry IPCC 

AG residues (t dry/ha) 1 t dry/ha Taube, 2014 1 t dry/ha Taube, 2014 

N content (AG maize whole crop) 0.37% % F.M. Hermann, 2005 0.37% % F.M. Hermann, 2005 

N content (AG residues) 0.6% % dry AG IPCC 0.6% % dry AG IPCC 

N content (BG residues) 0.7% % dry BG IPCC 0.7% % dry BG IPCC 

N losses ensiling 0% % N crop JRC 0% % N crop JRC 

N losses digester 6% % N crop Battini, 2014 6% % N crop Battini, 2014 

TAN (maize digestate) 60% % N digestate Taube, pers. Comm. 2014 60% % N digestate Taube pers. Comm. 2014 

Mineral-N fertilizer applied 63.2 kg N/ha Fertilizers Europe 63.2 kg N/ha Fertilizers Europe 

N Losses digestate storage 
      

N-N2O direct (digestate storage) 0.5% %N digestate IPCC (Dairy manure, slurry with crust) 

3.0% 

%N digestate 

Battini, 2014 
N-NH3 (digestate storage) 20% % TAN digestate EEA, 2013 (3.B) % TAN digestate 

N-NO (digestate storage) 0.01% % TAN digestate EEA, 2013 (3.B) % TAN digestate 

N-N2 (digestate storage) 0.3% % TAN digestate EEA, 2013 (3.B) % TAN digestate 

N Losses Field application – Organic fertilizer 
      

N-N2O direct (field application organic) 1% % N at field IPCC 1% % N at field IPCC 

N-NH3 + N-NO (field application organic) 20% % N at field IPCC 5.55% % N at field Battini,2014 

N-NO3-- (field application organic) 30% % N at field IPCC 30% % N at field Battini, 2014 

N Losses Field application – Crop residues 
      

N-N2O direct (field crop residues) 1% % N at field IPCC 1% % N at field IPCC 

N-NO3-- (field crop residues) 30% % N at field IPCC 30% % N at field IPCC 

N Losses Field application – Mineral fertilizer 
      

N-N2O direct (field application mineral) 1% % N mineral IPCC 0.6% % N mineral Battini, 2014 

N-NH3 + N-NO (field application mineral) 10% % N mineral IPCC 6.5% % N mineral EEA,2013 (3.D) + Battini, 2014 

N-NO3-- (field application mineral) 30% % N mineral IPCC 30% % N mineral Battini, 2014 

N Balance 
      

N needs (AG + BG + AGR) 180.3 kg N/ha 
 

180.3 kg N/ha 
 

N (AG maize - removal) 150.8 kg N/ha 
 

150.8 kg N/ha 
 

N (AG + BG residues) 29.5 kg N/ha 
 

29.5 kg N/ha 
 

N (maize silage) 150.8 kg N/ha 
 

150.8 kg N/ha 
 

N digestate 141.7 kg N/ha 
 

141.7 kg N/ha 
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N after storage - at field 123.8 kg N/ha 
 

137.5 kg N/ha 
 

N available for plants (digestate) 60.6 kg N/ha 
 

87.2 kg N/ha 
 

N available for plants (crop residues) 19.3 kg N/ha 
 

19.3 kg N/ha 
 

N mineral - available for plant 37.3 kg N/ha 
 

39.8 kg N/ha 
 

Final Balance 
      

Total N needs 180.3 kg N/ha 
 

180.3 kg N/ha 
 

Total N applied 118.3 kg N/ha 
 

147.4 kg N/ha 
 

N deficit (deposition) 62.0 kg N/ha 
 

32.9 kg N/ha 
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Q8) Digestate as a fertiliser: The digestate is an integral part of biogas production. 

Although some reduction in volume may occur during digestion, there is likely to 

be a similar quantity to the original tonnage of maize input. However, the nutrient 

value of the digestate needs to be taken into account and the amount of mineral 

fertiliser applied reduced in consequence. The resulting EF for fertilisers are 

therefore too high as they have failed to take into account the recycling of the NP 

and K in the digestate. 

 

JRC: The amount of fertilizers is supplied by Fertilizers Europe and is specific for silage 

maize. See answer nr. 7. 

Q9) Manure credit : storage and fossil N substitution 

CEPM and AGPM welcome the proposal to give a manure credit (page 286) to 

take into account the CH4 savings due to the biogas process compared to 

spreading raw manure. 

We would like to suggest to take into account another credit, based on the 

substitution of fossil N by organic N. As a matter of fact, and contrary to the 

liquid biofuel case, energy crops are bringing an extra organic N production 

that will replace fossil N, in addition to the manure already avalaible. 

The 2012 french LCA study on biomethane (page 60) has measured the 

emissions related to 2 cases: 

 X: Reference case : 9 kg of N coming from manure and 1 kg of fossil N 

 Y : Biogas case : 10 kg of N from digestate with 1 N kg coming from 

energy crops and 9 from manure 

Emissions from the Y case are less than the X case and give a credit that 

AGPM and CEPM think it should be taken into account in the biogas 

methodology 

 

JRC: There are many reasons why generalising such credit as a structural part of the default 

values calculations would be unreasonable: 

- Results from experimental trials on slurry vs. digestate N2O emissions are very variable 

depending on site specific conditions, climate, measurement techniques and length of 

measurement campaign. 

- The measurement campaign should be based not only on direct measurements (total 

kg N/ha applied) but also on indirect measurements such as resulting yields over many 

rotations. 

- N2O emissions from field studies appear to be lower for digestate than for raw slurry 

BUT it should be considered that emissions from storage of digestate appear to be 

higher compared to storage of raw slurry. 
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Considering all these various level of uncertainties, we have approached the problem 

according to the following assumptions which we think reflect the current understanding of 

the issue: 

- N2O emissions from storage are equal both for digestate and for raw manure/slurry; 

- The fertilizing potential of digestate is considered equal to the one of raw manure in the 

long term; 

- N2O emissions from field application are out of the boundaries of the manure-biogas 

pathway. When digestate is applied for the cultivation of an energy crop (such as it 

happens in the maize-biogas pathway) then the emissions from field application are 

taken from the IPCC guidelines and they are based solely on the total-N applied. 

 

When calculating actual emissions of a manure-biogas pathway, field emissions are out of 

the analysis and thus this "credit" would not appear. When calculating actual emissions of a 

maize-biogas pathway or of a co-digested plant, the "credit" would not appear as such but 

simply the declared actual emissions will be lower than an hypothetical equal pathway using 

only raw manure as organic fertilizer. So the effect will be accounted for. 

 

II.4 Maize whole plant cultivation inputs 

Q10) Application of the EFs for maize for ethanol to biogas: The EF for ethanol 

includes energy for maize drying and for the harvesting of stalks. This needs to 

be clarified in the light of harvesting and storage methods. Maize for biogas is 

harvested as a whole crop and chopped as part of the harvesting process. If used 

for ethanol, are the stalks considered a residue? If yes, emissions associated with 

use of machinery (chopping) and removal from the field would need to be taken 

into account. The whole crop maize for biogas (grain and stems) is transported 

direct to the silage clamp for storage. It is not dried and therefore any emissions 

for drying need to be excluded 

 

JRC: The data on maize cultivation for biogas are specific for silage maize. The data on 

fertilizers use are supplied by Fertilizers Europe. There is no drying involved but rather mass 

losses during ensiling are taken into account and the residues left on the field (only 

belowground biomass for the case of whole crop harvest) are included in the analysis when 

it comes to N supply and N2O emissions.  
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II.5 Digestate additional benefits 

Q11) Moreover, digestate represents a best practice in preventing contamination. In 

many Member States manure is spread out on fields directly without any 

treatment against pathogens causing potential biological contamination. 

Treatment through anaerobic digestion in most cases destroys viruses or at least 

greatly reduces the number of plant and animal pathogens within the feedstock. 

At the same time also weeds are killed.  

JRC: We recognise the added value of anaerobic digestion of manure, but the integration of 

these aspects in the GHG emissions assessment is not straight forward. It would call for a 

deep investigation into indirect effects (such as yield improvals due to avoidance of pests). 

II.6 Biogas: Co-digestion of substrates and additional default values 

Q12) Only three biogas feedstocks are considered in the JRC’s draft report: Maize, 

manure and municipal organic waste. We suppose that for example biogas from 

grass silage, wheat silage or any other crop feedstock is covered by the values 

for maize, but since their savings may significantly vary and as it is important 

that all feedstocks can be used for biogas production, we would recommend the 

inclusion of GHG calculation for all broadly used feedstocks such as sewage 

sludge and different crops (including catch crops) into the Annex V. The variety of 

feedstock fed simultaneously into a digester must be taken into account: In 

many countries, the biogas plants are usually fed with a mixture of different 

substrates depending on the availability of feedstock at the site. In Germany for 

example, there are very few biogas plants (less than 10%) using only one type of 

feedstock but a variety of mixtures ranging from energy plants like maize or 

barley silage over grass silage to manure in different proportions. The 

methodology has to be designed in a way that the greenhouse gas emissions for 

all the different feedstocks and their mixtures can be calculated easily with low 

administrative burden.  

JRC: We agree, there are many feedstocks that 'can' be used, but in order to limit the 

number of default values, the most common were modelled (manure, silage maize and 

biowaste). The request for further pathways should be addressed to the European 

Commission - DG ENER. 

Concerning the issue of codigestion, the GHG methodology set in the 2010 Biomass Report 

(COM(2010) 11) uses a mass balance approach, whereby physical mixing of certified and 

non-certified products is permitted but products are kept administratively segregated. The 

system ensures that for the volume of biomass for which sustainability claims are made at 

the end of the supply chain, sufficient certified material has been added to the supply chain, 
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taking into account relevant conversion factors. However, a number of stakeholders have 

highlighted that this approach creates difficulties for the majority of existing biogas plants 

that typically use a mixture of locally-produced feedstock, ranging from animal manure, to 

food/feed energy crops (such as silage maize) and to residues from the agro-food industry. 

They claim that given the operational characteristics of biogas plants, a mass balance 

approach results in lower GHG saving performances compared to an alternative approach 

whereby the GHG emission default values are calculated for the entire mixture within a 

given biogas plant. 

Biogas from sewage sludge (as well as landfill gas) is not subject to sustainability criteria. 

Q13) In connection with the two previous points, there is a need for more flexibility 

when sustainability of some advanced substrates is defined: For example, catch 

crops (e.g. ley, buckwheat, ryegrass etc.) deliver valuable environmental 

advantages as they can be integrated into crop rotations and in this way improve 

the overall productivity of the farm. Therefore, the use of catch crops should be 

promoted even though they may not always be able to reach the 60 % threshold 

of greenhouse gas savings due to their low yield per hectare. Thus, for the 

evaluation of biogas, it is essential that also the crop rotation systems are taken 

into account.  

JRC: According to the Directive, in case actual values exist, they should be used for the 

calculations. This way there is full flexibility. The default pathways are aimed at representing 

the most common feedstocks. 

Q14) DG ENER considers proposing a modification of the application of the mass 

balance system in the case of mixed feedstocks in biogas plants. According to this 

approach, GHG savings could be calculated jointly for a mixture of feedstocks. This 

would require an adjustment of the GHG methodology. 

JRC: Please see answer to Q12. 
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Q15) Biogas feedstock and methodology 

Biogas is usually produced from a mix of feedstock and not on a single one. It 

seems therefore difficult to calculate default values only on specific raw 

substrates.  The methodology to calculate GHG default values of different 

feedstocks should take into account this point specific to biogas. Furthermore, 

the range of feedstock of feedstock should be enlarge before any publication. 

 

JRC: We agree, there are many feedstocks that 'can' be used, but in order to limit the 

number of default values, the most common were modelled (manure, silage maize and 

biowaste). Concerning codigestion, see answer to Q12. 

Q16) Catch crops, second crops, intermediate crops, multicropping systems,... 

Sustainability approaches have to be adapted to specific cropping systems. 

Energy crops can be inserted into crop rotations without competing the global 

food potential production. They can also give environmental benefits, such as 

cover crops. The sustainability methodology must take into account these crop 

rotation systems that do not take areas from food production. Crop rotation 

systems such as barley/maize can produce 2 crops a year and be very efficient 

not only for animal production but for biogas also. 
 

JRC: According to the Directive actual values can be used for the calculations. This allows 

full flexibility in the calculations.  

Be aware, however, that  according to a recently published work (Jacopo Bacenetti, 

Alessandra Fusi, Marco Negri, Riccardo Guidetti, Marco Fiala, Environmental assessment of 

two different crop systems in terms of biomethane potential production, Science of The Total 

Environment, Volumes 466–467, 1 January 2014, Pages 1066-1077), double cropping 

appears to worsen dramatically the GHG emissions of biogas production.  
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II.7 Biogas Upgrading to biomethane: technologies and methane emissions. 

Q17) Upgrading biogas to biomethane   

When it comes to upgrading biogas the draft report distinguishes between 

"chemical" upgrade which is expected not to cause any methane emissions (same 

assumption is made regarding oxidation) and "physical" upgrade via PSA, water 

scrubbers etc. which are assumed to cause emissions corresponding to 3%. 

Continuous measurements at an existing PSA plant in southern Sweden shows a 

variation between 0.7-1.4%. Reasonable average data for the current Swedish 

situation should be around 1.5-2%. If marginal data is applied, which JRC does in 

an inconsistent manner, emissions should rather be below or at 1% for "physical" 

upgrade for new upgrading plants (not using "chemical" upgrade or additional 

oxidation).  

 

JRC: The upgrading techniques are grouped in two categories and they are not distinguished 

in physical and chemical upgrading. The difference of the two groups is the treatment of the 

off-gas. If the off-gas is vented it is assumed to cause 3% CH4 emissions. If the off-gas is 

combusted there are no emissions assumed. This latter assumption is actually very 

optimistic since flaring efficiency in removing methane is rarely 100%. 

In order to make this difference clearer and avoid further misunderstanding, the two groups 

of technologies are now renamed in OGV (Off Gas Vented) and OGC (Off Gas Combusted). In 

any case, if actual data on methane slip are available, actual values should be used. On the 

other hand they would not represent the EU average. We would, however, really appreciate if 

you could send those data to us or provide a reference.  

Q18) As regards the upgrading technologies mentioned on page 274 and consequently 

in the rest of the report, two different options for upgrading technologies - 

physical upgrading without combustion of the off-gas and physical or chemical 

upgrading with combustion of the off-gas - are considered. However, any 

upgrading technology can, in principle, be equipped with combustion (or catalytic 

oxidation) of the off-gas. And in the same way, any upgrading technology can, if 

savings are desired, be supplied without combustion (or oxidation) of the off-gas. 

Therefore we would suggest considering two different scenarios instead:  

o Biogas upgrading (any technology) without combustion of the off-gas  

o Biogas upgrading (any technology) with combustion of the off-gas.  

The catalytic oxidation of the off-gas is used when the off-gas contains too 

small amount of methane to allow combustion usually up to 1.5 resp. 3% 

depending on the methods. 
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JRC: The comment is taken into consideration and as a result the two groups of technologies 

are now renamed in OGV (Off-gas Vented) and OGC (Off-gas Combusted).  

 

Q19) Maturity of the biogas upgrading market: Regarding biogas upgrading they 

write the report states, “There are currently many different technologies used to 

remove CO2 from the biogas stream in order to obtain a gas with the quality 

needed to be injected in the natural gas grid. None of these technologies are 

actually prominent in the market yet, since biogas upgrading is still developing”. 

This is not true. According to the information published by IEA Bioenergy Task 37, 

more than 220 biogas upgrading units exist today and they are installed in 

commercial operations. In Figure 2 below it can be seen that most of the 

upgrading plants are located in Germany and Sweden. Elsewhere there are 

several countries with less than 20 upgrading units each. Although this is the 

most updated available list, information about some units may be missing (IEA 

Bioenergy Task 37 2012). 

 

 
Figure: The geographical location of the 221 biogas upgrading plants that has 

been identified by IEA Bioenergy Task 37 

 

The figure shows the technologies that are used by the upgrading plants that 

are in operation today and which year they were commissioned. Until 2008 it 

was mainly the water scrubbing and PSA technologies that dominated the 

market, but lately chemical scrubbers, and to a minor extent also membrane 

separation units, have increased their market share. The majority of the 
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chemical scrubbers are amine scrubbers, but other chemical scrubbers are 

also included in this category. 

 

Figure: Evolution of the technologies that are used in the biogas upgrading 

plants taken into service in different years. Only plants that are in operation 

today are included. Data from IEA Task 37 

JRC: The data reported confirm that there actually is not a specific dominating technology 

with PSA, chemical and water scrubber technology sharing the top 90% of the share.  

The grouping of technologies is aimed at limiting the number of default pathways. (the 18 

pathways should be multiplied by 3, or 5 if all the technologies were considered separately). 

Furthermore, we have seen that the difference of emissions due to the oxidation of off-

gases is much larger compared to the variability of emissions among the various different 

technologies; that is why the choice was to divide the values along these chategories. 

Q20) Methane slip: The data given below mainly represent typical values for modern 

and well-operated up-grading plants. It would be advisable to use values higher 

than those quoted for the calculation of default GHG savings. The methane slip is 

quite high in the PSA case with 1.5-2% reported as mean and median values. 

The water scrubber has a slip of about 1-2% in modern plants. Values much 

higher than this are not likely in a well-functioning plant. The chemical amine 

scrubber system has a much lower methane slip of 0.1-0.2%. Organic physical 

scrubbers have a higher slip than water scrubbers (1.5-2%), and so the methane 

slip is used internally to supply heat to the desorption process. Certain 

membrane upgrading plants with the latest designs can achieve very low 

methane slip of about 0.5%. However, other designs can have methane slip of 1-
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4% and the slip from older membrane systems can even exceed 4%. In some 

membrane applications on the market, liquefaction of the carbon dioxide in the 

waste gas is used to recover 100% of the methane in the off-gas by cryogenic 

separation. While cryogenic systems for biogas upgrading should in principle 

have extremely low methane slip, only one plant is in commercial operation since 

a few months ago so there is no reliable information. Depending on the 

regulations in the country where an upgrading plant is operated combustion of 

the off-gas to achieve low methane emissions may be a requirement. Only the 

manufacturers of the "Genosorb" scrubber system require combustion of the 

waste gas and this is used to produce the heat needed in the upgrading process. 

For more information please see:

 http://www.sgc.se/ckfinder/userfiles/files/SGC270.pdf 

 

JRC: The default values are intended to be representative of all the biogas plants, not just 

the modern and well operated plants. Modern and well operated plants are strongly 

encouraged to calculate their own actual values (e.g. if certain membranes with the latest 

design can have a methane slip of 0.5 %, in the IEA biogas handbook it is reported that 

some can have a methane slip of 15 %, using the 0.5 or even 3 % methane slip would 

undeservedly reward the bad technology and not reward the best one, with 3 % the plants 

using the best technology can still use the actual values to be rewarded for their investment 

in the best technology).  

From the suggested document, it actually appears that in most cases the off-gases will need 

to be oxidized (either because of legal emissions limits or because of process optimization), 

in this case, the default value for OGO technologies (Off-gas oxidized) can be utilized. The 

conditions for this value are actually not very conservative since a 100% efficiency of 

methane oxidation is assumed. Operators with much better processes can always calculate 

their own actual value. 

II.8 Biogas substrates transport distances 

Q21) The JRC draft report’s assumed transport distances for biogas feedstocks (10km 

for manure and 50km for maize) seem very long to us; such long distances are 

usually not worthwhile. In Germany for example the transport distance for maize 

is typically 10-20km and for manure usually less than 5 km.  

JRC: The 50 Km distance for maize transport (10 for manure) was discussed and decided 

during the expert consultation in Ispra in November 2011. We have now updated the 

transport distance to 20 Km for Maize and biowaste, and 5 for Manure. 

Q22) The transport distance of 50 km for maize as a feedstock for biogas appears too 

long. This should be revised to more realistic levels. 
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JRC: The 50 Km distance for maize transport (10 for manure) was discussed and decided 

during the expert consultation in Ispra in November 2011. We have now changed the 

distance to 20 Km for Maize and biowaste, and 5 for Manure. 

Q23) Calculation of emissions factors (EF): Even though the final EF for each 

biofuel has been calculated, this is in isolation. One way transport distances for a 

40 tonne truck for the feedstock have been indicated for example as: 

 120 km for palm oil 

 100 km for maize and barley 

 30 km for sugar beet 

 50 km for wood chip 

There does not appear to be any explanation as to the selection criteria which 

underlie the choice of these distances. However, it seems that inherent in these 

distances must be an assumption as to the size of processing plant in tonnes 

input or the expected biogas, electrical or biomethane output. This impression is 

reinforced when it is noted that a 10 MW gas boiler is included to provide the 

process heat for the digester operation to produce the biogas. The report needs 

to justify how and why these distances were selected. The question arises as to 

what size for example is a ‘typical’ maize based ethanol plant or wood fired or 

co-fired power station or biogas plant. The issue can be illustrated by the use of 

maize for biogas and/or biomethane production (Figure 1). Even if maize would 

be the only feedstock, the average size CHP plant is less than 0.5 MWe. 

(Lukehurst et al in press). If the biogas is upgraded to biomethane the median 

output is 350 Nm3 /h. (Task 37). This would equate to 14400 MJ for biogas if 

based on the assumptions of VS content, etc. used in the report. 
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Investment costs of 56 combined heat and power biogas plants in Austria, 

Germany and the United Kingdom (Lukehurst et al in press) 

 

If the area of land needed for a 500 kWe plant is assumed to be 

approximately 250 ha (depending on crop yield) it would be highly unlikely to 

require a hinterland with a radius of more than 5 km. This is based on the 

practical reality of plant operation, crop rotation, etc. Figure 1 is based on an 

analysis of 56 biogas plants in Austria, Germany, and the UK (Lukehurst et al, 

in the press). Some 85% of these individual plants are farm based. Where 

maize is used as a feedstock and usually co-digested with other crops or 

manure it is either produced on the farm or by close neighbouring farms. Thus 

the use of a 100 km delivery distance would be both unrealistic and yield an 

unjustifiably high emission level for the transport element of the formula. 

The EF for the transport element, if a biogas or biomethane plant is based on 

maize would only be appropriate for very large centralised plants such as the 

Güstrow BioEnergie Park  

http://www.nawaro.ag/en/company/projects/guestrow-bioenergypark/ 

in Germany. In this case an agglomeration of 40 x 500 kW plants is an 

example. 

The application of this this a-typical extreme distorts the EF to the 

disadvantage of biogas and biomethane. 

 

JRC: The distances for maize and manure transport (50 for maize; 10 for manure) were 

discussed and decided during the expert consultation in Ispra in November 2011. We have 
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now changed the distance to 20 Km for Maize and biowaste and 5 for Manure. The 100 km 

transport distance mentioned is related to maize and barley grains used for 1st gen. ethanol 

production and not biogas. Ethanol production and grains transport is a much more global 

industry undergoing global markets rules. This is not the case for the more local uses of 

silage maize and farm biogas plants. 

Furthermore, the boiler size was just indicative of the type of data that were used (emissions 

and efficiency equal to the natural gas boiler used for all the other pathways). We recognise 

that the 10 MW size is too big for any biogas plants and it is now changed with a 1 MW 

boiler with a thermal efficiency equal to 90%. 

 

Q24) Manure based biogas plants: The calculations for a manure-only biogas plant 

of the scale on which the calculations are made are totally unrealistic. The 

objective of dairy herd management is to maximise the feed conversion rate and 

therefore minimise the amount of methane lost either through exhalation or in 

the slurry. The slurry is amongst the lowest yielding methane (0.3 g/kg VS) 

feedstocks (Al Seadi et al. 2013). It seems that the amount of methane in a 40 

tonne road tanker and the cost to haul that tank over up to 100km needs to be 

calculated. Then, an estimate should be made of the cost of a biogas plant which 

requires a 10MW boiler to provide the heating for the digester. This will 

demonstrate the nonsensical assumption behind the calculation of EFs for 

comparing biogas production with ethanol etc. This leads onto the rest of the 

weakness in the assumptions for manure quality. Additional supporting data will 

be provided at a later date if needed. It appears that cow manure with a 15% 

DM content is used as the basis of the EF calculations. This is at the very highest 

end of the range just as it leaves the cow and before dilution with urine. Between 

8-10% DM would be more usual. Even 10 km haulage of manure to biogas plant 

unless co-digested with much higher methane yielding feedstocks, as for 

example at the centralised Danish plants, would be uneconomic and is therefore 

an unrealistic pathway for use as comparison with other biofuels. It is highly 

unlikely that such plants would ever be built. 

JRC: The transport distance for manure, as agreed at the expert consultation in Ispra on 

November 2011, was 10 km. It has been now diminished to 5 km to take into account these 

considerations. It is also worth to point out that a methane yield value of 0.3 gCH4/kg VS must 

be wrong; it might have been a 0.3 kgCH4/kg VS (too high!) or 0.3 m3 biogas/kg VS, which is 

the value that we have actually used in our calculations. The IPCC reports a maximum 

methane potential of 0.24 m3 CH4/kg VS for dairy cows manure, but that is also rarely 
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obtained in actual operations; that is why the value used in our study is lower, around 165 l 

CH4/kg VS or 300 l biogas/kg VS. 

 

Q25) Average silage maize collection:  

In the JRC input data report, JRC assumes an average transport distance of 50 

km for silage maize. This value seems very high. For example, the 2012 

french LCA study on biomethane assumed an range of 15-25 km for biogas 

production between 100m3/hand 300 m3/h (equivalent to 500 kW to1 500 

kW power capacity). AGPM and CEPM ask JRC to reassess this value. 
 

JRC: The distances for maize and manure transport (50 for maize; 10 for manure) were 

discussed and decided during the expert consultation in Ispra in November 2011. We have 

now changed the distance to 20 Km for Maize and biowaste and 5 for Manure. We would, 

however, appreciate if you could specify what French study you are referring to by providing 

references.  

II.9 Biogas plants useful heat production and utilisation 

Q26) Biogas:   

a. Heat utilisation is not considered in biogas plants with heat and power co-

generation. Only considering the power production in a co-generation plant leads 

to an under-estimation of the energy efficiency of the installation, and 

consequently, to an underestimation of the GHG savings. According to a survey 

conducted by the BiogasHeat project (IEE/11/025), heat is utilised in a 

considerable number of biogas plants by selling to district heating networks or 

industrial units. While the percentage is low in MS like DE (~1%) it reaches almost 

one third in DK. The actual level of heat utilisation is likely to be much higher as in 

many cases the heat will be used on the farm (heating stables, drying processes, 

etc) in addition to being used to warm up the kettle.  

Minimal levels of heat utilisation are required or encouraged in a number of MS, 

including DE. Thus, it can be expected that new installations will have a higher 

ration of heat utilisation.  

For these reasons, the heat component should be included in the biogas pathway 

for co-generation installations. 

 

JRC: The rationale of not considering the heat as output of the CHP engine is that useful 

heat export is driven by demand and infrastructures and it varies largely between 

installations and geographic locations. the heat is normally used internally to supply process 

heat, mainly to the digesters. Allocating some emissions to an average heat use would 
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undeservedly reward the biogas plants that do not export the heat, while, probably, the 

biogas plants that do export the heat would use the actual value because their percentage of 

export would likely be higher than the one in the default value. We recommend the use of 

actual values to the plants that actually export heat. However, in the default values GHG 

emissions calculations the useful heat recovered for the heating of the digester is included. 

The "biogasheat" project report on biogas heat use in EU concludes that: "In general, the 

actual status of heat utilization from biogas plants is not satisfactory. Although some heat is 

used for own purposes and internal processes, the commercial heat use of biogas is rare 

even though an enormous potential exists. Furthermore, in many countries it is difficult to 

describe the current situation, as reliable data on the heat use in biogas plants are lacking". 

Rebuttal) It is unrealistic to expect the calculation of actual values in a large 

number of biogas plants due to the enormous effort this requires. We think that 

guidance for the heat export is required, and separate default values for heat 

use should be calculated. We think that this is an important point, which should 

be addressed.  

We agree that there is a large unused potential. Providing default values for heat 

utilisation can contribute to supporting greater investments into this area.   

 

JRC: We think there is a misunderstanding on this point. We have not inserted the exported 

heat as a structural part of the default values (thus allocating part of the emissions to heat 

and part to electricity) because of the reasons stated above. 

However, because of the structure of the methodology (that was defined already for the 

COM(2010) 11 document), operators can, without declaring the whole actual value, apply 

their own final conversion efficiencies to the values presented as default (which are 

presented on the basis of the energy carrier, e.g. 1 MJ of pellet, 1 MJ biogas etc…). In 

addition to this, in case of a CHP producing useful heat and electricity, operators can apply 

the allocation formula given in the methodology. The formula itself provides a lot of 

flexibility so that with a relatively simple calculation any possible situation can be 

reproduced. 

Please find below a table representing an example of the advantages, in terms of GHG 

emissions, when increasing the use of the produced heat from 0% to 100%. All these results 

can be calculated by the operator starting from the default value (yellow column) and 

applying the specific data of the operator's plant. 
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0% useful 

heat 
50 % useful heat 100 % useful heat 

NET Electrical 

efficiency (wet 

manure) 

0.33 

Carnot (T 

heat = 

150°C) 

0.35 Carnot 0.35 

NET Electrical 

efficiency 

(maize) 

0.325  El. eff 
0.33/0.

325/0.

32 

El. eff 
0.33/0.

325/0.

32 
NET Electrical 

efficiency 

(biowaste) 

0.32  Th. Eff. 0.6 Th. Eff. 0.6 

 

  Useful heat 0.5 Useful heat 1 

 

  
Th. Eff. 

Useful 
0.3 

Th. Eff. 

Useful 
0.6 

   

Total (before 

Efficiency)(3) 

Electricity 

emissions 

Electricity 

emissions 
Heat 

Electricity 

emissions 
Heat 

   

 g CO2eq / MJ 

biogas 

g CO2eq / 

MJ el 

g CO2eq / 

MJ el 

g 

CO2eq 

/ MJ 

heat 

g CO2eq / 

MJ el 

g 

CO2eq 

/ MJ 

heat 

Wet 

manure 

Biogas for 

electricity 

(Electricity 

and heat 

from CHP) 

Close 

Digestate 
-84 -255 -193 -72 -155 -100 

Maize 

whole 

plant 

Biogas for 

electricity 

(Electricity 

and heat 

from CHP) 

Close 

Digestate 
28 85 64 24 51 34 

Biowaste 

Biogas for 

electricity 

(Electricity 

and heat 

from CHP) 

Close 

Digestate 
13 40 30 11 24 16 
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II.10 Consistency between Average and Marginal values. 

Q27) CONSISTENCY (EU electricity mix): A problem with the JRC draft report is the 

unfortunate mixing of average data with marginal data in an inconsistent manner. 

An illustration of how the JRC mixes average and marginal data is the update of 

"electricity mix" for EU-27 based on a very thorough review of the current 

electricity production in all EU countries (see all tables in section 3.3). Emissions of 

GHG per MJ of electricity have increased to 132g CO2eq, which will be used in the 

calculation of the default values. By comparison, estimated emissions in the 

Nordic electricity mix are approximately 35g CO2eq / MJ electricity. GHG emissions 

from the production of diesel have also been updated to represent today’s 

marginal production in the Middle East. Hence, for electricity production the JRC is 

using average data whilst they are using marginal data for the production of 

diesel. 

 

JRC: More than a discrepancy between the marginal-average approaches, this seems more 

an issue of different geographic boundaries. The comment states: "By comparison, estimated 

emissions in the Nordic electricity mix are approximately 35g CO2eq / MJ electricity." 

As we have well explained in the report, default values must be representative for all the 

EU27 MS, not only for a single European Region. 

We are well aware that in Sweden-Norway-Denmark there is a high use of hydro+wind 

(which significantly lowers the CO2 emissions per kWh), but we are considering EU27-average 

data.  

Furthermore, we think the most important issue especially when results are evaluated and 

compared on a relative basis (such as in the case of comparing values defined as "GHG 

savings") is the use of consistent emission factors for fossil fuels and chemicals. In other 

terms: the Fossil fuel comparator chosen (no matter how it is defined), should be used also 

as the emission factor associated with the supply of such fossil fuels or material. This is the 

approach used in the calculations presented in this report. 

 

Rebuttal) Why is then a marginal approach used for diesel, which would be 

inconsistent?  

 

JRC: Following intense discussion among the involved parties the issue has been resolved 

and all background processes and fossil fuel comparators are now based on marginal 

quantities. And so are the emission factors reported in chapter 2. 
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Q28) The JRC report should consistently use average data and not mix it with marginal 

figures. As an example of the use of marginal figures, the JRC draft report 

assumes the gross electrical efficiency of a CHP engine to be 36%. We would like 

to underline that this is very much at the low end of the possible range of 33-45% 

electrical efficiency. The European average of CHP on farms is approaching 200kW 

with average efficiencies of 39 to 42%.  

 

JRC: The IEA biogas handbook actually reports a 30-42 % efficiency range. The highly 

efficient engines are mostly pilot injection engines; in that case the use of diesel should be 

accounted for (either bio or fossil). Furthermore, within the scope of default values are 

included all types of technologies, newer, older, optimized or not. As a consequence we 

cannot ignore the low range of the available engines.  

However, it is important to notice that, in the methodology defined in the COM(2010) 11 

report and maintained in the SWD(2014) 259, the final energy conversion is left out of the 

default values (that are instead provided on the basis of the final energy carrier, e.g. 1 MJ 

pellet, 1 MJ chips, 1 MJ biogas etc…see chapter 7 of this report). This implies that the final 

electrical efficiency is left as a free parameter for operators to insert based on their own 

measured values. 

Q29) Another general aspect in the report is the mixing of average data with marginal 

data in an inconsistent manner, for example in using average data for electricity 

while using marginal data when it comes to diesel. 

JRC:  See answer to Q27. 

II.11 General remarks on the JRC report and figures 

Q30) Our overall conclusion is that the JCR draft report lacks a detailed interpretation 

chapter as described in the ISO standard for LCA (ISO 140 44) to reach sufficient 

scientific quality. In an interpretation chapter the JRC would go through all the 

input data and its quality and type (marginal data vs. average data, etc.) to ensure 

consistent calculations and comparisons. Special focus is on the sensitivity 

analyses which should identify critical parameters that are important for the final 

results and where additional efforts should be made to obtain as good and 

relevant input data as possible  

 

JRC: The JRC report is technically not an LCA study; it is an inventory of data reporting the 

input values used to calculate GHG emission savings. The simplified LCA methodology is set 

in COM(2010) 11 and SWD(2014) 259. Data quality is checked by including the largest 

possible datasets available; however, it appears that there is a basic misunderstanding on 

the scope of the default values set in legislation: the geographic scope of such calculations is 
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clearly EUROPEAN and should not be analysed at single MS level. This is similarly done in the 

Directive 2009/28/EC Annex V values were, though, a provision is given to MS to report on 

NUTS 2 cultivation average values in order to better mimic local and specific conditions. 

Increasing the level of geographic disaggregation would inevitably decrease the spread in 

the input values (and results) but that is not the scope of the values set in the EU legislation.  

Furthermore, apart from geographic and climate differences which clearly influence specific 

processes (i.e. mostly cultivation emissions and other emissions depending on temperature 

such as digestate storage emissions) there are many more sources of variability such as 

technological differences and lack of experimental data. 

As mentioned above, geographical differences are the most difficult to tackle in an effective 

way in the EU default values. When it comes to technological differences we try to 

disaggregate the values and separate the pathways for the most technologies were the 

broader differences exist (e.g. see the disaggregation of biogas upgrading pathways). When 

it comes to lack or scarsity of experimental data we try to investigate the largest possible 

set of modelling and empirical data: publications, handbooks, emissions inventory 

guidebooks, LCA databases and whenever we receive them, proprietary data from 

stakeholders. Thus we continue to invite stakeholders to send us as many and as detailed 

practical (referenced) data as possible as they will allow us for better precision. 

Finally, the final version of the report contains an additional section 7.3 (not present in the 

report version commented by the stakeholders) where specific sensitivities are analysed in 

details. We think that this additional analysis, added to the variety of pathways presented, 

gives quite a comprehensive view of the variability of the results, still considering the factors 

of uncertainty explained above. 

 

Q31) In the current draft report JRC mixes a variety of types of data with very 

different quality and uncertainty. JRC seems to put a lot of effort into describing 

and verifying factors and input data with marginal impact on the final results, 

while not making the same efforts on very important factors, such as biogenic 

nitrous oxide and emissions of methane from biogas production and storage of 

digestate. As a result of this the draft report suffers from a lack of rigor and 

scientific approach. This is a problem since policy decisions will be based on 

scientifically unsubstantiated data and deficient calculations. 

 

JRC: The aim of the consultation is exactly to present the assumptions behind the 

calculations and to get the most representative and up-to-date data. We think we have used 

the most representative and recent data and as included in this document, we have also 

further updated assumptions and values used. We would, however, really appreciate if you 

could send those data to us or provide a reference. Furthermore, we have added a specific 

section (7.3) including additional sensitivity analysis of the results. 
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Moreover, where time and opportunity allow it, the data are also used in peer-reviewed LCA 

publications where the data are evaluated and validated in the peer-review process which 

shows how our values are definitely not "scientifically unsubstantiated and flawed" (e.g. 

Boulamanti et al., Biomass and Bioenergy 53 (2013) 149, Giuntoli et al., GCB Bioenergy 5 

(2013) 497, Battini et al., Science of the total environment 481(2014) 196). 

 

Q32) Introduction: As far as it is possible to ascertain, this report aims to provide a 

basis for policy makers who intend to assess the extent to which GHG emissions 

from fossil fuels used for electricity, CHP and transport fuel can be avoided by 

their replacement with biofuels. For this purpose therefore, the calculations are 

based on the comparative MJ/MJ or of the respective energy source which is 

produced or MJ/g of fertiliser. While this measure may serve the JRC purposes, it 

is exceptionally difficult to comprehend and requires considerable extra effort 

and calculation to put it into the more readily understood and used measure for 

the comparison emission/kWh. At least the conversion factors for MJ to other 

units should be included. 

 

JRC: In SI the unit for energy is the Joule (J) and this is the unit used in EU policies. In any 

case 1 kWh=3.6 MJ. 

We realize that most of the times data are more readily clear and comparable when 

expressed in other units (e.g. kWh/ton of pellets or kg N/ha etc…). We have tried to add these 

alternative representations of the values in the "comments" below the data tables. We hope 

this helps the readability and analysis of other experts. 

 

Q33) The transference of EFs for maize production when based on the same base 

data as for ethanol production are not fit for purpose when applied to biogas 

plants as shown above. The section on biogas is not ready for publication and 

should be revised in the light of widespread and indeed worldwide operating 

experience. Urgent talks should be arranged with the JRC to produce a valid basis 

for policy guidance. (CTL) 

 

JRC: The data for maize cultivation for the biogas pathways are specific for silage maize 

production; inputs and emissions are different and independent from the ones associated 

with maize grains cultivation for ethanol production.  

 

Q34) General considerations on biogas GHG emissions 

The French LCA study on biomethane emissions has given some interesting 

clues : 
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Biogas from liquid manure emits more GHG than biogas coming from biogas 

plants with high incorporation level of energy crops. This is because liquid 

manure has very low methanogen potential. The GHG emissions of biogas 

produced in codigestion (50% maize, 50% manure in fresh matter) pass the 

50% threshold. But, from my point of view, the electricity mix is a key point at 

this stage and therefore, the methodology applied to self consumption. 
 

JRC: We would appreciate if you could specify what French study you are referring to by 

providing references.  

Various options for self-consumption have now been defined directly in the list of default 

values (see chapter 7), this will provide an additional degree of freedom for the operators. 

II.12 Geographical and technological specificities and default values 

Q35) Also the regional differences within the EU and other variables should be better 

taken into account: for example the level of methane emissions depends largely 

on the climate and temperatures: in cold climates the emissions of manure are 

significantly lower than the given estimations.  

 

JRC: The methane emissions during manure storage are indeed dependent on the ambient 

temperature. The use of actual values, if any better data is available, is always 

recommended. However, the emissions of methane from digestate storage are not always 

dependent on ambient temperature. As some publications have shown (see for example 

Hansen et al., J. Environ. Qual., 2006, 35, 830-836 and Gioelli et al., 2011), when the 

digestate tank is connected to the digester for continuous operation, the temperature in the 

tank is actually almost independent from ambient temperature due to the continuous supply 

of warm digestate. 
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Annex 3: Stakeholder comments 

on solid biomass pathways  

 

This annex contains all the questions/comments received by various stakeholders, and the 

relative JRC answers/rebuttal, relative to solid biomass pathways, following the presentation 

of the first draft of input data proposed by the JRC to calculate GHG savings from solid 

biomass and biogas pathways (Brussels, May 2013 and following bilateral discussions). 

The questions/comments are grouped by topic. 

III.1 Old and new pathways 

Q1) Charcoal: It is true that the EU imports charcoal, but this is (as far as I’m aware 

of) for BBQ use etc only. I have not heard of any industrial charcoal sue for 

electricity and/or heat production, and I doubt this will occur in the future, so I 

wonder how relevant it is to keep a default chain for charcoal in the document. 

 

JRC: We have acknowledged exactly this point also in the report. As the pathway was 

inserted in a previous official document of the Commission (COM(2010) 11) it is considered 

relevant to provide explanations for the reason why it would/should be dropped from future 

documents on the subject. 
 

Q2) Torrefied pellets: On the other hand, it is a pity that torrefied pellets are not 

included in the default pathways. In the last three years, a lot has happened in the 

development of this this technology, we nowadays have a number of semi-

commercial pilot plants operating & producing, and the first trans-atlantic 

shipments are a fact (albeit small volumes for testing purposes for European 

utilities). It is quite possible that in 5 years time, significant amounts of torrefied 

pellets could be exported from the US and Canada (and other world regions) to the 

EU. Torrefied wood pellets require more biomass inputs for the torrefaction 

process, but also reduce energy during subsequent pelletisation (as the material is 

far less fibrous) and typically have a higher energy density (20-23 GJ/tonne, in 

theory it could also be higher), and also a higher  volumetric density (650-750 

kg/m3 instead of  625-650 kg/m3 for normal wood pellets, see slide 8 of the 

presentation attached, but see also opinion of Bo Hektor below)). In any case, not 

including this chain is a missed opportunity and will likely lead to 

problems over the coming years. While we understand that getting public data 

on the process is difficult and often confidential, Industry will be happy providing 



 

217 

 

data as far as known today. Please do contact IBTC International Biomass 

Torrefaction Council/Michael Wild at michael@wild.or.at to establish contact to the 

relevant parties. 

 

JRC: We also recognize the (future) relevance of torrefied pellets especially for import 

routes. In this sense, in fact, we have already contacted ECN (who is a frontrunner for the 

research in torrefaction processes and now also in technology with their partnership with 

Andritz) and we hope to be able to have a pathway based on current, real, process data 

soon. Nonetheless, as also mentioned in the comment, the perspective for full-

commercialization are around 5 years and thus even with very good data on the current 

technology status, this is far from the general, average validity that a 'default value' should 

have. For this reason we maintain our opinion that it is too early to provide a default value 

for torrefied pellets, but we think that we will be ready for a future update of the list of 

values (theoretically, updates to Annex V values are foreseen to be developed every 2 years). 

 

III.2 Road and rail transport assumptions 

Q3) Truck fuel consumption: Data for truck transport are from European studies. 

Exporting countries overseas have bigger trucks and sometimes more liberal rules. 

Empty return trips requires less fuel (CA 50%) The standard values suggested in 

the report are 3-4 times higher than our values above). 

 

JRC: We have found in the literature values for diesel consumption for large trucks in the 

range of 0.21-0.26 l/km for empty cargo and between 0.29 – 0.35 l/km for full cargo. When 

combined we obtain the value indicated in the report. Furthermore, LABORELEC data agree 

with our data (See reply to Q10). 

However, we have looked into the data provided by the EEA/EMEP inventory guidebook 2013. 

Based on the values for Tier 2 fuel consumption and N2O emissions and Tier 3 CH4 

emissions and based on the fleet composition obtained from the database COPERT, we have 

modified our fuel consumption to: 

• Weighted average (over distance per truck type) for fuel consumption: 30.53 l/100 

km (including empty return trip) 

 

Q4) Train fuel consumption: The report claims that it has applied N. American data. 

Still our studies from B.C. arrive at values that are one tenth of that. We are 

applying unit train transport and the data are double checked with both grain 

transport from the Prairies and with ore transport Kiruna- Narvik. A common 

mistake that appears in the North American standard data bases is that they have 

applied data for single cars. Should be checked. 
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JRC: The only value taken for North American conditions is the one related to Diesel 

consumption in freight trains. This value is taken from GEMIS 4.8.1 (indicating 25 MJ 

diesel/km for 100 t of payload). We usually consider GEMIS as a very reliable source so we 

will not change this value at the moment, unless additional data and evidence can be 

provided on the fallacy of the GEMIS data and by a factor of 10. We would be glad to receive 

additional data. 
 

Q5) CONCLUSIONS TRANSPORT (1): In many (most) cases, standards will give 

misleading results. Therefore, if standards are established, there MUST be 

opportunities for trade stake holders to apply own verified data. Otherwise, “good” 

performance data would be punished, etc. 

 

JRC: Correct, this is exactly the possibility provided within the Directive 2009/28/EC to 

declare actual values rather than using the default values. Operators can also use 

disaggregated default values for some parts of the pathway and declare actual values only 

when it can show improvements compared to the default factor. 

 

Q6) CONCLUSIONS TRANSPORT (2) Possible standards must reflect future and relevant 

conditions, not be based on invalid historical information. 

 

JRC: Default values are designed to mirror typical, average and conservative conditions in 

the market and not future, optimized processes. 
 

Q7) Default values used for solid biomass (wood chips) transportation: Mainly 

the values used for distance, load size and moisture content are unrealistic and 

should be revised. A) Finland and Sweden use trucks with 60 t weight and soon to 

be raised to 76 t by the end of 2013. 

 

JRC: Longer and Heavier Vehicles (LHVs) (up to 60 tonnes of total weight) are allowed in 

Finland and Sweden with some trials in The Netherlands and Germany. However, these 

trucks are NOT allowed within the Directive 96/53/EC and are also not included in the new 

Commission proposal for the amendment of such directive (COM(2013) 195 from April 

2013). LHVs are allowed to circulate in single MS and also to cross one border if the two MS 

allow it. However, this is not the standard in EU and thus it cannot be included among the 

default values. Operators in countries that allow LHV can declare an actual value for the 

transport step. 
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Q8) The moisture varies between different feedstocks. Average moisture at roadsize 

after seasoning is about 40% for Finland. This value is for harvest residues, 

stumps and small-diameter wood (rough average). 

 

JRC: Wood chips for energy are generally traded at different moisture levels (EN 14961-1 

M10 to M55+). Furthermore, for imports from third countries, wood materials (including 

wood chips for any purpose) need to be thermally treated according to the International 

Standards for Phytosanitary Measures No. 15 - ISPM 15 (heat exposure of 56°C for 30 

minutes). 

Additionally, short transport distances may be profitable even with chips at 40 – 50% 

moisture (e.g. the case presented by Jäppinen in Finland) but long-distance trade would 

probably not be feasible with moistures higher than 30%. 

Furthermore, biological activities would be unsustainable when transporting large bulks of 

chips at high moistures, while for values <30% these activities are minimized.  

Finally, even though seasoning might not be enough to dry wood down to 30% moisture in 

Scandinavian countries, this is not true for the rest of Europe where moistures of 30 – 35% 

can be achieved by seasoning (even in high precipitations countries such as Ireland albeit 

particular attention is required to the seasoning technique– 

http://www.coford.ie/media/coford/content/publications/projectreports/cofordconnects/ccn09-

ht17.pdf ).  

In view of these considerations, and the importance of moisture mostly for long-distance 

trade, we propose to leave a value of 30% in our default calculations. 
 

Q9) 500 km of truck transport seems too high, 100 km is a representative distance for 

Finland. 

 

JRC: In the philosophy of the default values calculations we have to cover also conservative 

cases and long-distance transport of pellets and chips are a possibility that should not be 

forgotten (especially where access to riverways and sea is not possible, e.g. Austria to Italy). 

At any rate, the declaration of actual values for actual distances would be very 

straightforward. 
 

Q10) Truck transport: We observe relatively the same specific diesel consumption for 

trucks returning empty. Load is effectively about 30 tons (note: check this is also 

the same consideration in BIOGRACE II assumption). Our question would be: would 

it be possible to have actual data when able to show that trucks return with a 

certain load? 

 

http://www.coford.ie/media/coford/content/publications/projectreports/cofordconnects/ccn09-ht17.pdf
http://www.coford.ie/media/coford/content/publications/projectreports/cofordconnects/ccn09-ht17.pdf
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JRC: Good to see that our data converge with the ones from LABORELEC. Regarding the 

declaration of actual values, this is indeed allowed by the Directive and it is recommendable 

to use actual values when these are available. 

 

Q11) Train transport: We note that the train transport is considered as applicable to 

Western Canada (only?). However, we also have train transport in the US cases. If 

we compare the figures (0.252 MJ/t.km) diesel, with those assessed for USA, it is 

relatively close (0.00568 l/tkm soit 0.209 MJ/tkm).  

 

JRC: The default for long-distance shipping is taken to be Canada and we do not have at the 

moment pathways specifically representing the US situation. The default values are not 

characterized specifically by origin but rather by distance ranges. US pellets will probably fall 

in the category up to 10000km. Also our train fuel consumption agrees with LABORELEC 

data. 
 

III.3 Maritime transport assumptions 

Q12) Load factors of bulk carriers: On the load factors of dry bulk carriers (but also 

trucks and trains). I think the data available at VREG should be a gold mine (and I 

understood that you have contacted them): they have audited data form wood 

pellet imports from all over the world to Belgium, and these should provide the 

best available data on many of the parameters in your default chains. 

 

JRC: We have contacted VREG. They are not authorized to reveal the information since those 

are confidential. However, we have received a report from LABORELEC and we respond to 

their comments in the separate answer (see answer to Q14). 
 

Q13) Maritime shipping fuel consumption: Maritime shipping.(a) I was happy to note 

that the report share my opinion that the load factor above 600 kg per m3 is 

weight, below it is volume (possibly that point is a little bit higher) That means 

that an argument in favor of densified torrefied pellets with high density would 

not be valid (energy density would, though).(b) However, the study has made some 

assumptions that seem strange to me. They have reduced the payload with the 

argument that ships normally call on several ports and therefore mostly ships are 

not fully loaded. Obviously, this has been the case in the early phases of the bio-

energy trade, but it would not be relevant for well organized future supply chains. 

For long distance shipping the pay-load should be equivalent to net DWT. Also take 

note of the fat that new modern bulk ships have higher pay-load but remain in the 

same “old” category. (c) Return trips form a complex problem. For shipping ports 
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located close to main bulk trade routes (e.g. Europe-Asia via the Panama canal) it 

is easier to get return freight. Here, shipping companies, as a rule of thumb, 

assume 1/3 of the distance to be ballast, while for other destinations, 2/3 or even 

100% is assumed. 

 

JRC: We have received similar comments from LABORELEC and we are implementing 

changes. A) We see that with new bulk carriers (SUPRAMAX category) the "design" stowage 

ratio for the cargo is higher than we assumed, closer to 750 kg/m3, which means the 

transport of pellets is not weight limited (and we have seen this in actual carrier shipping 

manifestos). However, the use of larger carriers also implies a lower specific fuel 

consumption, this is now corrected in our calculations.  

B) The assumption of 30% of the trips under ballast is exactly the conclusion to which we 

have arrived analyzing a few shipping manifestos from GDF Suez bulk carriers. We have 

changed our methodology accordingly. See answer to Q14 for the detailed changes. 
 

Q14) Maritime transport of wood pellets: We are relatively concerned about values 

mentioned in the report about maritime transportation of wood pellet. Firstly, 

using handysize for transporting wood pellets is not the only (and maybe not the 

most favoured) option, regarding logistics efficiency. Supramax can also be used, 

but they are not referenced (neither in the BIOGRACE II tool). Though not explicitly 

mentioned, we assume that the specific fuel consumption you refer to (0.12 MJ/t 

km) is the one of carriers that are travelling empty on the way back. We 

think this assumption is not realistic and should not be taken as default. 

So as to support this argument, you will find in Annex 1 the typical routes of 

(wood pellets) carriers. You will note that assuming empty backhaul is not 

consistent at all with what happens in reality. In certain cases (rare), the ship 

might not be loaded for the return journey – this can be explained by: draft 

restriction at load and/or discharge port.  Heavy cargo (iron ore / cement), 

voluminous cargo (grain).  In one case it was the idea to load up to full capacity 

but supplier have problems getting the cargo so cargo interests took the decision 

to sail with less cargo (and be penalized on paying deadfreight). 

 

JRC: This information is indeed very helpful in drafting assumptions closer to the real 

situation. Having observed the data sent by LABORELEC and having investigated further with 

other pellets operators, we have now introduced a new category of bulk carrier, SUPRAMAX, 

with a DWT of 57000 tonnes and we have calculated a new specific fuel consumption from 

the IMO data equal to 1.09 gHFO/tkm (FULLY LOADED, one-way). This new category will be 

used for all trans-oceanic shipping while the smaller HANDYSIZE carriers will be used for 

shorter distances (e.g. import from Baltics and Russia).  
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Furthermore, we have noticed that most of the SUPRAMAX carriers are designed with a 

stowage ration of about 0.75, which means that also the density of pellets (ca. 650 kg/m3) is 

not enough to guarantee a weight-limited cargo but it will be volume-limited. Considering 

the data received for the two bulk carriers, GDF SUEZ Ghent and North Sea, it is possible to 

estimate the average distance that the carriers have travelled with an empty cargo (under 

ballast) during their lifetime. This results in a percentage over the total distance covered 

of 22% and 31% respectively. These data can be used to assign to each cargo a share of 

the total empty travel of the cargo.  

In this way the total consumption can be assigned as follows: 

 
Where, FC@Cargo is the fuel consumption at cargo load in the outward journey, FC@Ballast is the 

fuel consumption under ballast and CF is the Capacity factor defined as the share of 

distance travelled by the ship under ballast over total distance travelled. Cargo is the cargo 

loaded in the outward journey.  

By using this formula it is possible to assign to the pellet cargo only a share of the empty 

trips of the carrier as well as it would be assigned to all other cargos.  

The complex issue is to choose a relevant CF: according to the GDF Suez data, this should be 

between 22 – 31%; according to another stakeholder (Bo Hektor, SVEBIO) this value is about 

30%; according to the average values provided by IMO, this value is about 45%. Based on 

these considerations we have opted for a value of 30% for the Capacity Factor. 

This leads to the following update fuel consumption for shipping of pellets and wood chips 

by bulk carriers: 

 Pellets shipped by Supramax (@ 650kg/m3) = 1.62 gHFO/tkm (incl. empty fraction) 

 Chips shipped by Supramax (@ 220 kg/m3) = 3.76 gHFO/tkm (incl. empty fraction) 

 Chips shipped by Handysize (@ 220 kg/m3) = 5.95 gHFO/tkm (incl. empty fraction) 
 

Q15) Transport default values: Comment on page 20 suggests that default shipping 

emissions for solid biomass haven’t been updated and won’t change – are there 

specific figures available for biomass?  

“Updated ship data based on International Maritime Organization (IMO) data have 

been used for crop, vegetable oil and ethanol shipping. Sugar cane ethanol, palm 

oil and soya figures have also been adjusted.”  

The UK Ofgem/DECC calculator does not include emissions associated with 

backhaul. If backhaul is to be included, there should be consistency with how 

backhaul is applied. There is significant variation in the figures currently used in 

the UK Ofgem/DECC calculator. The new JRC defaults range from 0.13 to 0.5 

MJ/t.km. The impact this has on calculation outcomes is considerable. We would 
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urge the group to continue to review current data as new IMO legislation being 

introduced globally for the freight industry means that more up–to-date data is 

widely available. 

(http://www.martrans.org/docs/publ/REFEREED%20JOURNALS/WMUJMA%20EMISSI

ONS%202009.pdf) 

 

JRC: Shipping emissions will be updated according to various comments and new sources 

that we have received (see answer to Q14). Our values for fuel consumption and CO2 

emissions are already taken by an official (and to our knowledge the most recent) report by 

the International Maritime Organization 

(http://www.imo.org/blast/blastDataHelper.asp?data_id=27795&filename=GHGStudyFINAL.pd

f ) 

III.4 Energy requirements for pellet mills 

Q16) Process heat for pellet mills: On the use of bark/wood chips for drying: I think 

bark does not (always) need to be collected from the forest, but also form other 

wood-processing industries, who may have an over-supply even after covering 

their own energy demands. Wood pellet mills can be co-located with other (wood 

processing) industries, and may utilize waste heat produced from other industrial 

processes. I do not know any wood pellet plant that has its own (bio-fuelled) CHP 

plant. This would probably only be possible for large pellet plants (because of the 

economies of scale), but still this is basically far more expensive then getting 

electricity from the grid. I had cc’d the EU, US and Canadian Wood pellet 

associations (Christian Rakos, Seth Gunther and Gordon Murray) – they would 

probably be in the best situation to discuss what feedstocks are used 

predominately for drying, their origin/transport, etc. 

 

JRC: We still think that in the average-thinking that drives the default values modelling, it is 

difficult to rely on residues coming from other processes as this is very labile. Furthermore, 

when harvest residues or even SRC are collected and chipped, not always (almost never) the 

bark is removed from the white wood, thus it is difficult to assess whether only bark is used 

for heat provision or simply the chips are used. This can always be included in the 

calculations of actual values. We have contacted the Wood Pellet Association of Canada and 

their reply is discussed in answer to Q17. 

Finally, the use of CHP is introduced in the pathways in order to promote best practices, but 

the typical case (heat from wood boiler + grid electricity) is treated as the most common 

one. 
 

http://www.imo.org/blast/blastDataHelper.asp?data_id=27795&filename=GHGStudyFINAL.pdf
http://www.imo.org/blast/blastDataHelper.asp?data_id=27795&filename=GHGStudyFINAL.pdf


 

224 

 

Q17) Drying of wood feedstock: You will find attached a pdf “SGS-Wood Pellet 

Process-Drying-2013.pptx” that gives you an overview of the material 

characteristics, drying techniques and energy balance. Please note the diversity of 

cases depending on the pellet plant considered… 

 

JRC: The data on heat supply in pellet mills were very interesting: according to SGS data, it 

looks like US and Canadian mills are actually using their own pellets to supply heat to the 

process, while in European mills it appears that mostly fresh chips/bark are used. 

Furthermore, it is interesting to see that actually some CHP plants are already registered to 

be operating in mills. The last slide in the SGS presentation suggests (for Case 2/2a: wood 

boiler and power from the grid) to use either pre-dried chips or own pellets, which is exactly 

what we have assumed in our models (Case 2 uses pellets, Case 2a uses pre-dried chips).  

Gordon Murray from the Wood Pellet Association of Canada confirmed to us that the pellet 

mills in Canada use either planer shavings or sawdust/chips as feedstocks for the drying. Mr. 

Murray claims that around 15% of the feedstock is used for drying and 85% is used for 

pellet making. This is lower than our number (28% is used for chips boiler) but that is 

because we consider fresh wood chips to have 50% moisture, while the particular situation 

of Canada (using Mountain Pine Beetle killed stems and wood that has already been air dried 

in the forest) allows them to have feedstocks at 35% moisture content at the mill gate. 
 

Q18) Electricity consumption of the pelleting process: The power use calculated in 

the JRC report looks consistent with the typical figures SGS obtained from audits.  

  MJ/MJ kWh/MJ kWh/mt 

pellets from sawmill residues (p319) 0.028 0.007778 128.3 

pellets from round wood (case 3, p323) 0.05 0.013889 229.2 

Let’s say the range 100-150 kWh/ mt is typical for pellet plant using fresh sawmill 

residues and 180-250 kWh/ton is typical for pellet plants using round wood, with 

electrical crush. 

We would support the idea to have default available for new plants (where no 

historical data is available) but not for plants which have been operating for some 

time (for which a calculation based on the actual power use should be 

compulsory). The “default values” can be used, but potential “actual values” 

defined by independent auditor and validated by the necessary documentation 

(bills, consumption data onsite, …) have the priority in the hierarchy of the data to 

be used. This would be an incentive to have continuous improvement of the supply 

chain energy balance. 
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JRC: We are glad that our values are within the range of the audited values from 

LABORELEC, but in fact the data had already been provided by LABORELEC back in 2011. 

Regarding methodological issue on default values, the Directive indicates that operators can 

use the default or declare actual values but it is not possible to exclude some 

processes/operators from using the default values. This is also at the basis of the reasoning 

for which default values generally represent conservative assumptions and are increased by 

40% over the respective typical values. 
 

Q19) Pelleting Energy: The defaults provided in the JRC document combine pelleting 

energy and drying energy. The UK Ofgem/DECC solid biomass carbon calculator 

requires this information to be split out into the two separate modules and Drax 

collect data on this basis.  

The pellet mill energy default values in the input database are extremely high, 

based on actual data Drax has been collecting from pellet mills in North America 

and Europe.  

We understand that the input database default figure is based on the use of 

natural gas in pellet mills. This is not a realistic representation of what happens in 

the pellet industry, it is the exception rather than the norm. As GHG targets 

tighten, it will be increasing important for pellet mill designs to move to the most 

efficient systems possible making this scenario unrealistic.  

Figures 

Energy use measured in MJ/MJ pellets (sawmill residues) 

0.028 MJ/MJ(pellets) x  19 MJ/kg = 532 MJ/tonne =147.7kWh/tonne 

The Ofgem/DECC value is 39.8kWh/tonne - this is a significant increase to apply to 

calculations based on default figures.  

Energy use measured in MJ/MJ pellets (stemwood)=  950MJ/tonne = 

265kWh/tonne. 

The UK Ofgem/DECC value of 41kWh/tonne. The JRC figure greatly exceeds the 

highest reported values from data provided by suppliers of pellets to Drax and is 

not representative of the industry. 

 

JRC: The JRC report does not combine power and heat demands, but they are provided as 

separate values in Table 67 (0.05 MJ el./MJ pellet and 0.185 MJ heat/MJ pellet for fresh 

chips).  

Furthermore, the power and heat demands are independent from the source from which they 

are obtained. We have calculated several cases for the supply of process power and heat: 

case 1 is indeed covering the case in which a natural gas boiler is used to provide process 

heat. This case is not common, indeed, but there is at least a case in Russia where this is 

applied and that is why this case is covered in our calculations. Case 2a (using wood chips 
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for process heat and power from the grid) is probably the most common case on the market 

(see answer to Q17). 

Regarding the power and heat demands in pellet mills, these values were actually provided 

by LABORELEC and are based on actual pellet mills audited by SGS for the Flemish 

authorities. LABORELEC has also confirmed that our values are within the range of their 

measured values (see answer to Q18).  

We have checked the assumptions in the Ofgem calculator and indeed the value indicated is 

extremely low (143 MJ/tonne of pellet  39.7 kWh/tonne  0.0084 MJ/MJ pellet) and 

outside any range of values indicated in the literature.  

We had access also to some real data from Swedish pellet mills and their data (from 

electricity bills) were equal to about 130 kWh/tonne pellet for sawdust mills and 167 

kWh/tonne pellet for fresh chips pellet mills, thus much closer to our chosen values than to 

the values in the Ofgem calculator.  

We have contacted E4Tech, who are the creators of the Ofgem GHG calculator. Their answer 

has been that they were not the ones to insert this value in the tool but that it derived from 

DEFRA's Biomass Environmental Assessment Tool and it is referenced from a single 

pelletization plant described in a rather old report from DTI 

(http://webarchive.nationalarchives.gov.uk/+/http://www.dti.gov.uk/energy/renewables/publicati

ons/pdfs/BU100623.pdf ). E4Tech's suspicion, which we share, is that this value refers only 

to the power consumption for the pelletization press and not for the whole plant. E4Tech has 

already informed Ofgem and DECC that these values need to be updated. We will be in 

contact with them so that JRC and Ofgem values are consistent in the future. 

III.5 Forest logging residues logistics 

Q20) Diesel consumption forest residues: Diesel consumption from production of 

tops, branches, etc. in integrated logging operations should be close to nil, as that 

should be allocated to harvesting of the logs and pulpwood, which is the main 

purpose of the operation. 

 

JRC: This is not correct. Indeed emissions from falling and de-limbing of stems are NOT 

allocated to tops and branches at all. Those emissions are assigned to the production of 

stems; further, the RED methodology explicitly states that biomass residues should be 

allocated zero GHG emissions up to the point of collection. However, the collection, 

forwarding and chipping of the residues falls into the residues pathway since these 

emissions are caused by the bioenergy pathway (otherwise the residues would be left on the 

forest floor or burned on-site). 

 

Q21) Logistics of forest residues: When harvesting from energy plantations, or 

“energy stands”, the boles (or even trees or tree sections) would be chipped at 

http://webarchive.nationalarchives.gov.uk/+/http:/www.dti.gov.uk/energy/renewables/publications/pdfs/BU100623.pdf
http://webarchive.nationalarchives.gov.uk/+/http:/www.dti.gov.uk/energy/renewables/publications/pdfs/BU100623.pdf
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road side etc.  but at a later point in the supply chain. In most cases, that would 

solve problems of losses, secondary contamination, homogeneity (by possibilities 

to central debarking), etc. In most cases, the positive effects will outweigh the 

possible higher hauling cost: Even long distance transport can be carried out in 

form of (debarked) round-wood shipping. 

 

JRC: When referring to "energy stands" in the sense of planted forests harvested for energy 

purposes (such as in South-East U.S. for example), the logistics of such biomass will fall 

under the stemwood logistics and that is accounted in the pathway "chips/pellets from 

stemwood" where seasoning is done at roadside and dry matter losses are limited.  

However, when talking about Short Rotation Coppice (SRC) plantations managed for 

bioenergy under very short rotations (3-7 years), it is assumed in our inventory that a 

combined harvesters-chipper is used. This means that wood chips will need to be stored with 

the subsequently associated dry matter losses.  

Regarding long-haul of entire stemwood is indeed not included but so far we have not found 

many proofs of this as a common logistic choice (for bioenergy purposes, of course). Long-

distance shipping of pellets seems to be the most common tradable woody good for 

bioenergy. See also, Lamers et al., Global Wood Chip Trade for Energy, IEA Task 40, June 

2012, http://www.bioenergytrade.org/downloads/t40-global-wood-chips-study_final.pdf : pag. 

5: ”Fuelwood comprises of the lowest annual trade volumes. It is regarded a rather local 

product; with less than 1% of its production being traded annually according to official 

statistics. Large-scale trading of fuelwood requires special handling in bulk transport. This 

reduces the bulk (energy) density and makes long distances less economically feasible. Most 

trade takes place crossborder i.e. short- or mid-range in bagged form, conglomerated in 

nets, or stacked on pallets. Recorded trade streams outside Europe are between South Africa 

and its neighboring countries (foremost Swaziland and Namibia), Canada and the USA, and 

across South East Asia". 
 

Q22) Bundling of residues is not an actual option because it turned out to be un-

economical. 

 

JRC: It is interesting to know that the technique is not feasible thus not actual anymore. 
 

III.6 Short Rotation Coppice 

Q23) Cultivation data: Considering the range of geographic sources of biomass, forest 

types and forest management practices, the defaults for cultivation are derived 

from management practices from one region only. There is a large amount of 

literature in the academic press which could be used to develop this. We would 

http://www.bioenergytrade.org/downloads/t40-global-wood-chips-study_final.pdf
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recommend  the JRC broaden the scope before embedding defaults based on one 

forest management system (the following organisation may be a good source of 

background documentation http://www.ncasi.org/).The assumptions made for 

eucalyptus practices (described as 3 year coppicing operation) is not a realistic 

scenario for bioenergy plantations. We would urge the JRC to interact with 

commercial groups in this area to get an industry perspective of current and likely 

future practise. 

 

JRC: According to the literature (see for example Gabrielle et al., GCB Bioenergy 5 (2013) 

30-42): "Growing cycles may be shortened to 7 years with the same productivity as long as 

stand density is kept within a 2000–2500 stems ha 1 range, as was already tested with 

poplar (Berthelot et al., 1994). Similarly, SRC with shorter rotations with 3 year 

harvesting cycles are being tested and developed. This scheme was illustrated with 

willow (Dimitriou & Aronsson, 2005), and requires far higher stand densities, between 10 

000 stems ha 1 and 15 000 stems ha 1. Such systems are currently being trialled in France 

with eucalyptus and poplar.". They in fact model 7 harvests per 3 years of growth each, so it 

looks like the industry trend is exactly to shorten the rotations and increase density of stems. 

Our values agree with this trend.  

Regarding data sources, it is true that there are many academic and research studies on SRC 

plantations in Europe, however, almost all of the data are retrieved from small, research-

based applications and thus not really on a commercial size. Eucalyptus cultivation in Brazil 

is instead an established practice for pulpwood production and that is why we have chosen 

data from that region.  

We have now also included values for poplar cultivation in EU based on various agricultural 

practices, as described in answer to Q24. 
 

Q24) Short rotation coppice: The JRC report only considers SRC pathways based on 

short rotation Eucalyptus plantations, which are mainly established outside the EU. 

No calculations are provided for European species, such as poplar, willow or black 

locust. Given that commercial production of short rotation coppice is already 

practiced at considerable scale in the EU, and that support under EU Rural 

Development Policy can be provided for increasing this production we consider it 

necessary to provide default values also for pathways based on European species. 

A large body on production data and input needs for SRC has been established, 

which should be taken into account. I will send some references early next week. 

Actually, the W2W study already provides some data (pp. 45ff.) that do not seem 

to be used any longer. 
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JRC: A process for the cultivation of poplar in Europe has been inserted in the calculations. 

However, it is important to stress out that so far in EU there is a lot of information available 

at the research scale, but little at the operational scale. 

Cultivation practices for poplar use for the wood industry are different and can be optimized 

for energy production (e.g. shortening rotation) but this is not yet widespread at commercial 

level, it is rather limited to experimental plots (<10000 ha in UK (Matthews), 2000 ha of pulp 

SRC in France (Gabrielle et al., GCB Bioenergy 5 (2013) 30-42) etc…). 

Poplar is currently cultivated in EU mostly for pulp and for furniture with rotations ranging 

typically around 9 – 12 years. However, poplar has been considered also as a species 

suitable for biomass for energy production under short rotation practices. Significant 

variations in yields and agricultural practices can be found in the literature, since interest in 

woody biomass for bioenergy is still recent (see for example Hauk et al., 2014). 

Dedicated SRC cultivation of poplar can undergo a rather intensive management (irrigation, 

weed and pest control, fertilization). However, poplar can also be cultivated in marginal land 

or in areas where other cultures cause significant nitrogen leaching (e.g. buffer strips). In 

order to reflect these two possible situations, two processes are proposed in these 

calculations (see chapter 6.1). 

III.7  General remarks on JRC work on solid biomass 

Q25) CONCLUSIONS. The work behind the report seems to aim at finding an average of 

typical case for standards for the various products in the bio-energy field. 

However, as the conditions for production varies within a wide range, it will be 

important that production units which perform better than the standards, would 

have possibilities to apply their own verified values in the evaluation processes. 

JRC: This possibility is included in the RED, and economic operators are invirted to use actual 

values for their own process if these are available. 

Q26) Use of LHV: expressing all values in MJ wood, as done in BIOGRACE, is not really 

practical (as the LHV doesn’t vary linearly with humidity, thus conversion is not 

always simple way forward). 

JRC: It should be clarified that all the calculations from JRC are based on the LHV of the Dry 

part of the fuel and not on the actual definition of LHV (which includes the heat lost due to 

the latent heat of vaporization of the moisture content and which it is used in the Directive 

2009/28/EC for the purpose of energy allocation). In that case indeed the values would not 

be proportional to the moisture content and it would make things much more complicated. 

The basis of calculation is thus basically proportional to dry weight. 
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