Plasma Wall Interactions in Tokamak

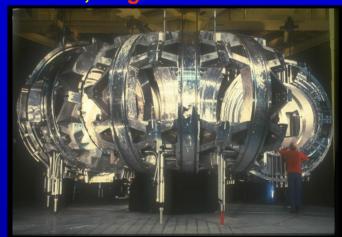
Dr. C Grisolia, Association Euratom/CEA sur la fusion, CEA/Cadarache

Outline

- 1. Conditions for Fusion in Tokamaks
- 2. Consequences of plasma operation on in vessel materials:
 - Development of new technology to sustain High Heat Loads (Tokamak success story)
 - Erosion of material leading to micro particles creation
- 3. Dust physical properties
- 4. Processes under development to control the fuel cycle

Main conditions for fusion plasmas

Deuterium + Tritium • Helium + neutron (+17.6MeV)

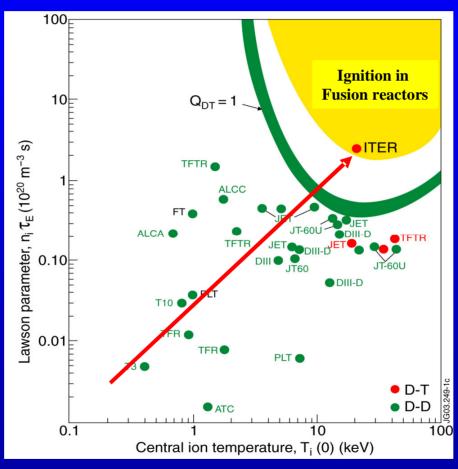

Conditions for fusion reactions (max probability of reaction) Ti ni $t_E > 5 \ 10^{21} \ (KeV \ m^{-3} \ s)$

High T° needed ITER: 200 106K

High purity needed ITER:

> 5% of C & > 10⁻⁴ of W stop the plasma

High particles/energy confinement
On Earth, magnetic confinement

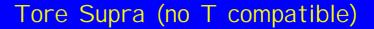


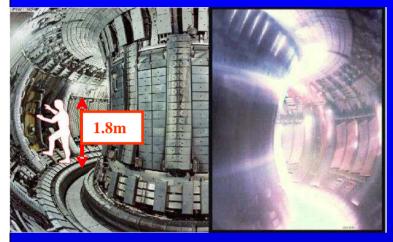
all conditions obtained on # Tokamaks. Tokamak = mature solution to produce fusion energy

Main conditions for fusion plasmas

Conditions to sustain fusion reactions: the Lawson Criterion

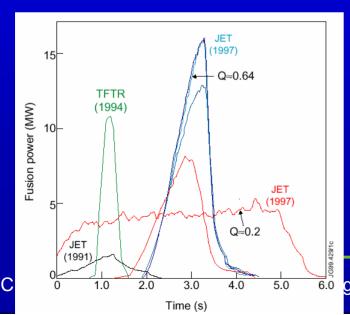
$$Ti \cdot n_i \cdot t_E > 5.10^{21} (keV \cdot m^{-3} s)$$




 $20 \text{KeV} = 200 \ 10^6 \ \text{K}$

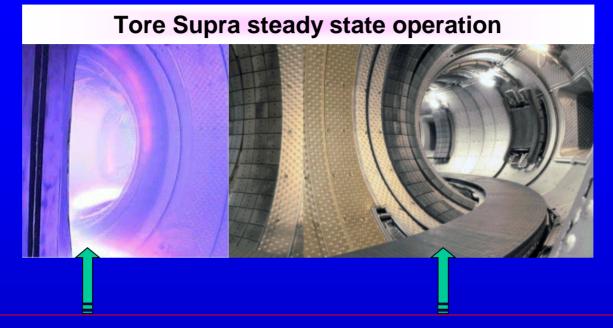
Fusion on earth: magnetic box and plasma facing components

JET (T compatible)



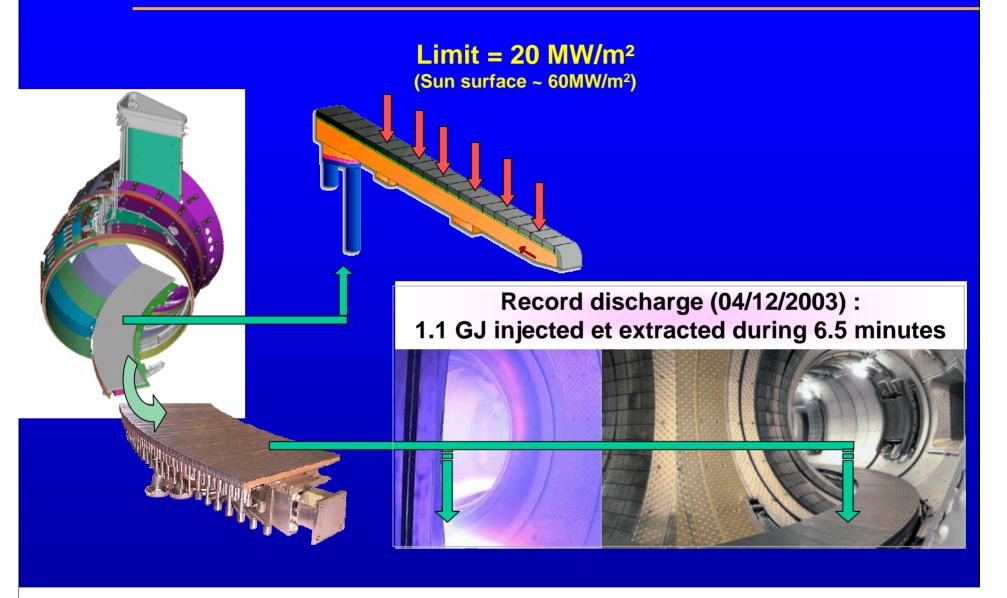
JET = high performances (World record of Fusion Power)

Tore Supra = steady state operation (World record of steady state operation No fusion power)



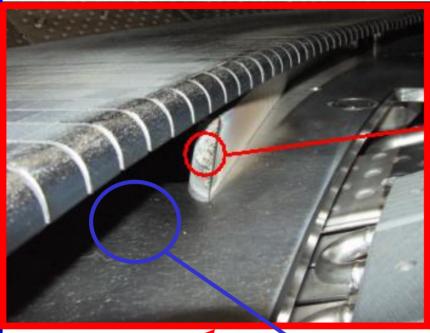
13.11.2007

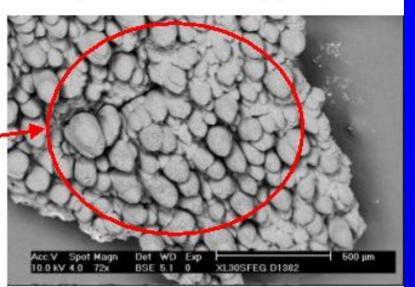
Tore Supra operation: high heat fluxes & material erosion



High Energy and Particle fluxes On surfaces

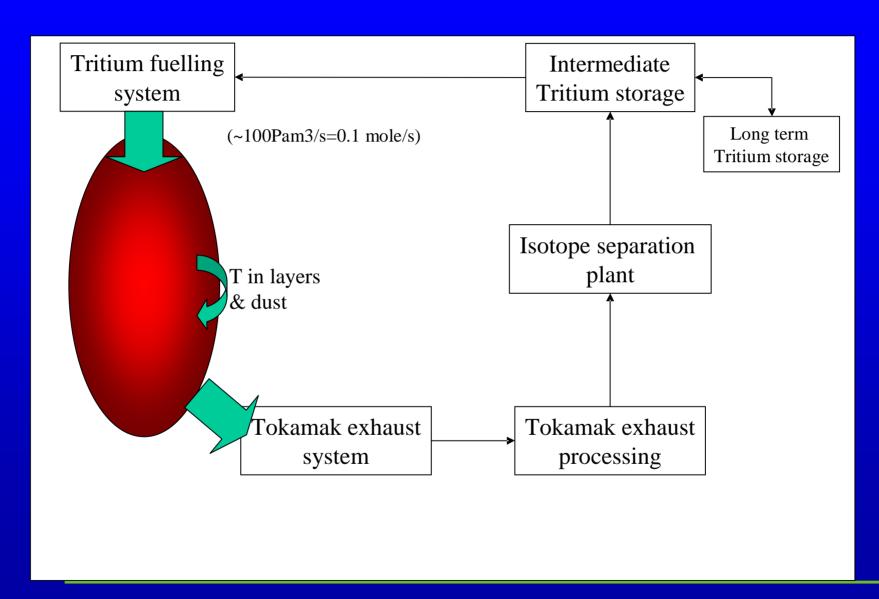
- High heat flux components (<20MW/m²)
- Material erosion


High Fluxes: High Heat Flux Components


Conclusion : Tokamaks = complex machine to operate. But Tokamaks = success story © ITER operation

High fluxes: Material erosion (layers and dust)

Deposits on Tore Supra


Deposits: fuel trapping

Flaking: Dust creation

Tokamak Fuel cycle (JET, ITER relevant)

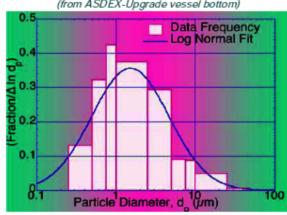
Tokamak operation with Tritium (summary)

Plasma operation = high heat fluxes on Plasma Facing Components è extracted energy + erosion of Plasma Facing Components

Consequences:

- Layers deposition and Tritium trapping
- Micro-particles production
 (~10-15% of eroded material converted in μ-particles)

Control of fuel cycle (including T in dust): part of the ITER Work program


Tokamak operation with/without T: work done

Dust characteristic (Physical properties):

Particle Size Distribution

Count median Diameter (CMD)

Typical Count-based Size Distribution (from ASDEX-Upgrade vessel bottom)

Comparison of Size Distributions			
	CMD (µm) <u>+</u> GSD		
Machine	Lower Regions	Middle Regions	Upper Regions
DIII-D	0.66 <u>+</u> 2.82	0.60 <u>+</u> 2.35	0.89 <u>+</u> 2.92
TFTR	0.88 <u>+</u> 2.63	1.60 <u>+</u> 2.33	-
Alcator-Cmod	1.58 <u>+</u> 2.80	1.53 <u>+</u> 2.80	1.22 <u>+</u> 2.03
JET	27 <u>+</u> (-)	-	-
JT-60U	3.08 <u>+</u> 3.00 (all regions)		
TEXTOR	5-20 <u>+</u> (-)	-	-
Tore Supra	2.68 <u>+</u> 2.89	2.98 <u>+</u> 2.94	3.32 <u>+</u> 2.94
ASDEX- Upgrade	2.21 <u>+</u> 2.93	3.69 <u>+</u> 2.81	3.59 <u>+</u> 3.08
LHD	8.59 <u>+</u> 2.67	6.31 <u>+</u> 2.39	8.73 <u>+</u> 2.09
NSTX	3.68 <u>+</u> 2.44	3.21 <u>+</u> 2.55	2.75 <u>+</u> 2.47
NOVA	1.12 <u>+</u> 1.90	0.76 <u>+</u> 2.03	0.90 <u>+</u> 1.93

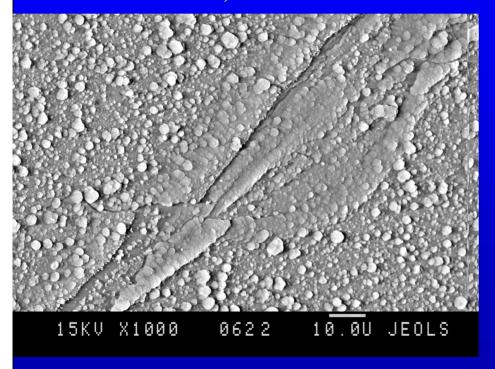
Observations

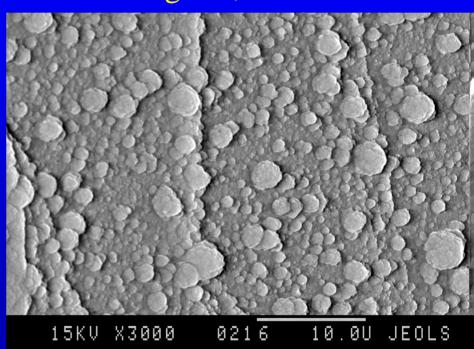
- expected size range is 0.5 10 μm
- no significant size-based trend found in location of dust

JET tritiated dust characteristics:

- sampling during maintenance (airborne dust)
- membrane filter air sampling or cascade impactor
- AMAD:
 - membrane: 1 7 µm
 - impactor: multi modal distributions
 - $1 20\mu m$ (20 μm most abundant)

AMAD = Activity Median Aerodynamic Diameter


Tokamak operation simulation: work done


• Erosion simulation in Plasma gun device:

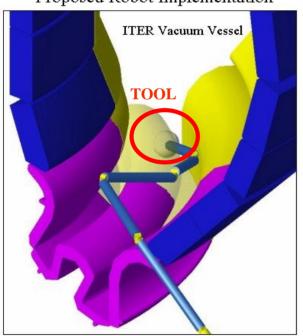
<u>Recovered samples</u> after interaction with carbon (Carbon Fiber Composite) and Tungsten

Carbon, 1.0MJ/m²

Tungsten, 1.5MJ/m²

• New JET metallic plasma facing components: AMAD in metallic machine AMAD = Activity Median Aerodynamic Diameter

In preparation of T & dust in vessel recovery

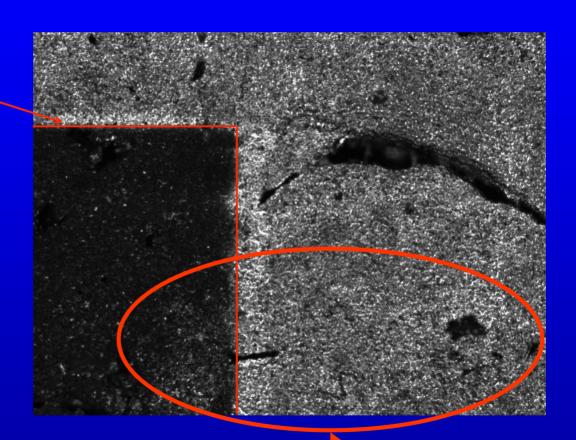

New tools development

Current strategy:

- Integration of Robot in Tokamak carrying tools (for detritiation, dust removal,...)
 (Operation under vacuum, High T°, Magnetic field, neutrons, difficult maintenance)
- Experience feedback from JET (T) machine on Remote Handling

Proposed ITER Robot Implementation

Proposed Robot Implementation


Articulated In vessel Arm (tests)

Dust in vessel recovery

One of the possible tools: Laser removal system

Laser impact

Carbon dust on Carbon Fiber Composite

Summary

- 1. Tokamak is a mature solution for fusion energy production
- 2. Current Tokamaks results allow ITER extrapolation and design
- 3. Concerning Plasma Wall Interaction in Tokamak:
 - Design exists to sustain High Heat Flux (>20MW/m²) in steady state (extrapolation to ITER ok)
 - Plasma Wall Interaction leads to:
 - Plasma Facing Component modification (erosion)
 - T trapping in layers and Dust (part of T cycle)
- 4. Tools developed to control in vessel T cycle:
 - Laser techniques good candidate for ablation & dust removal
- 5. ITER objective (as a research device) is to demonstrate fusion feasibility: part of this: Control of the fuel cycle