

RentalCal – European Rental Housing Framework for the Profitability Calculation of Energetic Retrofitting Investments

Elsebeth Terkelsen
ROUND TABLE ON FINANCE FOR ENERGY EFFICIENCY IN DENMARK
16.11.2017

Round Table Question

How do we ensure financing for projects that are not eligble for financing?

RentalCal: the objectives

- Introduce the rental housing perspective in profitability assessment of energy efficiency investments
- Improve transparency of national investment conditions
- Disseminate knowledge on green value/premium issues

- Key findings in RentalCal
- Policy recommendations
- Green values
- The RentalCal tool

Disposition

The socio-economic calculation rate

Rental Housing Stock

- Analysis based on national consensus data, other statistical data and IEE project TABULA (building type and building age)
- Size, age and energy performance of rental housing stocks vary widely across the RentalCal countries.

Focus on DK

Apartment Block

DK.N.AB.01.Gen

1973 ... 1978

1999 ... 2006

Generic

(Standard)

Generic

(Standard)

Generic

(Standard)

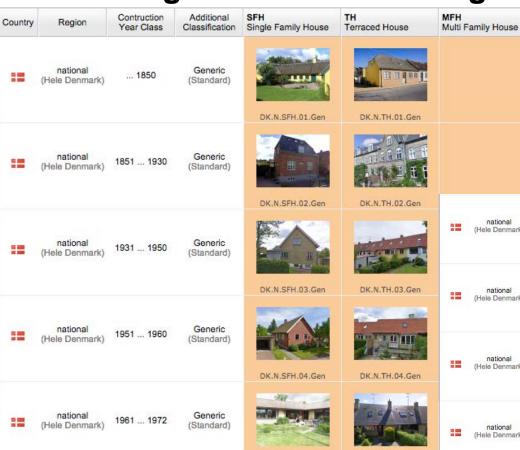
Generic

(Standard)

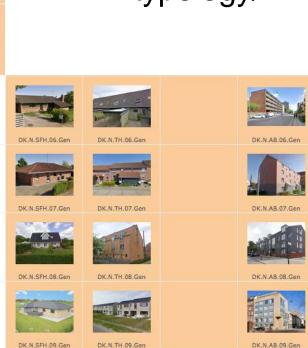
national

national

(Hele Denmark)


national

(Hele Denmark)


national

(Hele Denmark)

Size and age of Danish housing

TABULA http://episcope eu/buildingtypology/

DK.N.SFH.05.Gen

DK.N.TH.05.Gen

Energy performance in Danish housing

kWh/m2/year	Before 1890	1890- 1930	1931- 1950	1951- 1960	1961- 1972	1973- 1978	1979- 1998	1999- 2006	After 2006
Farm house									
	184,3	171,4	161,8	151,2	136,2	116,9	100,3	81	66,6
One family house									
	170,3	164,7	164,1	154,9	134,3	119,8	105,4	83,9	67,3
Terrassed house									
	158,2	157,7	149,3	142,8	119,9	112,6	96,8	81,5	66,4
Multi story house									
	151,1	153,9	157	148	132,3	121	108,5	84	60,7
Student home									
	137,9	149,2	136,4	145,7	130,6	139,1	131,7	84	58,2
Institution									
	164,1	161,9	152,3	140,2	143,2	136,9	116	94,1	63,3
Others									
	161,1	165,7	158,4	161,4	135,8	132,7	101	80,4	66,6

Costs of EE retrofitting/saved kWh in multi story buildings

From year	1200	1850	1931	1951	1961	1973	1979	1999	2007		
To year	1850	1930	1950	1960	1972	1978	1998	2006	2012	Total	
1.Area m2	488.44 5	22.164.7 27	13.557.0 50	7.458.34 7	14.321.9 48	4.624.3 02	7.552.8 28	3.648.3 82	2.807.1 65	76.623.19 4	m2
2. Present consumption in MWh/year	66.569	3.389.66 2	2.134.81 0	1.043.07 7	1.764.76 2	537.83 8	856.32 4	260.36 7	145.61 9	10.199.02 8	MWh
3. Consumption Scenario A	31.752	1.325.58 0	854.039	408.687	668.868	197.00 8	330.13 0	126.90 4	60.092	4.003.060	MWh
4.Total costs of renovation	870.42 5	45.409.8 04	24.334.6 49	10.784.6 30	19.726.0 92	5.453.2 80	8.945.2 98	2.849.9 42	1.539.4 86	119.913.6 06	1000 kr.
5.Marginal renovation costs	522.25 5	26.833.0 66	14.088.4 81	6.343.90 0	9.863.04 6	2.726.6 40	4.209.5 52	1.067.7 04	684.21 6	66.338.86 0	1000 kr.
6.Total investment costs per kWh saved in the lifetime of the investment	25	22	19	17	18	16	17	22	18		kr./k Wh
7. Marginal investment cost per kWh saved in technical lifetime	15	13	11	10	9	8	8	8	8		kr./k Wh

Other financial factors

- Legal Barriers for Investments
- Depreciation rules
- Tenant Related Barriers for Investments
- Investor Related Barriers for Investments

Legal Barriers: rent and maintenance costs

- Maintenance costs, not improvements are a contractual obligation of the tenants -
 - Creating significant split incentive barriers
 - Lowering green value margins and
 - Prolonging pay back periods for deep retrofits

Depreciation rules

- Maintenance expenses are considered tax-deductible costs
- Investments leading to improvements are recognised as increasing the value of the property
- Lack of precise definitions concerning distinction between those expenditures

Tenant Related Barriers for Investments

- Low income, as a barrier to invest in green initiatives
- Demographic barriers
- Energy efficiency retrofits are perceived as a secondary priority by tenants
- Low stable energy prices

Investor Related Barriers for Investments

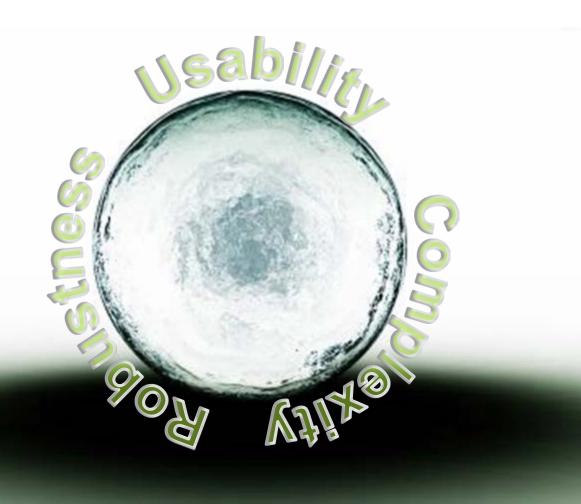
- High initial capital outlay
- Access to loans and financial support
- Inability of green value to be fully capitalised into property value
- Informational barriers

Green premiums

Gennemsnitlig stigning i salgspris i kr./m2 og procent ved forbedret energimærke opgjort efter regioner.

Policy Recommendations

- Sound financial incentives are likely to spark action (evidence e.g. from national findings in France (the availability of the zero percent eco loans))
- Improve the negative perception of green investments by reducing uncertainty
- Policies should be directed towards mandatory whole house retrofits


Policy Recommendations

Policy Recommendations

- Energy retrofitting should be affordable to all national income groups
- Support of energy consultants
- Continuous evaluation of achievements
- Establishment of a national roadmap

RentalCal tool: transparent financing

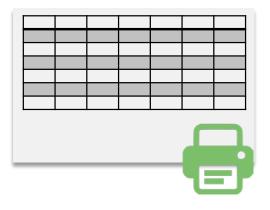
RentalCal tool: the scope

A web based tool for the profitability analysis of energy related retrofits in rental housing

- Provide transparency on the profitability of individual energy efficiency retrofits
- Focus on rental cash flow modeling with green premium or other energy efficiency related rent increase
- Including subsidized funding and detailed tax / depreciation assessment
- The RentalCal tool offers an international comparative perspective

RentalCal tool: the scope


Advanced scalability


- Two entrances
 - Data base assisted quick feasibility check
 - Detailed manual entry for individual case assessment
- User specific investment horizon
- User specific assumptions on future dynamics of prices and rents

RentalCal tool: the workflow

Input Modules

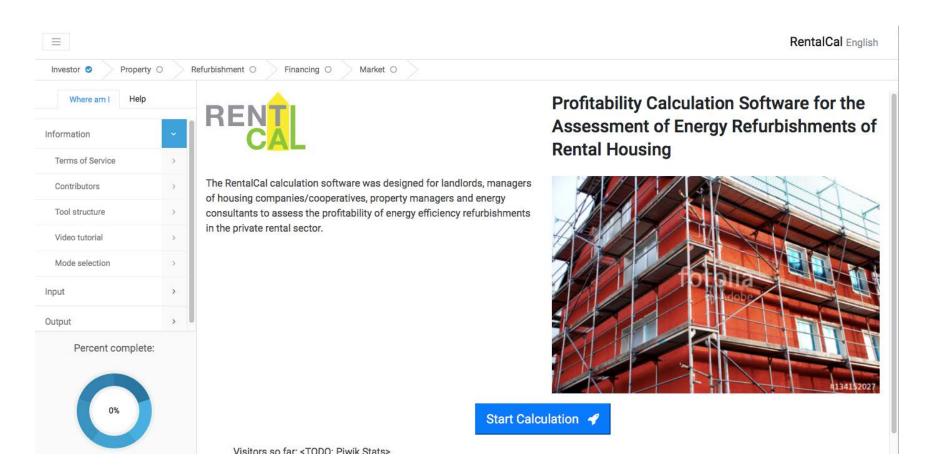
Property, Investor, refurbishment, finance, tax and depreciation, rent and operation costs

> Database guided User provided

Profitability Analysis

Dynamic calculation using VoFI (Visualization of Financial Impact) methodology

Complex Case Differentiations


Reporting Modules

Multipe KPIs Break even assessment Risk analysis

Target group specific output

Tool on the web

HOME

NEWS

ABOUT THE PROJECT

NATIONAL PAGES

PUBLICATIONS

TRAINING

CONTACT

TOOL

...tool online by the end of 2017

Contributors

International Real Estate Business School Universität Regensburg

European Green Cities Network

Department of Land Economy

Thank you

https://youtu.be/m3hgXdPHT4E