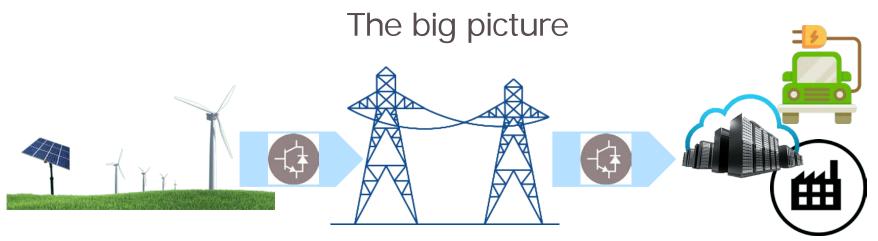


PE interface to AC grid: grid forming control for a more resilient transmission grid, and a flexible DC connection of grid customers

Context

The big picture



Power-Electronic Interfaced Devices (PEID)

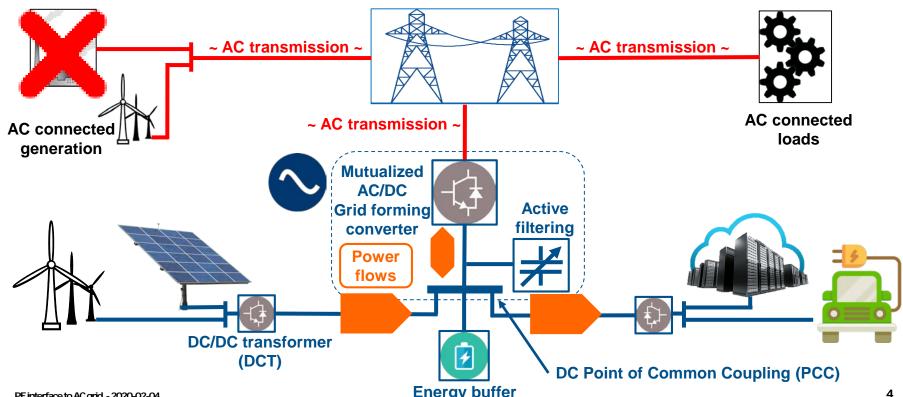
- Synchronism and low inertia
- Control interaction
- Weaker grids
- Fault-Ride Through (FRT) capability

Context

As recently demonstrated, **Power Electronics**Interfaced Devices are also an opportunity to increase reliability in Power Systems

cf. MIGRATE

New opportunities with loads connected to Transmission networks


Increasing number of industrial processes based on DC, with large ratings

→ More and more PEID on the load side too (with similar challenges)

A mutualized DC connection

... to improve system stability and resiliency at best economic performance

Drivers for a DC Point Of Common Coupling

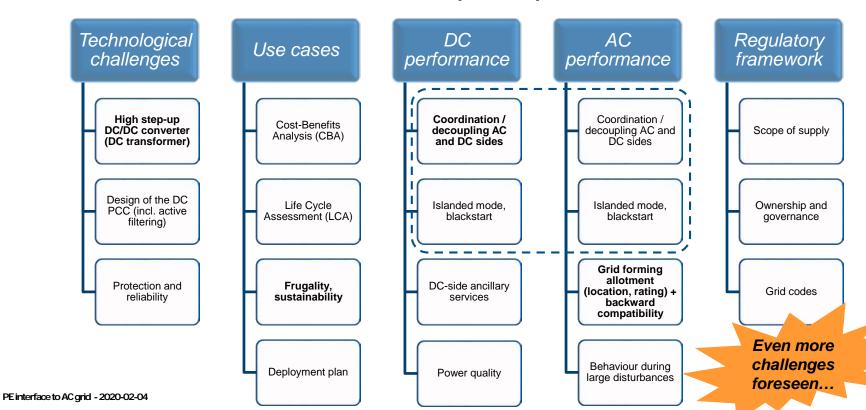
A few preliminary expectations

Expected benefits of the DC PCC?

- More grid forming inverters with harmonized controls
 - ✓ Improve overall system robustness
 - ✓ Ensure resiliency in case of system split
- At transmission level for a better mutualization effect.
 - ✓ reduced losses and scale
 - ✓ cost-efficient reliability
 - ✓ optimized monitoring and maintenance
 - ✓ recoverable heat losses
- Operation of a mixed AC/DC system for
 - ✓ More efficient hybrid operation
 - ✓ simplified connection for customers
 - √ new coordinated ancillary services (AC- and DC-side)

Assessing the benefits of a global optimization vs. multiple (stakeholder-driven) local optimizations (overall efficiency and savings)

Expected customers?


Any power-intensive customer using DC:

- PE interfaced renewable (solar, wind)
- Loads (e-mobility, data centers,...)
- ... storage operators
- → Potentially large number of beneficiaries

Outstanding challenges

A first set of open questions

Relevance of the DC PCC

A timely matter

Paving the way toward DC grid

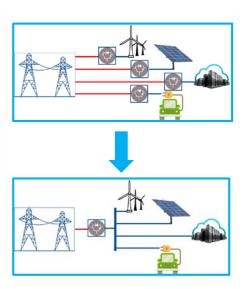
- Intermediate and reasonable step toward large (offshore) DC grids
- Less costly, less risky, less complex to control
- Regulatory, financing, governance aspects are simplified (less stakeholders at a time)

Interoperability

- Adverse interactions between PE equipments already witnessed (AC and DC sides)
- No guarantee to avoid them from the specification stage
- But a methodology was outlined to address and fix them efficiently

An improved hybrid AC and DC system

- Enhanced AC stability (grid forming controls)
- Assessing cost-effective implementation of grid forming
- Overall system efficiency (losses) and resilience (blackstart, islanded operation...)
 expected to improve


The DC PCC builds upon earlier projects and studies

Key take-away

- Power electronics can enhance stability, robustness and resilience
- High power DC Point of Common Coupling: mutualization with expected benefits toward sustainability (European Green Deal)
- Simplified connection for a wide range of applications in Europe.
- A broadened perspective rather than a change of R&D direction:
 - ✓ Builds upon earlier work (previous EU R&D projects)
 - ✓ DC PCC as a first reasonable step toward large (offshore) DC grid
- Holistic assessment of benefits and investigation of related challenges is needed
 - ✓ Requires involvement of TSOs, customers, RES developers, vendors, etc.

RTE want to raise the attention of the European community on this **new exciting opportunity!**

→ We believe that this vision would take advantage from a EU R&D call for project?